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We study the envelope of the family of lines which bisect the interior region of
a simple, closed curve in the plane. We determine this bisection envelope for
polygons and show that polygons with no parallel pairs of sides are characterized
by their bisection envelope. We show that the bisection envelope always has at
least three and an odd number of cusps. We investigate the winding numbers
of bisection envelopes, and use this to show that there are an infinite number of
curves with any given bisection envelope and show how to generate them. We
obtain results on the intersections of bisecting lines. Finally, we give a relationship
between the internal area of a curve and that of its bisection envelope.

1. Introduction and overview

We study the envelope of the family of lines that bisect the interior region of a
given simple, closed curve in the plane. This concept, which we call the bisection
envelope, was explored in [Fusco and Pratelli 2011]; however, here we apply it to a
more general class of curves. Fusco and Pratelli only used the bisection envelope
in relation to Zindler sets — convex sets whose bisecting chords have fixed length:
they used as a tool to rewrite the problem of minimizing the area of a Zindler set
with fixed bisecting chord length.

Specifically, let S be a simple compact curve which is piecewise of class C1

with a finite number of pieces. Let L be the set of lines lθ that have direction θ
and bisect the interior of S. The bisection envelope of S is the envelope of the
lines in L. For curves S that are bisection convex (see Definition 2.2), we show
that the bisection envelope is the midpoint locus of bisecting chords. Furthermore,
we show that for curves that are strictly bisection convex (see Definition 2.3) we
can parametrize the bisection envelope by a function f such that f (θ) lies on lθ ,
and find the derivative of f , defined at all but a finite number of points. Where
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this derivative exists we show it is of the form vθ (cos θ, sin θ), and give conditions
on S such that for a scalar vθ ,

f (θ)= f (0)+
∫ θ

0
vt(cos t, sin t) dt.

We show that zeros of f ′(θ) (which are also zeros of vθ ) each corresponds to a
bisecting chord at whose endpoints the tangents to S are parallel. We also show a
relation between sign changes of vθ and the appearance of cusps on the bisection
envelope. These results are summarized in Theorem 1.

In Section 3, we examine the bisection envelopes of polygons, showing that they
are the union of sections of hyperbolas. Furthermore, for each hyperbola, there exist
two sides of S which are segments of its asymptotes. We also show Theorem 2,
which states that polygons with no mutually tangent sides are uniquely defined by
their bisection envelopes.

Section 4 addresses curves with identical bisection envelopes. We show how to
generate a curve S ′ from the bisection envelope B of a strictly bisection convex curve
S satisfying certain criteria by letting S ′ be the image of a function g, defined as

g(θ)= f (θ)+ r(θ)(cos θ, sin θ),

where r(θ) is a radius function that can be changed to produce different S ′. The
main result of Section 4 is Theorem 3, which states that if the generated S ′ does
not intersect B, then B is indeed the bisection envelope of both S and S ′.

To prove Theorem 3, we first prove Theorem 4, which concerns the winding
numbers of bisection envelopes. Specifically, let m P be the number of lines through
a point P tangent to B. We show that

m P =−2w(P)+ 1,

where w(P) is the winding number of B about P with θ increasing from 0 to π .
In Section 5, we examine the interior areas of S ′ and B. The interior area of B

is usually not well-defined, as it can be self-intersecting, therefore we define the
interior area of a curve 0 by the integral

A(0)=
1
2

∮
0

x dy− y dx .

From this definition, we use the construction in Section 4 to break apart A(S ′) to
give Theorem 5, which states that

A(S ′)=
∫ 2π

0

r2(θ)

2
dθ + 2A(B).

We also show that A(B) is never positive and use this to show that certain curves
with maximal interior area are rotationally symmetric (see Corollary 5.3). We
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conclude by computing the internal area of the bisection envelope of an equilateral
triangle, and thus deduce a constant universal to all triangles: 3

4 ln 2− 1
2 , the ratio

of the area of a triangle to the area of its bisection envelope.

2. Basic properties

For the entirety of this paper, it is assumed that S is a curve in R2 which is compact,
continuous, simple, and piecewise of class C1 with a finite number of pieces.

We now define the bisection envelope.

Definition 2.1. Given such a curve S, define L to be the family of lines that bisect
the interior area of S. Each lθ ∈ L is the bisecting line in direction θ . Define the
bisection envelope B of S to be the envelope of L; that is,

B =
{

P | P = lim
ε→0

lθ ∩ lθ+ε , 0≤ θ < π
}
.

We now restrict the class of curves S to be studied.

Definition 2.2. Define S and L as above. We say that S is bisection convex if for
all θ , lθ intersects S in exactly two points. Alternatively, for every point A on S, there
exists a unique point B also on S such that the line AB bisects the interior area of S.

We also create a tighter restriction.

Definition 2.3. Define S and L as before. We say that S is strictly bisection convex
if it is bisection convex and for all θ , lθ is not tangent to S. At any point where
there are two tangents to S — one from each side — the lθ through that point is
distinct from both tangents.

Henceforth, unless otherwise stated, it is assumed that S is strictly bisection
convex.

Define A(θ) and B(θ) to be the endpoints of the bisecting chord in direction θ ,
with B(θ)= A(θ +π). We distinguish between A(θ) and B(θ) by demanding that
for each point Q 6= A(θ), B(θ) on the bisecting chord, the vector A(θ)− Q points
in positive direction θ and the vector B(θ)− Q points in positive direction θ +π .

Proposition 2.4. Assume that S is bisection convex. Then A(θ) varies continuously
with θ .

Proof. First, we note that any two bisecting chords must intersect in the interior
of S, for if they did not, the interior of S would be split into three regions, one of
which would have zero area, which does not make sense.

