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An edge ordering of a graph G = (V, E) is an injection f : E→Z+, where Z+ is
the set of positive integers. A path in G for which the edge ordering f increases
along its edge sequence is called an f-ascent; an f-ascent is maximal if it is
not contained in a longer f-ascent. The depression ε(G) of G is the smallest
integer k such that any edge ordering f has a maximal f -ascent of length at most k.
Applying the concept of ascents to edge colourings rather than edge orderings,
we consider the problem of determining the minimum number χε(Kn) of colours
required to edge colour Kn , n ≥ 4, such that the length of a shortest maximal
ascent is equal to ε(Kn)= 3. We obtain new upper and lower bounds for χε(Kn),
which enable us to determine χε(Kn) exactly for n = 7 and n ≡ 2 (mod 4) and to
bound χε(K4m) by 4m ≤ χε(K4m)≤ 4m+ 1.

1. Introduction

Following [Schurch 2013a; 2013b], we consider the following question:

Question 1. For n ≥ 4, what is the smallest integer r(n) for which there exists a
proper edge colouring of Kn in colours 1, . . . , r(n) such that a shortest maximal
path of increasing edge labels has length three?

Schurch showed that r(n) ≤ 2n− 3 for all n ≥ 4. This bound enabled him to
determine r(n) for n ∈ {4, 5} and to show that 7≤ r(6)≤ 8. In Section 2 we give a
lower bound for r(n) and in Section 3 we improve the general upper bound to

r(n)≤
⌊

3n−3
2

⌋
.

We then improve this bound for even values of n. Consequently, we obtain r(7)= 9,
r(n)= n+ 1 if n ≡ 2 (mod 4), and n ≤ r(n)≤ n+ 1 if n ≡ 0 (mod 4) and n ≥ 8.
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We begin with a short historical account of the background to this problem. An
edge ordering of a finite, simple graph G is an injection f : E(G)→Z+, where Z+

is the set of positive integers. Denote the set of all edge orderings of G by F(G).
A path v1, . . . , vk (where vk 6= v1) in G such that f (v1) < · · ·< f (vk) is called an
f-ascent; an f-ascent is maximal if it is not contained in a longer f-ascent. The
height H( f ) of an edge ordering f is the length of a longest f-ascent, and the
flatness of f , denoted by h( f ), is the length of a shortest maximal f-ascent of G.

Chvátal and Komlós [1971] posed the problem of determining

α(Kn)= min
f ∈F(Kn)

{H( f )}

of the complete graph Kn . This is a difficult problem and α(Kn) is known only for
1≤ n≤ 8 (see [Burger et al. 2005; Chvátal and Komlós 1971]). The parameter α(G)
for complete and other finite graphs was also investigated in [Bialostocki and Roditty
1987; Burger et al. 2005; Calderbank et al. 1984; Graham and Kleitman 1973;
Mynhardt et al. 2005; Roditty et al. 2001; Yuster 2001].

For an arbitrary finite graph G, Cockayne et al. [2006] considered the problem
of determining ε(G)=max f ∈F(G){h( f )}, that is, the maximum length, taken over
all edge orderings f ∈ F(G), of a shortest maximal f-ascent. The parameter ε(G)
is known as the depression of G and its computation is likewise a difficult problem.
Another interpretation of the depression of G is that any edge ordering f of G has a
maximal f -ascent of length at most ε(G), and ε(G) is the smallest integer for which
this statement is true. Graphs with depression two were characterized in [Cockayne
et al. 2006], while trees with depression three were characterized in [Mynhardt 2008].
Graphs with no adjacent vertices of degree three or higher that have depression three
were characterized in [Mynhardt and Schurch 2013]. Further work on depression
can be found in [Cockayne and Mynhardt 2006; Gaber-Rosenblum and Roditty
2009; Schurch and Mynhardt 2014; 2014; Schurch 2013a; 2013b].

