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A proposed measure of network cohesion for graphs arising from interrelated
economic activity is studied. The measure is the largest singular value of a row-
stochastic matrix derived from the adjacency matrix. It is shown here that among
graphs on n vertices, the star universally gives the (strictly) largest measure. Other
universal comparisons among graphs with larger measures are difficult to make,
but one is conjectured, and a selection of empirical evidence is given.

1. Introduction

In [Cavalcanti et al. 2012; 2013] the authors studied the role of network “cohesion”
in the equilibration of economic or other activity among agents whose interaction
is governed by a particular graph. An example is the one in which adjacency is
the bordering relationship among countries. Giannitsarou and Johnson (personal
communication, 2011) proposed a particular numerical measure of network cohesion
and raised the question of which graph on n vertices resulted in the highest measure.
That measure may be described as follows. Let A4 be the adjacency matrix of a
graph G, define B = A 4 I, and let D be the positive diagonal matrix whose
diagonal entries are the row sums of B. If R = D™! B, then R is row-stochastic,
and o (G), the measure of cohesion, is the largest singular value of R. Recall that
the singular values of R are the square roots of the eigenvalues of RR” . Another
application where the matrix R has appeared is in [Echenique and Fryer 2007],
where it is referred to as the matrix of social interactions.

Here, we show that, for any #, 0(G) is maximized by the star S,,. The measure
0(G)is 1 if and only if G is regular, and 1 is the smallest possible value (Section 2,
Proposition 1). Using our methods, it is difficult to determine, in advance, the
relative position in this order of other graphs. Indeed, for graphs naturally defined
on any number of vertices, the position often changes with n. However, we do
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conjecture that the star plus an edge that connects two of the pendant vertices is
next after the star, based, in part, on empirical evidence. After that, however, there
may be no universal third place independent of 7.

In the next section we mention known results that we use, and develop some
new ideas that are important for our observations. In particular, the entries of
RRT have a nice and useful interpretation. Then, we show the star yields the
highest measure by showing that a lower bound for the square of its largest
singular value beats an upper bound for that of any other graph. Finally, in an
Appendix, we give a selection of empirical information of interest (Table 1 and
Figures 2, 3, 4, 5).

2. Background and tools

Given a graph G on n vertices, let A be the adjacency matrix of G. Unless otherwise
noted, our notation follows [West 1996]. Let R = D~1(4 4 I), where D is the
unique positive diagonal matrix such that R is row-stochastic. Let A(G) denote the
maximum eigenvalue of RRT, and note that 0(G) = \/A(G).

Proposition 1. For any connected graph G on n vertices, 0 (G) > 1,and 0(G) =1
if and only if G is regular.

Proof. Note that G is regular if and only if R is doubly stochastic. If R is doubly
stochastic, then it is a convex combination of permutation matrices by Birkhoft’s
theorem [Horn and Johnson 1990, Theorem 8.1.7], and therefore the operator
norm of R, which equals the maximum singular value, is 1. Let e € R” denote
the vector with 1 in every entry. By the Cauchy—Schwarz inequality, |e? R]|> >
(eTR,e/n) = /n=|eT|,, with equality if and only if e’ R is a multiple of 7.
Therefore, when R is row-stochastic but not doubly stochastic, the operator norm
of R is strictly greater than one. It follows that o(G) > 1 when G is not regular. [

Note that D = diag({d; + 1}iec1,....n), Where d; is the degree of vertex i in G.
Let C = (A+ I)(A+ IT. The (i, j) entry of C, which we denote by Cij, 1s
the number of vertices that are adjacent to both vertex 7 and vertex j, with the
convention that two adjacent vertices are common neighbors of each other, that is,
cij = |N[i]N N[j]|. In particular ¢;; = d; + 1. Thus the entries of RRT are

ryj = i (1)
YU di+ D+ 1)

Lemma 1. Ler RRT be defined as above and assume that n > 2. When i # j,
the largest possible values of rij are % and %. If rij = %for some i # j, then
di =d;j =2 with c;j =3 or{d;,dj} = {1,2} with ¢;j = 2 (see Figure 1).