From this, we have limε→0 lθ+ε = lθ , as the limit of the intersection point lθ+ε∩lθ
is bounded. This also implies that the limit as ε→ 0 of the distance from A(θ + ε)
to the intersection point lθ+ε ∩ lθ is bounded. Therefore, the limit as ε→ 0 of the
perpendicular distance from A(θ + ε) to lθ is zero.
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We have that limε→0 A(θ+ε) must be a point P on lθ which intersects S, where
for every other point Q on the bisecting chord with direction θ , the vector P − Q
points in positive direction θ . There is only one such point, A(θ); therefore,

lim
ε→0

A(θ + ε)= A(θ),

and A(θ) varies continuously with θ . �

From this, B(θ) also varies continuously with θ . We now determine the bisection
envelope of bisection convex curves.

Proposition 2.5. Let S be bisection convex. Fix θ and let A = A(θ) and B = B(θ).
Then,

lim
ε→0

lθ ∩ lθ+ε =
A+ B

2
. (2-1)

Proof. Let A(θ + ε) = Aε and B(θ + ε) = Bε . Let lθ ∩ lθ+ε = Oε , and let
limε→0 lθ ∩ lθ+ε = O; see Figure 1. Define a(ε) = d(Aε, Oε), b(ε) = d(Bε, Oε),
and extend to let a(0)= d(A, O) and b(0)= d(O, B).

Since lθ , lθ+ε are bisecting line segments,

A(AOε Aε)=A(BOεBε), (2-2)

where AOε Aε and BOεBε are not triangles, but rather the regions enclosed by
S, lθ , and lθ+ε .

For fixed ε, we have the inequality

1
2εm2

≤A(AOε Aε)≤ 1
2εM2,

where m and M are the minimum and maximum values of d(Aδ, Oε) for 0≤ δ ≤ ε.
As m ≤ a(ε)≤ M ,

1
2εm2

≤
1
2εa2(ε)≤ 1

2εM2.

The previous two inequalities have the same bounds, therefore∣∣A(AOε Aε)− 1
2εa2(ε)

∣∣≤ 1
2ε(M

2
−m2). (2-3)

From the continuity of S, we have

lim
ε→0

1
2ε(M

2
−m2)

ε
=

1
2(a

2(0)− a2(0))= 0.

Combining this with (2-3) and using an identical argument for A(BOεBε), we have∣∣A(AOε Aε)− 1
2εa2(ε)

∣∣= o(ε),∣∣A(BOεBε)− 1
2εb2(ε)

∣∣= o(ε).
(2-4)
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Bε

BA

Aε

Oε

ε

Figure 1. The situation considered in the proof of Proposition 2.5.

By the triangle inequality and (2-2), we have that∣∣ 1
2εa2(ε)− 1

2εb2(ε)
∣∣≤ ∣∣ 1

2εa2(ε)−A(AOε Aε)
∣∣+ ∣∣A(AOε Aε)− 1

2εb2(ε)
∣∣

=
∣∣A(AOε Aε)− 1

2εa2(ε)
∣∣+ ∣∣A(BOεBε)− 1

2εb2(ε)
∣∣.

It follows from this and (2-4) that∣∣ 1
2εa2(ε)− 1

2εb2(ε)
∣∣= o(ε),∣∣ 1

2a2(0)− 1
2 b2(0)

∣∣= 0,

a(0)= b(0). (2-5)

Therefore O is the midpoint of A and B. �

Hence, B is the locus of midpoints of the intersections of each lθ ∈ L with S.
Define a function f : R→ R2, with f (θ +π)= f (θ), such that f (θ) signifies

the point on B that is the midpoint of the bisecting chord of S with direction θ .
The image of this function is B. We are interested in the derivative of this function,
where it exists.

Proposition 2.6. Let S be strictly bisection convex. Fix θ such that S is of class C1

at the endpoints A(θ), B(θ) of the bisecting chord with direction θ . Then f ′(θ) is
defined, and if f ′(θ) is nonzero, then lθ is tangent to B at f (θ).

Proof. It suffices to derive f ′(θ) and show that it is either zero or a nonzero vector
pointing in direction θ .

Without loss of generality, let the axes be redefined such that direction θ is along
the x-axis.

Define A, B, Aε , Bε , Oε as in the proof of Proposition 2.5. Let

M =
A+ B

2
and Mε =

Aε + Bε
2

.

Let r = d(A,M)= d(M, B), r(ε)= d(Aε,Mε)= d(Mε, Bε), λ(ε)= d(Oε,Mε).
Let α(ε)= m 6 Aε AOε and β(ε)= m 6 BεBOε .

Let ah(ε) and av(ε) be the horizontal and vertical components of
−−→
AAε , positive in

directions θ and θ+π/2 respectively. Define bh(ε) and bv(ε) similarly; see Figure 2.
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By definition,

f ′(θ)= lim
ε→0

−−−→
M Mε

ε
= lim
ε→0

−−→
AAε +

−−→
B Bε

2ε

= lim
ε→0

(
ah(ε)+ bh(ε)

2ε
,

av(ε)+ bv(ε)
2ε

)
. (2-6)

By inspection,

av(ε)=−(r(ε)− λ(ε)) sin ε and bv(ε)= (r + λ(ε)) sin ε.

Thus

lim
ε→0

av(ε)+ bv(ε)
ε

= lim
ε→0

(r − r(ε)+ 2λ(ε))sin ε
ε
= 0, (2-7)

as limε→0 r(ε)= r and limε→0 Mε = limε→0 Oε =M , which follow from definition
and Proposition 2.5.