An edge ordering of G is also a proper edge colouring — a labelling of the
edges of G such that adjacent edges have different labels. The minimum number
of labels, also called colours, is called the edge chromatic number or the chromatic
index χ ′(G). It is well known (see [Chartrand et al. 2011, Section 10.2], for
example) that χ ′(Kn)= n− 1 if n is even and χ ′(Kn)= n if n is odd. A 1-factor
of G is a 1-regular spanning subgraph of G, and G is 1-factorable if E(G) can be
partitioned into 1-factors. If G is 1-factorable, then G is r -regular for some r and
χ ′(G)= r . König’s theorem (see [Chartrand et al. 2011, Theorem 10.15]) states
that every r-regular bipartite graph is 1-factorable. In particular, the chromatic
index of the complete bipartite graph Kn,n is given by χ ′(Kn,n)= n.

Noticing that the labels of some edges in an edge ordering of G may be unim-
portant when determining ε(G), Schurch applied the concept of ascents to edge
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colourings and called the minimum number of colours in a proper edge colouring c
of G such that h(c) = ε(G) the ε-ascent chromatic index of G, denoted χε(G).
Unlike the case for general graphs, the depression of Kn is easy to determine:
ε(K1)= 0, ε(K2)= 1, ε(K3)= 2 and ε(Kn)= 3 for all n ≥ 4 (see [Cockayne et al.
2006]); that is, there does not exist an edge ordering or an edge colouring of Kn

such that a shortest maximal ascent has length four or more. Note that χε(K1)= 0,
χε(K2)= 1, χε(K3)= 3, and determining χε(Kn) for n ≥ 4 is equivalent to finding
the smallest integer r(n) such that there exists a proper edge colouring c of Kn in
colours 1, . . . , r(n) with h(c)= 3, as formulated in Question 1.

2. Lower bound for the ε-ascent chromatic index of Kn

We begin with a simple lower bound for χε(Kn), which slightly improves the bound
in [Schurch 2013b, Proposition 8] in the special case where G = Kn .

Theorem 1. If n ≥ 4, then

χε(Kn)≥


n if n ≡ 0 (mod 4),
n+ 1 if n ≡ 1, 2 (mod 4),
n+ 2 if n ≡ 3 (mod 4).

Proof. Let c be a proper edge colouring of Kn in colours 1, . . . , r such that h(c)= 3.
Such a colouring exists because ε(Kn)= 3 if n ≥ 4. For i = 1, . . . , r , define

Ei = {e ∈ E(Kn) : c(e)= i}.

Then |Ei | ≤ bn/2c for each i . Also, no vertex v is incident with an edge e ∈ E1

and an edge e′ ∈ Er , otherwise e, e′ is a maximal c-ascent of length two, which
contradicts h(c)= 3. Thus |E1∪ Er | ≤ bn/2c and E1∪ Er is an independent set of
edges, that is, E1∪ Er , E2, . . . , Er−1 is also a proper edge colouring of Kn . Hence
r ≥ χ ′(Kn)+ 1. In particular,

χε(Kn)≥

{
n if n ≡ 0 (mod 4),
n+ 1 if n ≡ 1 (mod 4).

Assume n ≡ 2 (mod 4); say n = 4p + 2. Then Kn has (2p + 1)(4p + 1) edges.
Suppose r = χ ′(Kn)+ 1= n. The upper bound

|E1 ∪ Er |, |E2|, . . . , |Er−1| ≤

⌊n
2

⌋
implies that

|E1 ∪ Er | = |E2| = · · · = |Er−1| =

⌊n
2

⌋
= 2p+ 1.

Since |E1|+ |Er | = 2p+1, an odd number, |E1| 6= |Er |. Without loss of generality
say |E1| = k, where k ≤ p, and |Er | = 2p+1−k. Suppose e ∈ E2 is not adjacent to
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any edge in E1. Since |E1∪ Er | = 2p+1= bn/2c, e is adjacent to an edge e′ ∈ Er .
But then e, e′ is a maximal c-ascent of length two, which contradicts h(c)=3. There-
fore each edge in E2 is adjacent to an edge in E1, and since c is a proper edge colour-
ing, |E2| ≤ 2|E1| = 2k ≤ 2p < bn/2c, a contradiction. Thus r ≥ n+ 1 as required.