ORDERING GRAPHS IN A NORMALIZED SINGULAR VALUE MEASURE 265

Figure 1. Possible adjacency graphs when r;; = %

Proof. We may assume that d; > d;. Note that ¢;; < d; 4+ 1; thus r;; < 1/(dj + 1).
If rij > %, then dj = 1 or dj = 2. In the former case, d; = dj = 1, which can only
happen if n = 2, since G is assumed to be connected. In the latter case, d; = 1 or
di =2 while dj =2.If d; = 1 and dj = 2, then r;j = ¢;; /6 € {0, %, %} depending
on the value Ofcij. If d; = dj = 2, then rij = Cij/9 € {0, %, %, %} O

Suppose that G is a connected graph with n vertices such that every vertex has
degree 1 (is pendant) except for a single central vertex with degree n — 1. We refer
to any such graph as a star on n vertices, denoted by S;,. We may assume without
loss of generality that vertex 1 is the central vertex of the star. Using (1), we see
that, for the star,

& 1 17

n n n

g 1 1 1

n 2 4 4
T 1 1
RR" = 4 2

Lol . 1

: -2

g 1 11

L n 4 24

Note that RRT — %I is of rank 2, and therefore it is possible to explicitly calculate
the characteristic polynomial of this matrix. Recall [Horn and Johnson 1990,
Theorem 1.2.12] that the characteristic polynomial of a matrix is given by

() =1"—E{t" V4 Eyt" 2 o (1) Ep,

where each Ej is the sum of the k-by-k principal minors of the matrix. For
RRT — %I , only the 1-by-1 and 2-by-2 principal minors can be nonzero. Thus the
characteristic equation for RRT — %I is

p6)y=1"— (% + %(n - 1))l”_1 + (n4;z4)(” -
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The nonzero roots of this polynomial are

Ln-D+1x (-1 + 1) -zt
2

’

and therefore the maximum eigenvalue of RRT for the star on n vertices is

1 %(n—l)+%+\/(%(n—l)+%)2—'1,l;24

3. The star is a maximum

We seek to estimate the maximum eigenvalue A(G) of RRT. The row sums of
RRT place constraints on A(G). By [Horn and Johnson 1990, Theorem 8.1.22],

min r,-j} <AG) < max{ r,-j}. 2)
2 =

For the star on n vertices, RRT — %I contains an (n — 1)-by-(n — 1) submatrix with
all entries equal to %. It follows from the inclusion principle [Horn and Johnson
1990, Theorem 4.3.15] that A(S;) > %n. Combining this with the maximum row
sum, we see that %n <A(Sy) < %n + %

The following observation is an immediate consequence of Lemma 1:

Lemma 2. Suppose that n > 2, and consider the rows of RRT. If row i has
diagonal entry rj; = % with k > 4 and no off-diagonal entry equals %, then the sum
of the entries in row i is at most % + %(n —1).

Let us make a basic observation which we will use in the proofs of several
subsequent propositions.

Lemma 3. Let ¢ > 0. The function x — 1/(x + 1)+ c¢x is concave up for all x > 0,
and therefore its maximum on any interval [a,b] C (0, 00) is attained at one of
the endpoints.

The following observations about the row sums of RRT cover the cases when
Lemma 2 does not apply:

Lemma 4. Suppose that n > 3. If row i has diagonal entry rj; = % and G is not
the star, then the sum of the entries in row i is at most —% + % + %n.

Proof. Since r;j; = %, d; = 1. Let j denote the vertex adjacent to i. The sum of the
entries in row I is then
1 1 Cim
Fii 4 Fii Fir = — )
i +rij + E im 2+dj+1+ P

m#i, j m#i, j
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Note that ¢;,,, =1 if there is an edge connecting vertex j to vertex m and ¢;,, = 0 other-
wise. Therefore we have the following upper bound for the sum of entries in row i:

1
. <_
rii +rij + Z Yim _2 + + Z Z(dm+1)
m#i,j

If dj = n—1, and the graph is not the star, then there must be at least two vertices
my and m; such that d,,,, > 1 and d,,, > 1. In this case an upper bound for the
sum of the entries in row i is

1,1, 1 11 1 1

§+;+Z(dj—3)+2g=—g+n+zl’l.
If di <n—1, then
1 1 1
rii +rij + Z im = =+
2 d 2d 1
m#i, j +1 meN(j) (dm +1)
1 1
<
—2 di+1

Since 2 <d; <n—1, we use Lemma 3 to see that an upper bound for this expression is

13 1 1 1
max{ [ R Z”}‘
Forn > 3,
13 1 1 1 1,1, 1
— [ — - < = —
max{12 4+n—1+4”}— 6 T nta" H
Lemma 5. Suppose n > 3. If row i has diagonal entry rj; = % then the sum of the

entries in row i is less than —% + % + %n.

Proof. Since r;; = %, d; = 2. Let j and k denote the two vertices adjacent to i.