As ah(ε)=−av(ε) cot(α(ε)) and bh(ε)=−bv(ε) cot(β(ε)), we have

lim
ε→0

ah(ε)+bh(ε)

ε

= lim
ε→0

(
r(ε) cot(α(ε))−r cot(β(ε))−λ(ε) cot(β(ε))−λ(ε) cot(α(ε))

)sin ε
ε

= lim
ε→0

(
r(cot(α(ε))−cot(β(ε)))−cot(α(ε))(r−r(ε))−λ(ε) cot(β(ε))

−λ(ε) cot(α(ε))
)sin ε
ε

= r(cotα−cotβ), where α = lim
ε→0

α(ε), β = lim
ε→0

β(ε). (2-8)

This follows from the same limits stated earlier, as S is strictly bisection convex
and thus neither α nor β are 0 or π . Note that α and β are not necessarily defined —
the limits only exist if S is of class C1 locally at A and B, and thus α and β are
not defined for only a finite number of values of θ . Where they are defined, we can
combine (2-6), (2-7), and (2-8), giving

f ′(θ)=
(

r(cotα− cotβ)
2

, 0
)
, (2-9)

and so f ′(θ) is defined. Since f ′(θ) has y-component 0, it points in direction θ
if it is nonzero. �

Directly from (2-9), we have:

Corollary 2.7. We have f ′(θ)= 0 if and only if the tangents to S at the endpoints
of the bisecting chord with direction θ are parallel, that is, when α = β.

Proposition 2.6 can be further extended to cover more points on B.
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Figure 2. The situation considered in the proof of Proposition 2.6.

Proposition 2.8. If f ′ is zero or undefined at a finite number of points, then for
all θ , lθ is tangent to B at f (θ).

Proof. Define tθ to be the tangent to B at f (θ).
If there are only a finite number of points for which f ′ is zero or undefined, then

there are only a finite number of values of θ for which Proposition 2.6 does not
hold. Thus, around any of these values θ0, there exists a neighborhood for which
Proposition 2.6 does hold. For small ε, θ0+ ε will lie in this neighborhood. Also,
f is continuous, so the lines lθ ∈ L vary continuously with θ , and it is clear that

tθ0 = lim
ε→0

tθ0+ε = lim
ε→0

lθ0+ε = lθ0 . �

From the derivation in Proposition 2.6, it is true that wherever f ′ is defined, it
points in direction θ ; thus, each defined f ′(θ) is a scalar multiple of (cos θ, sin θ).

Also from Proposition 2.6, we have:

Proposition 2.9. Wherever f ′(θ) is defined, f ′ is continuous at θ .

Proof. From (2-9) we have that, where f ′(θ) is defined, it is continuous if r , cotα,
and cotβ vary continuously with θ .

We have that r is half of the distance between the points A(θ) and B(θ), which
vary continuously by Proposition 2.4, and therefore varies continuously for any θ .

From the fact that S is strictly bisection convex, the angle α must remain
between 0 and π ; therefore, cotα varies continuously if α varies continuously.
The angle α is defined as the difference in direction of the bisecting line and the
direction of the tangent to S at A(θ). The direction of the bisecting line is θ , so it
varies continuously. Where f (θ) is defined, S is of class C1 locally at A(θ), and
as A(θ) is a continuous parametrization of S, the tangents to S around A(θ) vary
continuously with θ . Thus α varies continuously with θ .

An identical argument can be used to show that β varies continuously with θ ,
and the result follows. �

From this, we have that f ′ is undefined in at most a finite number of places over
any period of length 2π , and it is only at these points that it is discontinuous.
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Definition 2.10. Define vθ := f ′(θ) · (cos θ, sin θ), where f ′ is defined. Then vθ
has the following properties:

(1) |vθ | = | f ′(θ)|.

(2) vθ+π =−vθ .

(3) f ′(θ)= vθ (cos θ, sin θ).

(4)
∫ θ0+π

θ0
vθ (cos θ, sin θ) dθ = (0, 0).

These follow directly from the definition of vθ and from Proposition 2.6. Also
note that the integral shown is defined, as the number of discontinuities of vθ over
the interval is the same as the number of discontinuities of f ′, thus finite, and the
set of discontinuity points has measure 0.

Proposition 2.11. If vθ is not identically zero, then over any interval [θ0, θ0+π ]

where vθ0 6= 0, vθ changes sign an odd number of times, and at least thrice.

Proof. As vθ0+π = −vθ0 , we know that vθ must change sign at least once in the
interval and must change an odd number of times.

Assume that only one sign change occurs over the interval [θ0, θ0+π ]. Then
there exists a value θ1 (not necessarily unique) with θ0 < θ1 < θ0+π such that over
the interval [θ0, θ1], vθ ≤ 0 and over the interval [θ1, θ0+π ], vθ ≥ 0, or vice versa.
Either way, this ensures that vθ does not change sign over the interval [θ1, θ1+π ].

Consider the component of f ′(θ) in direction θ1+π/2. We observe that

0=
∫ θ1+π

θ1

f ′(θ) · (cos(θ1+π/2), sin(θ1+π/2)) dθ

=

∫ θ1+π

θ1

vθ (cos θ, sin θ) · (−sin(θ1), cos(θ1)) dθ

=

∫ θ1+π

θ1

vθ sin(θ − θ1) dθ. (2-10)

Neither vθ nor sin(θ − θ1) change sign between the bounds of the integral; thus,
their product does not change sign (and is not identically zero by assumption), and
(2-10) cannot be equal to 0, a contradiction.

This implies there is more than one sign change in any such interval [θ0, θ0+π ],
so there are at least three, the next odd number. �

Remark 2.12. The notion of sign changes of vθ has a geometric manifestation. For
every point or interval where vθ changes sign, a cusp or corner, respectively, appears
on B. If vθ is zero at a finite number of points, then corners do not occur, and we
have one cusp per sign change in an interval of length π . With these conditions, we
extend Proposition 2.11 to B geometrically — if B is not a point and has no corners,
then it has an odd number of cusps, and at least three cusps.
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Note that this collection of results becomes much cleaner if we assume S to be
entirely of class C1.