Assume n ≡ 3 (mod 4); say n = 4p + 3. Then |E(Kn)| = (4p + 3)(2p + 1).
Suppose r = χ ′(Kn)+ 1 = n + 1. As in the case n ≡ 2 (mod 4), we obtain that
|E1 ∪ Er | = |E2| = · · · = |Er−1| = bn/2c = 2p+ 1 and that each edge in E2 is
adjacent to an edge in E1. There is one vertex v that is not incident with any edge
in E1 ∪ Er , but an edge in E2 incident with v also needs to be adjacent to an edge
in E1. We obtain a contradiction as above and the result follows. �

3. Upper bounds for the ε-ascent chromatic index of Kn

In Section 3.1 we provide a new general upper bound for χε(Kn). We improve this
bound for even values of n in Sections 3.2 (the case n ≡ 0 (mod 4)) and 3.3 (the
case n ≡ 2 (mod 4)).

3.1. A general bound. For n ≥ 6, we now describe an edge colouring c of Kn

in b(3n − 3)/2c colours, as illustrated in Figure 1 for n ∈ {6, 7}, and prove in
Theorem 3 that h(c)= 3. Let V (Kn)= {v0, . . . , vn−1} and p = dn/2e.

• For i ∈ {0, . . . , p− 1} and j ∈ {i + 1, . . . , n− 1}, let c(viv j )= i + j .

• For i ∈ {p, . . . , n− 2} and j ∈ {i + 1, . . . , n− 1}, let c(viv j )= i + j − 2p.

Lemma 2. For all n ≥ 6, the colouring c defines a proper edge colouring of Kn in
b(3n− 3)/2c colours.
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Figure 1. Edge colourings of K6 and K7 with flatness three.
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Proof. Suppose that c(viv j )= c(viv j ′) for some j < j ′. After a brief reflection, we
deduce that i + j = i + j ′− 2p. But i + j ≥ i and

i + j ′− 2p ≤ i + n− 1− 2dn/2e ≤ i − 1,

hence c(viv j ) > c(viv j ′), contradicting our assumption.
Since the smallest colour is 0+ 1= 1 and the largest colour is

p− 1+ n− 1=
⌈

n
2

⌉
+n− 2=

⌊
n−1

2

⌋
+ n− 1=

⌊3n− 3
2

⌋
,

the colouring c uses exactly b(3n− 3)/2c colours. �

Theorem 3. For all n ≥ 6, the colouring c of Kn has flatness equal to three.

Proof. To prove that h(c)= 3, it is sufficient to prove this:

Statement. For any vi ∈ V (Kn) and edges e = v jvi and f = vivk such that
c(e) < c( f ), there exists

(Sa) an edge g = v j ′v j , j ′ /∈ {i, j, k}, such that c(g) < c(e), or

(Sb) an edge g = vkvk′ , k ′ /∈ {i, j, k}, such that c( f ) < c(g).

Hence suppose there exist indices i, j, k ∈ I = {0, . . . , n−1} such that for edges
e= v jvi and f = vivk , we have c(e) < c( f ), but neither (Sa) nor (Sb) holds. Then

c(v j ′v j ) > c(e) for all j ′ ∈ I −{i, j, k}, (1)
and

c(vkvk′) < c( f ) for all k ′ ∈ I −{i, j, k}. (2)

We consider three cases, depending on the values of i and j .

Case 1: j ≤ p−1. Then, regardless of the values of i and j ′, c(v j ′v j )= j + j ′ and
c(e)= i + j . By (1), j ′ > i for all j ′ ∈ I −{i, j, k}. Hence i ≤ 2. But p ≥ 3 since
n ≥ 6, and therefore i ≤ p−1. Now i+ j = c(e) < c( f )= i+k implies that j < k.
Therefore one of the following three subcases holds:

(i) j = 0, k = 1 and i = 2,

(ii) j = 0 and k > i = 1,

(iii) i = 0 and k > j > 0.

If (i) holds, then c(v jvk) = 1. Since n ≥ 6, there exists k ′ ∈ I − {0, 1, 2} such
that c(vkvk′) = k + k ′ ≥ k ′ + 1 ≥ 4 > c( f ) = i + k = 3, contradicting (2). If
(ii) holds, then c( f ) = 1 + k. If k ≤ p − 1, then vk is adjacent to vp, where
p /∈ {0, 1, k}, and c(vkvp)= k+ p > c( f ), contradicting (2); while if k ≥ p, then
vk is adjacent to v2 and c(v2vk)= k+2> c( f ), again a contradiction. If (iii) holds,
then c(e) = j < k = c( f ). If k ≤ p− 1, then j < p− 1 and vk is adjacent to vp,
where p /∈ {0, j, k}, giving a contradiction as in (ii). If k ≥ p, then there exists
` ∈ {1, 2}− { j} such that c(vkv`)= k+ ` > k, once again a contradiction.
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Case 2: j ≥ p and i ≤ p− 1. Then c(e)= i + j . Since i ≤ p− 1 and n ≥ 6, there
exists j ′ ∈ I −{i, j, k} such that j ′ ≥ p. Then c(v j ′v j )= j+ j ′−2p> i+ j by (1);
that is, i < j ′− 2p ≤ 0, which is impossible.