Case 1. If there is an edge connecting j and k, then ¢;j = cjp =3. If m #iisa
vertex adjacent to both j and k, then

2 - 2
Fim=——7" < —.
T 3 dp+1) T 9
If m is only adjacent to one of j or k, then
1 1

= <
"= A +1) ~ 6
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Let d = max{d;, dy} and D = max{d};, di }. There are at most d — 2 vertices other
than i that are common neighbors of both j and &, and there are at most D — d
remaining vertices other than i that could be adjacent to exactly one of j or k.
Therefore the sum of the entries in row i is at most

1 1 1 1 1

+—d+

— -D.
st ary T o+ T TS

2 1
rii trij F i+ g (d =2+ o(D—d) = -

In this case, 2 <d < D <n—1. By Lemma 3, it follows that the possible maximum
values in the expression above occur when eitherd = D =2,ord =2, D =n—1,
or d = D =n— 1. The corresponding upper bounds on the row sum are

1, _1

—n 2,
6 3 )

1
’ 9

+o+ +24
n

AN —
S| =

Each of these bounds is less than —% + % + %n for all n > 3.

Case II. If there is no edge connecting j with k, then ¢;j =cjp =2. lf m#iisa
vertex adjacent to both j and k, then

2 - 2
Fim=——7" =< —.
T 3 dm+1) T 9
If m is only adjacent to one of j or k, then
1 - 1
tim=———"7"2=<—.
T 3 dm+1) T 6

Let d = max{d;, dy} and D = max{d;, di }. There are at most d — 1 vertices other
than i that are common neighbors of both j and &, and there are at most D — d
remaining vertices other than i that could be adjacent to exactly one of j or k.
Therefore the sum of the entries in row i is at most

2 2

i
3d+1) 3D+ ) b.

6

2 1 1 1
4 gt S d—1)+ ~(D—d) < = —d
}’”+1’1]+Vlk+9( )+6( )_9+ +18 +
We know that 1 < d < D <n—2. By Lemma 3, it follows that the possible
maximum values in the expression above occur when either d = D = 1, or
d=1,D=n—-2,ord = D =n—2. The corresponding upper bounds on
the row sum are

1 I P ST
-n, — —n.
6 3 " 3m—1) ' 9

1,
6+ 3(n—1)

Once again, each of these bounds is less than —% + % + %n for all n > 3. O
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Lemma 6. Suppose n > 3. If row i contains an off-diagonal entry rij = % then the

sum of the entries in row i is at most —% + % + %n.

Proof. There are three possible cases, depending on the possible degrees of i and j
given by Lemma 1.

Case 1. If d; = 1 and d; = 2, then there is only one other vertex, aside from 7 and j,
that can share a common neighbor with i. Call that vertex k. The sum of entries in
row i is
R 1 n 1 4 1 - 1 n 1 n 1 13
rii Iii rir = — — S Es—— — — - = —,

ET TR T T3 T e+ 1) "2 3 4 12
which is less than or equal to —% + % + %n for all n > 3 (equality occurs only when
n=4).
Case II. If d; = 2 and dj = 1, then Lemma 5 implies that the sum of the entries in
row i is less than —% + % + %n.
Case III. If d; = dj = 2, then by Lemma 1, ¢;; = 3. Let k denote the third common

neighbor of i and j. The sum of the entries in row i is then

1 1 1 1
rii +rij +rig + Z Vim:§+§+dk+1+ Z m
m

m#i, j,k m#i, jk

2 1 1

<- —(dy —2

=3t gr1 T
2 1

<= —(n—4

S3taoi T
1 n 1

=-n+—.
6 n—1

This upper bound is less than —% + % + %n for all n > 3. O

Theorem 1. Of all connected graphs on n vertices, the star attains the maximum
value of o.

Proof. Suppose that G is not Sy. The contents of Lemmas 2, 4, 5, and 6 show that
the maximum row sum of RRT is less than or equal to —% + % + %n. Ifn>6,
then this upper bound is less than %n, and, by the comment after (2), we conclude
that A(G) < A(Sy) and therefore 6(G) < 0(S,). When 3 <n < 6, we can verify
by explicit computation that —% + % + %n < A(Sy). When n = 3, the theorem can
be verified directly since there are only two connected graphs on 3 vertices. [



270 CHARLES R. JOHNSON, BRIAN LINS, VICTOR LUO aND SEAN MEEHAN

Appendix

Here we present the values of ¢ (G) for every connected graph up to 6 vertices. The
graphs are given in graph6 string format [McKay 1981; 2005], and the values of
0 (G) are given to 8 decimal places. The values for the stars are given in boldface.