Theorem 1. If S is strictly bisection convex and of class C1, then there exist n ≥ 3
lines lθ that bisect the interior area of S such that the tangents to S at A(θ) and B(θ)
are parallel. If n is finite, then there exist m cusps on the bisection envelope B of S,
with n ≥ m ≥ 3 and m odd.

Proof. From our assumptions and Propositions 2.6 and 2.9, f ′ is defined everywhere
and is continuous; therefore, from the definition of vθ , we know that vθ is continuous.
Therefore, if we let m be the number of sign changes of vθ and n be the number of
zeros, we have n ≥ m. A zero of vθ is a zero of f (θ), and thus by Corollary 2.7,
there are n lines lθ such that the tangents to S at A(θ) and B(θ) are parallel. If n is
finite, then vθ is not identically zero, so by Proposition 2.11, m is odd and at least 3.
With n finite, no corners exist on B, so from Remark 2.12, we have that m is the
number of cusps on B. �

3. Bisection envelopes of polygons

From Proposition 2.5, we know that the bisection envelope of a bisection convex
curve is the midpoint locus of the bisecting chords of its interior area. We apply this
fact to the computation of the bisection envelope of a bisection convex polygon.

Let A(θ), B(θ) be the endpoints of the bisecting chord with direction θ , with
A(θ +π) = B(θ) = A(θ −π). If S is a polygon, we can split the interval [0, π)
into a finite number of subintervals [0, θ1), [θ1, θ2), . . . , [θn, π) such that on each
subinterval, the locus of each of A(θ) and B(θ) is a line segment.

Proposition 3.1. The locus of points M(θ) = (A(θ)+ B(θ))/2 over any of the
intervals [θi , θi+1) is either a section of a hyperbola or a point.

Proof. Let all points A(θ) lie on line k1 and all points B(θ) lie on line k2. If
k1 and k2 are parallel, it follows from Corollary 2.7 that the locus of M(θ) is
a point. Otherwise, k1 and k2 meet at a point Q. Let a(θ) = d(A(θ), Q) and
b(θ)= d(B(θ), Q).

If we construct the triangles 4A(θ)Q B(θ), they each have area 1
2a(θ)b(θ) sin γ ,

where γ is the angle between k1 and k2, a constant; see Figure 3. Furthermore, the
chords A(θ)B(θ) are area preserving on S; therefore, the triangles have constant
area, or

1
2a(θ)b(θ) sin γ = ca(θ)b(θ)=

2c
sin γ

= c′, (3-1)

for some constant c′.
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Q

A(θ)

B(θ)

M(θ)

k2

k1

γ

a(θ)

b(θ)

Figure 3. The situation considered in the proof of Proposition 3.1

Thus there exist distinct unit vectorsw1,w2 parallel to k1, k2 respectively such that

M(θ)= Q+
a(θ)w1+ b(θ)w2

2
= Q+

a(θ)w1+ (c′/a(θ))w2

2
. (3-2)

We see that M(θ) is a linear transformation of the set of points(
a(θ),

c′

a(θ)

)
,

which represents a section of a hyperbola. Note that the image of a hyperbola under
a linear transformation is itself a hyperbola. �

Proposition 3.2. On any such interval [θi , θi + 1), if the locus of M(θ) is a section
of a hyperbola, the asymptotes of the hyperbola are the two lines k1 and k2, where
k1 and k2 contain all A(θ) and B(θ), respectively.

The proof of Proposition 3.2 is left to the reader.

Proposition 3.3. The bisection envelope B of a polygon S is the union of a finite
number of sections of hyperbolas. Let the set of all asymptotes of these hyperbolas
be H , and let the set of all lines that contain the sides of S be G. Then H ⊆ G, with
equality if no two lines in G are parallel.

This follows from the previous two propositions.
This makes the calculation of a bisection envelope of a polygon significantly eas-

ier — one must only find the bisecting lines through the vertices and their midpoints;
this then strictly defines each of the hyperbolas on each section [θi , θi+1).

Example 3.4. The bisection envelope of an equilateral triangle 4ABC of side
length two centered on the origin with A = (0, 2/

√
3), B = (1,−1/

√
3), and

C = (−1,−1/
√

3) can be found as follows.
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Figure 4. The bisection envelope of an equilateral triangle found in Example 3.4.

Let A′, B ′,C ′ be on the triangle such that the chord AA′ is bisecting, and so
forth. The bisection envelope is split into 3 sections: a section of a hyperbola from
(A+ A′)/2 to (B+ B ′)/2 with asymptotes AC and BC , and two other congruent
hyperbolic sections; see Figure 4.

Specifically, we have

A′ =
(

0,−
1
√

3

)
, B ′ =

(
−

1
2
,

1

2
√

3

)
, C ′ =

(
1
2
,

1

2
√

3

)
.

Therefore
A+A′

2
=

(
0,

1

2
√

3

)
,

B+B ′

2
=

(
1
4
,−

1

4
√

3

)
,

C+C ′

2
=

(
−

1
4
,−

1

4
√

3

)
. (3-3)

The three hyperbolas, from A to B, B to C , and C to A respectively, are((
y−

2
√

3

)
+
√

3 x
)(

y+
1
√

3

)
= c1, (3-4)((

y−
2
√

3

)
−
√

3 x
)((

y−
2
√

3

)
+
√

3 x
)
= c2, (3-5)(

y+
1
√

3

)((
y−

2
√

3

)
−
√

3 x
)
= c3. (3-6)

By plugging in (3-3) above, we can find

c1 =−
3
4 , c2 =

3
2 , c3 =−

3
4 .

This defines the bisection envelope fully.

Theorem 2. A polygon with no mutually parallel sides is uniquely defined by its
bisection envelope.