Case 3: min{i, j}≥ p. Then c(e)= i+ j−2p. Suppose there exists j ′∈ I−{i, j, k}
such that j ′≥ p. Then c(v j ′v j )= j+ j ′−2p and thus j ′> i by (1). Since i, j ′≥ p,

c( f )= c(vivk)=

{
i + k if k ≤ p− 1,
i + k− 2p if k ≥ p,

and

c(vkv j ′)=

{
j ′+ k if k ≤ p− 1,
j ′+ k− 2p if k ≥ p.

Thus, regardless of the value of k, c(vkv j ′) > c( f ). Since j ′ ∈ I − {i, j, k}, this
contradicts (2). Hence there does not exist j ′ ∈ I −{i, j, k} such that j ′ ≥ p. Since
n≥ 6, we have |{p, . . . , n−1}| ≥ 3. We deduce that n ∈ {6, 7} and {p, . . . , n−1}=
{i, j, k} so that c(e) = i + j − 2p and c( f ) = i + k − 2p, where j < k since
c(e) < c( f ). For either value of n, c( f ) ≤ 3 and k ≥ 4. Let j ′ = 0 < p. Then
j ′∈ I−{i, j, k} and c(v j ′vk)= j ′+k= k≥4>3≥ c( f ), again contradicting (2). �

The following corollary to Lemma 2 and Theorem 3 improves Theorem 17 of
[Schurch 2013b].

Corollary 4. For n ≥ 6, we have χε(Kn)≤ b(3n− 3)/2c.

Combining Theorem 1 and Corollary 4 we improve Proposition 20 of [Schurch
2013b] and also obtain the new value χε(K7).

Corollary 5. χε(K6)= 7 and χε(K7)= 9.

3.2. The case n ≡ 0 (mod 4). Our next result is an improved upper bound for
χε(Kn) in the case where n ≡ 0 (mod 4) and n ≥ 8. Say n = 4m and V (Kn) =

{u0, . . . , u2m−1, v0, . . . , v2m−1}. Let G and H be the subgraphs of Kn induced
by {u0, . . . , u2m−1} and {v0, . . . , v2m−1}, respectively. Then G ∼= H ∼= K2m and
each of them is (2m−1)-edge colourable. We describe a colouring c1 of Kn in the
colours 1, . . . , 4m+ 1 as follows.

• In G, let c1 be any proper edge colouring of K2m in the 2m − 1 colours
{1, 2} ∪ {m+ 3, . . . , 3m− 1}.

• In H , let c1 be any proper edge colouring of K2m in the 2m − 1 colours
{4m, 4m+ 1} ∪ {m+ 3, . . . , 3m− 1}.

• We still need to colour the edges of the complete bipartite graph F ∼= K2m,2m

induced by the edges uiv j , with i, j ∈ {0, . . . , 2m−1}. But χ ′(K2m,2m)= 2m
and there are 2m unused colours 3, . . . ,m + 2 and 3m, . . . , 4m − 1. Colour
the edges of F with these colours.
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It is clear that c1 is a proper edge colouring of K4m in 4m+ 1 colours.

Theorem 6. For all m ≥ 2, the colouring c1 of K4m has flatness equal to three.

Proof. Let F , G and H be the subgraphs of K4m defined above and let e, f ∈ E(K4m)

be adjacent edges such that c1(e) < c1( f ). We show that (Sa) or (Sb) holds, as
stated in the proof of Theorem 3. We consider three cases, depending on the choice
of e and f .