Esa? 1.26376262 EvsW 1.04127270 Elo_ 1.02301009 Er_G 1.01059866
Eta? 1.17779971 Et]lG 1.04082858 ExoG 1.02253862 Dxc  1.00995156
Ds_  1.17686828 Ev{w 1.04057352 E~{W 1.02245280 Ep0G 1.00969514
Epa? 1.12724256 EzPW 1.03944703 EvwW 1.02150256 E~wW 1.00956370
Exg_ 1.12719000 Elw_ 1.03869527 E~sW 1.02136937 Ex0OW 1.00891795
Eli_ 1.11535507 EvcG 1.03802560 EzzZW 1.02039571 EroW 1.00885018
Elg_ 1.10702341 Dx_  1.03794998 EzoG 1.02034616 Ez_G 1.00805939
ExGg 1.10124485 Epo_ 1.03760887 D~c  1.02031933 D~s  1.00764077
Dt_  1.09692536 Eto_ 1.03627677 ErcG 1.01998619 EzYW 1.00741994
Cs 1.09445053 Dto  1.03552399 EzWW 1.01866302 Er0w 1.00711468
Exw_ 1.09118881 ExPw 1.03508808 EzOW 1.01862583 Epoo 1.00711468
Ehg_ 1.08965849 Exwo 1.03458078 EpUG 1.01823188 E~yW 1.00707898
Ex__ 1.08492159 EtUG 1.03375811 Ez[Ww 1.01792742 ExSW 1.00696806
Eli_ 1.08378641 Edq_ 1.03272839 E~sG 1.01775521 ErWW 1.00696806
El__ 1.08125829 EzZw 1.03266215 ElqW 1.01732826 EloW 1.00662172
Ep{G 1.07743057 EpgG 1.03266215 Exoo 1.01710090 Ezsw 1.00608114
Elg_ 1.07386856 Er{w 1.03197929 Ez{w 1.01709947 Ezow 1.00603467
Et}G 1.06680419 EzwG 1.03138546 EzSW 1.01709947 Dzs  1.00499991
Elw_ 1.06420788 Cx 1.03138184 Dxo  1.01695288 Dzc  1.00459536
Etq_ 1.06264937 Ev_G 1.03126091 Ezww 1.01494232 E~}w 1.00451397
Exo_ 1.06170523 Dxw  1.02998084 E~OW 1.01436311 E~uw 1.00445419
Ep__ 1.06066017 EpWG 1.02979441 Cz 1.01417394 ElOw 1.00293400
EtuG 1.05968917 E~TWw 1.02813174 Cp 1.01417394 E~YW 1.00274201
ExGG 1.05861770 Bo 1.02813174 E|sW 1.01400371 E~~w 1.00000000
DI_  1.05825411 Ep_G 1.02808843 EroG 1.01390539 Ezuw 1.00000000
Dlg 1.05543372 ErwG 1.02792587 E~cG 1.01337635 Erow 1.00000000
Dp_  1.05417745 E~{G 1.02768976 ErwW 1.01293228 ErYw 1.00000000
Eh__ 1.05150374 D1_  1.02717603 E~}W 1.01273126 EpOW 1.00000000

El 1.04879365 E~SW 1.02636956 Edo_ 1.01267470 D~{  1.00000000

Er{G 1.04866795 EzsG 1.02530775 Dh_ 1.01213081 Dhc  1.00000000
EpsG 1.04851433 Dlg  1.02465677 Dpo  1.01188403 C~ 1.00000000
Elo_ 1.04562708 EvoW 1.02459474 E|Sw 1.01133377 Cr 1.00000000
ExWG 1.04512215 Ex0G 1.02421645 E~_G 1.01111110 Bw 1.00000000
ExwG 1.04350178 ExPW 1.02380968 EI|TW 1.01090626 A_ 1.00000000
EpuG 1.04308838 Dlc  1.02305146 EzcG 1.01084213

Ez{G 1.04248210 EpSG 1.02303779 E~oW 1.01073140

Table 1. The value of o(G) (to 8 decimal places) for every con-
nected graph with at most 6 vertices, with the values of stars given
in boldface.
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Pt
X

o(G) = 1.17686828 0(G) = 1.09692536

4
A

0(G) =1.05825411 0(G) =1.05543372

Figure 2. The graphs with the four highest singular values for
n=>3.

P
+

0(G) =1.26376262 0(G) =1.17779971

%
-+

o(G) = 1.12724256 o(G) = 1.12719000

Figure 3. The graphs with the four highest singular values for
n==6.
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-
ps

0(G) = 135014262 0(G) = 1.26334444

%
X

o(G) = 1.21280950 o(G) = 1.20776980

Figure 4. The graphs with the four highest singular values for
n=717.

oK
K

0(G) = 1.43409322 0(G) = 1.34869242

¥
o

o(G) = 1.30048331 o(G) = 1.29185037

Figure 5. The graphs with the four highest singular values for
n=S_§.
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