Proof. From observations in Proposition 3.1, the assumptions in the theorem give us
that the bisection envelope of this polygon does not contain any static points. This
is to say, over each of the intervals [θi , θi+1), M(θ) is not a point but a section of a
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hyperbola, and therefore, there exists a bijection between the points on the interval
[θi , θi+1) and the points on the locus of the restriction of M(θ) to that range.

From Proposition 3.2, we know the two lines k1, k2, upon which A(θ), B(θ)
must lie. A(θ) and B(θ) must each lie on the line in direction θ through M(θ), a
line distinct from k1 and k2, so the points A(θ), B(θ) are strictly determined over
the interval [θi , θi+1). This can be done for every such interval, and the union of all
such intervals is [0, π); thus we achieve uniqueness for the loci of A(θ), B(θ) over
all θ , giving the result. �

4. Backwards construction

The natural question arises: are there multiple curves with the same bisection
envelope? Given a bisection envelope B, can we generate all suitable curves with B
as their bisection envelope?

First we ask, what curves can be bisection envelopes? Suppose that B is a
bisection envelope associated to some strictly bisection convex curve S which is
piecewise of class C1 with a finite number of pieces. Its bisecting lines are L= {lθ },
as explained earlier.

Define f : R → R2 by f (θ) = limε→0 lθ ∩ lθ+ε . From Proposition 2.5, we
know this is the midpoint of the bisecting chord in direction θ , described by the
function M(θ) presented in Proposition 3.1. Then we have:

Proposition 4.1. The function f is continuous.

Proof. This follows immediately from the definition M(θ) := (A(θ)+ B(θ))/2, as
we have from Proposition 2.4 that A(θ) and B(θ) vary continuously along S. �

Since S has tangents which vary continuously everywhere except a finite number
of points, by Proposition 2.6, f ′ is defined everywhere but a finite number of points,
and where it is defined, it is of the form vθ (cos θ, sin θ) for a scalar vθ . Therefore,
it is possible to define f as the Lebesgue integral of f ′, giving

f (θ) := f (0)+
∫ θ

0
vt(cos t, sin t) dt. (4-1)

The value of f (0) is unimportant — it can just be set to the origin.
Now we generate a curve S ′ from f and a radius function r : R→ R, with

r(θ + π) = r(θ) and r(θ) > 0. We define the function r to be continuous and
piecewise of class C1 with a finite number of pieces.

Define S ′ to be the image of the function

g(θ) := f (θ)+ r(θ)(cos θ, sin θ). (4-2)
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We have then that S ′ is continuous, compact, and piecewise of class C1 with a
finite number of pieces; however, we do not have that it is simple. It is clear that

g(θ + 2π)= g(θ) and
g(θ)+ g(θ +π)

2
= f (θ).

Thus the chords g(θ)g(θ +π) are area-preserving if S ′ has a well-defined interior
and if the chords lie strictly within this interior except at their endpoints, that is,
if S ′ is simple and bisection convex. The remainder of Section 4 is concerned with
the proof of Theorem 3.

Theorem 3. Let f, g be defined as above.
Let S ′ be the image of g and B be the image of f . If S ′∩B = ∅, then B is the

bisection envelope of S ′.

To prove Theorem 3, we use a consequence of the following result.

Theorem 4. Let f be defined as above with image B. Let L be the set of lines lθ
through f (θ) in direction θ for all θ .

Given a point P ∈ R2
\B, let m P be the number of lines in L for which P lies

on lθ , and let w(P) be the winding number of f around P with θ increasing over
an interval of π . Then

m P =−2w(P)+ 1. (4-3)

The proof of Theorem 4 begins by looking at the winding number of a simpler
function.

Lemma 4.2. Define the function

fP(θ)= ( f (θ)− P)
(

cos θ −sin θ
sin θ cos θ

)
.

If f (θ) 6= P for all θ then, over the interval 0 ≤ θ < 2π , let n P be the number of
values of θ for which fP(θ) lies on the x-axis, and let wP be the winding number of
fP(θ) about the origin. Then

wP =−
1
2 n P . (4-4)

Proof. We have

f ′P(θ)= f ′(θ)
(

cos θ −sin θ
sin θ cos θ

)
+ ( f (θ)− P)

(
−sin θ −cos θ

cos θ −sin θ

)
= vθ (1, 0)+ fP(θ)

(
0 −1
1 0

)
= (vθ + y,−x), where fP(θ)= (x, y). (4-5)

Note that if x > 0, y′ < 0, and vice versa.
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Now consider fP(θ) over the half-open interval [0, 2π). We have fP(θ +π)=

fP(θ), so the image of fP is a closed loop, and fP(θ) is never equal to (0, 0), so it
has a winding number about the origin.

Let θ1 < θ2 < · · · < θn P be the values of θ for which fP(θ) lies on the x-axis.
Let fP(θ1)= (x1, 0) and so on, with xi 6= 0 by assumption. Then

xi = g− f ′P(θi ) · (0, 1)=− lim
h→0+

f (θi + h) · (0, 1)− f (θi ) · (0, 1)
h

= g− lim
h→0+

f (θi + h) · (0, 1)
h

.

Similarly,

xi+1 = lim
λ→0+

f (θi − λ) · (0, 1)
λ

.

But in the domain (θi , θi+1) we have that f (θ) · (0, 1) is continuous and, by our
choices of θi , nonzero, so it has constant sign. Therefore, for all h, λ sufficiently
small and greater than zero,

sign
(

f (θi + h) · (0, 1)
)
= sign

(
f (θi+1− λ) · (0, 1)

)
.

Thus

sign xi =− sign
f (θi + h) · (0, 1)

h
=− sign

f (θi+1− λ) · (0, 1)
λ

=− sign xi+1.

Therefore the xi alternate signs. This also implies n P is even and xi is positive
for n P/2 values.