Case 1: {e, f }∩E(F)=∅. Assume first e, f ∈ E(G); say e= u j ui and f = ui uk .
Then c1(e) < c1( f )≤ 3m− 1, and uk is adjacent to some vertex v` ∈ V (H) such
that c1(ukv`)= 4m− 1> c1( f ). Hence (Sb) holds. Similarly, if e, f ∈ E(H), say
e = v jvi and f = vivk , then c1( f ) > c1(e) ≥ m + 3, and v j is adjacent to some
vertex u` ∈ V (G) such that c1(v j u`)= 3< c1(e). Hence (Sa) holds.

Case 2: |{e, f } ∩ E(F)| = 1. By symmetry we may assume that e ∈ E(F); say
e = uiv j . If f ∈ E(G), say f = ui uk , then c1(e) ∈ {3, . . . ,m + 2} and c1( f ) ∈
{m + 3,m + 4, . . . , 3m − 1}. Since m ≥ 2, uk is adjacent to at least two vertices
vt1, vt2 of H such that c1(ukvt`)∈ {3m, . . . , 4m−1} for `= 1, 2, and we may choose
a subscript t`, say t1, such that t1 6= j . Then v j , ui , uk, vt1 is a c1-ascent of length
three and (Sb) holds. On the other hand, if f ∈ E(H), say f = v jvk , then c1(e)≥ 3.
In this case ui is adjacent to a vertex u` such that c1(u`ui ) ∈ {1, 2} and (Sa) holds.

Case 3: {e, f }⊆ E(F). First, if e= uiv j and f = v j uk , then there exists at least one
index `∈{0, . . . , 2m−1}−{i, k} such that c1(u`ui )∈{1, 2}. Then u`, ui , v j , uk is a
c1-ascent of length three and (Sa) holds. Finally, if e=vi u j and f =u jvk , then there
exists at least one index `∈{0, . . . , 2m−1}−{i, k} such that c1(vkv`)∈{4m, 4m+1}.
Then vi , u j , vk, v` is a c1-ascent of length three and (Sb) holds. �

Combining Theorems 1 and 6 we narrow down χε(Kn) to two possible values in
infinitely many cases.

Corollary 7. For all n ≥ 8 and n ≡ 0 (mod 4), we have n ≤ χε(Kn)≤ n+ 1.

3.3. The case n ≡ 2 (mod 4). We now assume that n ≡ 2 (mod 4) and n ≥ 10.
Say n = 4m + 2 and V (Kn) = {u0, . . . , u2m, v0, . . . , v2m}. Let G and H be the
subgraphs of Kn induced by {u0, . . . , u2m} and {v0, . . . , v2m}, respectively. Then
G ∼= H ∼= K2m+1 and each of them is (2m+1)-edge colourable. We describe an
edge colouring c2 of Kn in the colours 1, . . . , 4m+ 3. This colouring is similar to
the colouring c1 above, but not quite as straightforward. See Figure 2 for a partial
colouring of K10.

• In G, let c2 be any proper edge colouring of K2m+1 in the 2m + 1 colours
{1, 2} ∪ {m+ 3, . . . , 3m+ 1}.

• In H , let c2 be any proper edge colouring of K2m+1 in the 2m + 1 colours
{4m+ 2, 4m+ 3} ∪ {m+ 3, . . . , 3m+ 1}.
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Figure 2. Part of the edge colouring c2 of K10.

We still need to colour the edges of the complete bipartite graph F ∼= K2m+1,2m+1

induced by the edges uiv j , with i, j ∈ {0, . . . , 2m}. By König’s theorem, F is
1-factorable. Note that for each colour k in the edge colouring of G there is exactly
one vertex that is not incident with an edge coloured k, and conversely, for each
vertex ui there is exactly one colour that does not occur as colour of an edge incident
with ui . A similar remark holds for H . Without loss of generality, say colour 2 does
not occur at u0, colour 1 does not appear at u2m , colour 4m + 3 does not appear
at v0 and colour 4m+ 2 does not appear at v2m . Since colour 2 does not occur at
u0, all other colours of the colouring do and thus there exists a vertex us ∈ V (G)
such that c2(u0us)= 1. Since colour 4m+ 2 does not appear at v2m , there exists a
vertex vt ∈ V (H) such that c2(v2mvt)= 4m+ 3.

• Colour the edges u0v0 and u2mv2m of F with colours 2 and 4m+2, respectively.
For i, j ∈ {1, . . . , 2m−1} and k ∈ {m+3, . . . , 3m+1}, colour uiv j with colour
k if and only if no edge incident with ui in G or with v j in H is coloured k.