The winding number of a curve 0 about a point P can be calculated descriptively
by fixing a ray R from P in any direction and counting the number of intersections
of 0 with R. For each intersection where the derivative is counterclockwise about P,
we add 1, and where the derivative is clockwise, we subtract 1. The final total
is the winding number. Note that if the derivative is along the ray or zero at any
intersections, a more subtle approach is required, but this is not the case here.

If we fix the ray from the origin along the x-axis in positive direction for fP , we
see from (4-5) that at each intersection the derivative is counterclockwise about the
origin; therefore wP =−

1
2 n P . �

Now we show the relation between the winding numbers of f (θ) about P and
fP(θ) about the origin.

Lemma 4.3. Let the winding number of f (θ) about P over the interval [0, π) be
w(P) and the winding number of fP(θ) about the origin over the interval [0, 2π)
be wP . Then

wP = 2w(P)− 1. (4-6)
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Proof. An alternative method of determining the winding number of a function
relies on the calculation of an integral; several forms exist, although this proof uses
the form

1
2π

∫ b

a

f ′(x) ·
(
( f (x)− P)

( 0
−1

1
0

))
| f (x)− P|2

dx (4-7)

for a function f (x) about P on the interval (a, b). Now we calculate

wP =
1

2π

∫ 2π

0

f ′P(θ) ·
(
( fP(θ)− 0)

( 0
−1

1
0

))
| fP(θ)− 0|2

dθ

=
1

2π

∫ 2π

0

(
f ′(θ)

( cos θ
sin θ

−sin θ
cos θ

)
+ ( f (θ)− P)

(
−sin θ

cos θ
−cos θ
−sin θ

))
| f (θ)− P|2

·

(
( f (θ)− P)

( cos θ
sin θ

−sin θ
cos θ

)( 0
−1

1
0

))
dθ

=
1

2π

∫ 2π

0

(
f ′(θ)

( cos θ
sin θ

−sin θ
cos θ

))
·

(
( f (θ)− P)

( cos θ
sin θ

−sin θ
cos θ

)( 0
−1

1
0

))
| f (θ)− P|2

dθ

+
1

2π

∫ 2π

0

(
( f (θ)− P)

(
−sin θ

cos θ
−cos θ
−sin θ

))
·

(
( f (θ)− P)

( sin θ
−cos θ

cos θ
sin θ

))
| f (θ)− P|2

dθ.

For the first half of this sum we note that
( cos θ

sin θ
−sin θ

cos θ

)
and

( 0
−1

1
0

)
commute, and

recall that a dot product is unaffected by an isometry applied to both multiplicands.
Furthermore, note that f is periodic in π , so this integral can be split into two
identical parts. For the second half of the sum, recall that v · (−v)=−|v|2. This
allows us to simplify to

wP = 2

(
1

2π

∫ π

0

f ′(θ) ·
(
( f (θ)− P)

( 0
−1

1
0

))
| f (θ)− P|2

dθ

)
+

1
2π

∫ 2π

0
−1 dθ

= 2w(P)− 1. �

The results of the two preceding lemmas can be combined to achieve Theorem 4.

Proof of Theorem 4. When P is on lθ , fP(θ) lies on the x-axis, but

fP(θ +π)=− fP(θ) 6= (0, 0) and lθ+π = lθ ,

so the number m P of distinct lines lθ containing P is equal to half the number of
times fP(θ) lies on the x-axis in the interval [0, 2π). Using Lemmas 4.2 and 4.3,

m P = n P/2=−wP =−2w(P)+ 1. �
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Corollary 4.4. Every point P in the exterior of B lies on precisely one bisecting
line lθ .

Proof. Since P is on the exterior of B, we have w(P)= 0, and the result follows
from Theorem 4. �

Remark 4.5. This also implies that no bisection envelope can have strictly positive
winding number about any point, or the value m P would be negative and have
no meaning. Intuitively, this could be observed from fP , which may not wind
counterclockwise about the origin.

Theorem 4 can be used to show the first step in proving Theorem 3.

Lemma 4.6. If S ′ lies on the exterior of B, then it is not self-intersecting and each lθ
intersects S ′ exactly twice, at g(θ) and g(θ +π).

Proof. If either of these conditions are false, there exist two lines lθ1, lθ2 that intersect
at some point on S ′, say at P . But S ′, and thus P , lies on the exterior of B; thus
w(P)= 0. By Theorem 4, this leads to the contradiction

2≤ m P = 2(−0)+ 1= 1. �

Lemma 4.7. Given two continuous, compact curves C1,C2 ∈ R2, if C2 lies fully in
the interior of C1, then for each P ∈ R2, there exists a point P1 ∈ C1 such that for
all P2 ∈ C2,

d(P1, P) > d(P2, P).

Proof. If P2 lies on the interior of C1, then there is a ball around P2 that lies on the
interior of C1. The ray starting at P passing through P2 extends to points past P2 but
still in the interior of C1. Since C1 is bounded, eventually this ray must intersect C1

at a point Q, and d(Q, P) > d(P2, P).
Let P1 be a point on C1 such that d(P1, P) is maximal (this can be done as C1

is compact). Then
d(P1, P)≥ d(Q, P) > d(P2, P)

for all P2. This can be done for every point P. �

Lemma 4.8. S ′ cannot lie fully in the interior of B.

Proof. From the definition of g, for a point P1 on B, there exist points P2 = P1+ a
and P ′2 = P1− a on S ′ for some nonzero vector a (r is defined to be greater than
zero); then P2, P1, and P ′2 are collinear in that order.

It follows that given any reference point P , P1 cannot be the furthest of these
points from P; thus by the contrapositive of Lemma 4.7, S ′ is not fully in the
exterior of B. �
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Proof of Theorem 3. If S ′∩B=∅, then S ′ lies fully in the exterior of B — it cannot
lie in the interior by Lemma 4.8. By Lemma 4.6, S ′ must not be self-intersecting,
so it has a well-defined interior, and each line lθ touches S ′ at exactly two points.
Thus the chords gθgθ+π are fully contained in the interior of S ′. By Proposition 2.5,
they are area preserving, and gθgθ+π = gθ+πgθ+2π , so they are bisecting lines of
the interior of S ′. From the definitions, f (θ) is the midpoint of g(θ) and g(θ +π),
so again by Proposition 2.5, B is the bisection envelope of S ′. �

Remark 4.9. Note that S is strictly bisection convex; therefore by Proposition 2.6,
there are no points on B where the limit of | f ′(θ)| is infinite. However, B is also
the bisection envelope of S ′, so S ′ is also strictly bisection convex.

Remark 4.10. If the radius function r is sufficiently large, S ′ cannot intersect B.
This implies that for any strictly bisection convex S, there are an infinite number
of other strictly bisection convex curves S ′ that share its bisection envelope, each
generated by a different r .

5. Relations between areas

Using the construction from the previous section, we now determine the interior
area of S ′ as the sum of two integrals, one involving r(θ) and another that gives
the interior area of f (θ). Note that we assume f and g are differentiable almost
everywhere throughout this section.

We define (and denote) interior area of a closed, continuous curve purely based
upon the line integral

A(0)=
1
2

∮
0

x dy− y dx (5-1)

irrespective of whether the curve has a well-defined interior. Note that whenever the
curve 0 is simple, that is, when discussion of area makes sense, this area function
gives its exact area, positive or negative depending on the direction we integrate
about 0. Also note that this integral functions equivalently to the double integral∫∫

R2\0

w(0, P) dx dy, (5-2)

where P = (x, y) and w(0, P) is the winding number of 0 about P .

Theorem 5. A(S ′)=
∫ 2π

0

r2(θ)

2
dθ + 2A(B). (5-3)

Proof. We recall that S ′ is parametrized by

g(θ)= f (0)+
∫ θ

0
vt(cos t, sin t) dt + r(θ)(cos θ, sin θ).

Since f (0) is arbitrary, we take it to be zero.
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Next we take the derivative and separate the x and y components, giving

g′(θ)=
(
vθ cos θ + r ′(θ) cos θ − r(θ) sin θ, vθ sin θ + r ′(θ) sin θ + r(θ) cos θ

)
.

We expand and simplify A(S ′) using standard trigonometric identities.

A(S ′)=
1
2

∮
S

x dy− y dx =
1
2

∫ 2π

0

(
x

dy
dθ
− y

dx
dθ

)
dθ

=
1
2

∫ 2π

0

((∫ θ

0
vt cos t dt + r(θ) cos θ

)(
vθ sin θ + r ′(θ) sin θ + r(θ) cos θ

)
−

(∫ θ

0
vt sin t dt + r(θ) sin θ

)(
vθ cos θ + r ′(θ) cos θ − r(θ) sin θ

))
dθ

=

∫ 2π

0

r2(θ)

2
dθ +

1
2

∫ 2π

0

∫ θ

0
vtvθ (sin(θ − t)) dt dθ

+
1
2

∫ 2π

0

(
r ′(θ)

∫ θ

0
vt sin(θ − t) dt + r(θ)

∫ θ

0
vt cos(θ − t) dt

)
dθ. (5-4)

Observe that, from the points in Definition 2.10,∫ θ+π

0
vt sin((θ +π)− t) dt =

∫ θ+π

π

−vt+π sin((θ +π)− t) dt

=−

∫ θ

0
vt sin(θ − t) dt. (5-5)

Similarly, ∫ θ+π

0
vt cos((θ +π)− t) dt =−

∫ θ

0
vt cos(θ − t) dt. (5-6)

By splitting the integrals and replacing variables, the final line of (5-4) can be
rewritten to give

1
2

∫ π

0
r ′(θ)

∫ θ

0
vt sin(θ − t) dt dθ + 1

2

∫ π

0
r ′(θ +π)

∫ θ+π

0
vt sin(θ +π − t) dt dθ

+
1
2

∫ π

0
r(θ)

∫ θ

0
vt cos(θ− t) dt dθ+ 1

2

∫ π

0
r(θ+π)

∫ θ+π

0
vt cos(θ+π− t) dt dθ.

As r(θ +π)= r(θ), this can further be written as

1
2

∫ π

0
r ′(θ)

(∫ θ

0
vt sin(θ − t) dt +

∫ θ+π

0
vt sin(θ +π − t) dt

)
dθ

+
1
2

∫ π

0
r(θ)

(∫ θ

0
vt cos(θ − t) dt +

∫ θ+π

0
vt cos(θ +π − t) dt

)
dθ.
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However, from (5-5) and (5-6) this entire expression amounts to zero. From (5-4),
we are left with

A(S ′)=
∫ 2π

0

r2(θ)

2
dθ + 1

2

∫ 2π

0

∫ θ

0
vtvθ (sin(θ − t)) dt dθ. (5-7)

In a similar fashion to the above, the second term can be rewritten as

1
2

∫ π

0
vθ

(∫ θ

0
vt sin(θ − t) dt −

∫ θ+π

0
vt sin(θ +π − t) dt

)
dθ.

Note the change in the negative sign, as vθ+π =−vθ . By (5-5) this is equal to

2
(

1
2

∫ π

0

∫ θ

0
vtvθ sin(θ − t) dt dθ

)
. (5-8)

Now applying (5-1) to B, we recall that B is parametrized by

f (θ)= f (0)+
∫ θ

0
vt(cos t, sin t) dt,

with derivative
f ′(θ)= (vθ cos θ, vθ sin θ).