We have now coloured a 1-factor F0 of F , and F − F0 is a 2m-regular bipartite
graph, which is 1-factorable by König’s theorem. Let F ′1 be a 1-factor of F − F0

that contains the edge v0us . If u2mvt /∈ F ′1, let F1 = F ′1, and if u2mvt ∈ F ′1, let
uiv j ∈ F ′1−{v0us, u2mvt } and define F1= (F ′1−{uiv j , u2mvt })∪{uivt , u2mv j }. Now
F−F0−F1 is 1-factorable. Let F2 be a 1-factor of F−F0−F1 that contains u2mvt .

• Colour the edges in F1 with colour 3 and the edges in F2 with colour 4m+ 1.
Colouring F− F0− F1− F2 with the 2m−2 unused colours 4, . . . ,m+2 and
3m+ 2, . . . , 4m yields a proper edge colouring of K4m+2.
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Theorem 8. For all m ≥ 2, the colouring c2 of K4m+2 has flatness equal to three.

Proof. Let F , J , G and H be the subgraphs of K4m+2 defined above and let
e, f ∈ E(K4m+2) be adjacent edges such that c2(e) < c2( f ). We show that (Sa) or
(Sb) holds, as stated in the proof of Theorem 3. If {e, f } ∩ E(F) = ∅, the proof
follows similar to Case 1 in the proof of Theorem 6. We consider two further cases.

Case 1: |{e, f } ∩ E(F)| = 1. By symmetry we may assume that e ∈ E(F); say
e = uiv j . First suppose that f ∈ E(G), say f = ui uk . Since c2( f ) > c2(e) ≥ 2,
c2( f ) ∈ {m+ 3, . . . , 3m+ 1}. As in Case 2 of the proof of Theorem 3, (Sb) holds.
Now suppose f = v jvk ∈ E(H). If c2(e) = 2, then i = j = 0 and c2(u0us) = 1.
If c2(e) 6= 2 then c2(e) > 2 and there exists an index ` such that c2(ui u`) ∈ {1, 2}.
Thus us, ui , v j , vk or u`, ui , v j , vk is a c2-ascent of length three and (Sa) holds.

Case 2: {e, f } ⊆ E(F). Suppose e = uiv j and f = v j uk . If e = u0v0 and
f = v0us , then c2(e) = 2 and c2( f ) = 3. Therefore there exists a vertex u` such
that c2(usu`) ∈ {m + 3, . . . , 3m + 1} and (Sb) holds. If e = u0v0 and k 6= s, then
us, u0, v0, vk is a c2-ascent of length three and (Sa) holds. For all other choices
of e = uiv j and f = v j uk it follows as in Case 3 of the proof of Theorem 3 that
(Sa) or (Sb) holds. Suppose e= vi u j and f = u jvk . If e= vt u2m and f = u2mv2m ,
then c2(e) = 4m + 1 and c2( f ) = 4m + 2. There exists a vertex v` such that
c2(v`vt) ∈ {m+3, . . . , 3m+1} and thus (Sa) holds. If f = u2mv2m and i 6= t , then
vi , v2m, u2m, vt is a c2-ascent of length three and (Sb) holds. All other cases are
dealt with as in Case 3 of the proof of Theorem 3. �

Combining Theorems 1 and 8 and Corollary 4 determines χε(Kn) for all n ≡
2 (mod 10), n ≥ 6.

Corollary 9. For all n ≥ 6 and n ≡ 2 (mod 10), we have χε(Kn)= n+ 1.

4. Conclusion

In Theorem 1 we proved a lower bound for χε(Kn), and in Corollary 4 we improved
the previously known general upper bound for χε(Kn) from 2n−3 to b(3n−3)/2c.
Corollary 7 improves this bound for n≡ 0 (mod 4) and allows us to bound χε(K4m)

by 4m ≤ χε(Kn) ≤ 4m + 1. Finally, Corollary 9 determines χε(Kn) for all n ≡
2 (mod 4), n ≥ 6. Based on the results for even n and the values χε(K5)= 7 and
χε(K7)= 9, we formulate the following conjecture.

Conjecture 10. For all n ≥ 4, we have χε(Kn)= χ
′(Kn)+ 2.
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