Thus

A(B)= 1
2

∮
B

x dy− y dx = 1
2

∫ π

0

(
x

dy
dθ
− y

dx
dθ

)
dθ

=
1
2

∫ π

0

(∫ θ

0
vt cos t vθ sin θ dt −

∫ θ

0
vt sin t vθ cos θ dt

)
dθ

=
1
2

∫ π

0

∫ θ

0
vtvθ sin(θ − t) dt dθ. (5-9)

Combining (5-7), (5-8), and (5-9), it is finally achieved that

A(S ′)=
∫ 2π

0

r2(θ)

2
dθ + 2A(B). �

This formula may be useful in determining the area of a bisection envelope where
the integral (5-9) is much more difficult than finding r(θ) then calculating (5-3).

A property of B described in Remark 4.5 allows us to bound A(B).

Proposition 5.1. A(B)≤ 0.

Proof. Remark 4.5 notes that, for all P 6∈ B,

w(B, P)≤ 0.
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Thus from (5-2),

A(B)=
∫∫

R2\B
w(B, P) dx dy ≤ 0. �

Proposition 5.2. Let S ′ be piecewise of class C1 with a finite number of pieces. If
A(B) = 0, then B is a point.

Proof. If A(B)= 0, then from the reasoning in Proposition 5.1, w(B, P)= 0 for
all P not on B.

Consider three bisecting lines lθ1, lθ2, lθ3 with mutual intersections A, B,C . As-
sume the three points are distinct. From continuity, we have that all points P in the
interior of 4ABC lie on at least three lines lθ . By Theorem 3, this implies that for
all such P , w(P)≤−1, and therefore P must be on B. Hence, B is a space-filling
curve on some subset of R2 that contains 4ABC . However, f is of class C1 at all
but a finite number of points, so it cannot be a space-filling curve.

It follows that any three bisecting lines are concurrent, and thus, all bisecting
lines are concurrent, and B is a point. �

Corollary 5.3. Of all bisection convex curves S ′ piecewise of class C1 with a finite
number of pieces such that ∫ 2π

0

r2(θ)

2
dθ = k

for some fixed k, those with maximal interior area have 180◦ rotational symmetry.

Proof. From Theorem 5 and Proposition 5.1, these curves clearly have maximal
interior area when A(B)= 0. By Proposition 5.2, this is only possible if B is a point,
say P . From the definition of g, S ′ has 180◦ rotational symmetry about P . �

Remark 5.4. The proof of Corollary 5.3 shows that if we drop the restriction that S ′

is piecewise of class C1 with a finite number of pieces and rather assume it is only
piecewise of class C1, then the bisection envelope consists of all the points of
intersection between bisecting lines and this envelope might be space-filling. We
are unable to rule out the possibility of a space-filling bisection envelope and leave
it as an open question: can f be differentiable almost everywhere and space-filling?

Lastly, we use Theorem 5 to find the internal area of the bisection envelope of
an equilateral triangle calculated in Example 3.4.

Example 5.5. The bisection envelope of a triangle is not self-intersecting; therefore
its interior area is well-defined and is recognized to be −A(B). Rearranging
Theorem 5, we have

−A(B)=
∫ 2π

0 r2(θ)/2 dθ −A(S ′)
2

.
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Now A(S ′) is the area of an equilateral triangle with side length 2 or
√

3. Also, by
symmetry, r has period π/3, and therefore we rewrite

−A(B)= 3
∫ π/3

0

r2(θ)

2
dθ −

√
3

2
. (5-10)

Rotation of the triangle has no effect on area, and thus we rotate so that the three
medians have directions 0, π/3, 2π/3 with A, B,C being the vertices that lie on
the respective medians.

Let A(θ), B(θ) be the intersection points of lθ with the triangle, where A(0)= A,
B(π/3)= B. Let a(θ)= d(A(θ),C) and b(θ)= d(B(θ),C). Since the A(θ)B(θ)
are bisecting chords, we have 1

2a(θ)b(θ) sin(π/3)=
√

3/2, which implies

a(θ)b(θ)= 2. (5-11)

We now apply the sine and cosine laws to get 2r(θ) sin
(
π

2
− θ

)
= a(θ)sin π

3
on

the one hand, which yields

a(θ)=
4
√

3
r(θ) cos θ, (5-12)

and on the other hand

4r2(θ)= a2(θ)+ b2(θ)− 2a(θ)b(θ) cos π
3
. (5-13)

Combining (5-11), (5-12), and (5-13) we have

(2− 8
3 cos2 θ)r4(θ)+ r2(θ)−

3
8 cos2 θ

= 0. (5-14)

Thus we find
r2(θ)

2
=

1±
√

3 tan θ
32
3 cos2 θ − 8

. (5-15)

We choose the ± to be a −, otherwise as θ → π/6, we have that r2(θ) goes to
infinity. This function is integrable by standard methods by a change of variable to
u = cot θ and then through use of partial fractions. We calculate∫ π/3

0

r2(θ)

2
dθ = 1

8

√
3 ln(1+

√
3 tan θ)

∣∣π/3
0 =

√
3

4
ln 2. (5-16)

This can now be inserted back into (5-10), giving the result

−A(B)= 3
√

3
4

ln 2−
√

3
2
≈ 0.03440. (5-17)

Remark 5.6. As ratios of areas and ratios of lengths along a line are unaffected by
linear transformations, the bisection envelope of a curve will remain unchanged
under a linear transformation. As any triangle is the image of any other triangle
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under some linear transformation, it follows that the ratio A(B) :A(S ′) is a constant
when S ′ is a triangle. Therefore, for all triangles S ′,

A(B)
A(S ′)

=
3
4 ln 2− 1

2 ≈ 0.01986. (5-18)

In other words, every triangle has a bisection envelope with area roughly a fiftieth
of its area.
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