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We study the 590 nonisomorphic degree 14 extensions of the 2-adic numbers
by computing defining polynomials for each extension as well as basic invariant
data for each polynomial, including the ramification index, residue degree, dis-
criminant exponent, and Galois group. Our study of the Galois groups of these
extensions shows that only 10 of the 63 transitive subgroups of S14 occur as a
Galois group. We end by describing our implementation for computing Galois
groups in this setting, which is of interest since it uses subfield information, the
discriminant, and only one other resolvent polynomial.

1. Introduction

Hensel’s p-adic numbers are a foundational tool in 21st century number theory, with
applications to such areas as number fields, elliptic curves, and representation theory
(among others). They are also the subject of much current research themselves, with
several studies aimed at classifying arithmetic invariants of finite extensions of the
p-adic numbers. Among the most useful invariants to identify are the ramification
index, residue degree, discriminant, and Galois group (of the normal closure) of
each extension. For such a pursuit, we can take the following classical result as
motivation [Lang 1994, p. 54].

Theorem 1.1. For a fixed prime number p and positive integer n, there are only
finitely many nonisomorphic extensions of the p-adic numbers of degree n.

When p - n, all extensions are tamely ramified and are well understood [Jones
and Roberts 2006]. Likewise, when p = n, the situation has been solved since the
early 1970s [Amano 1971; Jones and Roberts 2006]. The difficult cases where p | n
and n is composite have been dealt with on a case-by-case basis for low degrees n
and small primes p. Jones and Roberts [2004; 2006; 2008] have classified the cases
where n ≤ 10, and the case of degree 12 is dealt with in [Awtrey 2012; Awtrey and
Shill 2013; Awtrey et al. ≥ 2015a; ≥ 2015b].
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In this paper, we are concerned with classifying degree 14 extensions of the 2-adic
numbers. In particular, we focus on computing defining polynomials for each field
as well as the Galois group for each of these polynomials. The other invariants are
straightforward to compute using basic number field commands in [PARI 2012]. In
Section 2, we lay the theoretical groundwork for computing Galois groups of p-adic
fields using the theory of ramification groups. A consequence of this section is that
every degree 14 extension of Q2 has a unique septic subfield. In Section 3, we use the
result of Section 2 to compute defining polynomials. In the final section, we discuss
our method of determining the Galois groups of the polynomials found in Section 3.

2. Ramification groups

The aim of this section is to show that every degree 14 2-adic field has a unique septic
subfield. To accomplish this, we introduce the basic properties of ramification groups
and use those properties to deduce structural information about degree 14 extensions
of Q2. For a more detailed exposition of ramification group theory, see [Serre 1979].

Definition 2.1. Let L/Qp be a Galois extension with Galois group G. Let v be the
discrete valuation on L and let ZL denote the corresponding discrete valuation ring.
For an integer i ≥−1, we define the i -th ramification group of G to be the set

Gi = {σ ∈ G : v(σ (x)− x)≥ i + 1 for all x ∈ ZL}.

The ramification groups define a sequence of decreasing normal subgroups which
are eventually trivial and which give structural information about the Galois group
of a p-adic field. For example, the following result is useful for determining possible
Galois groups of p-adic fields. A proof can be found in [Serre 1979, Chapter 4].

Lemma 2.2. Let L/Qp be a Galois extension with Galois group G, and let Gi

denote the i-th ramification group. Let p denote the unique maximal ideal of ZL

and U0 the units in L. For i ≥ 1, let Ui = 1+ pi .

(a) For i ≥ 0, Gi/Gi+1 is isomorphic to a subgroup of Ui/Ui+1.

(b) The group G0/G1 is cyclic and isomorphic to a subgroup of the group of roots
of unity in the residue field of L. Its order is prime to p.

(c) The quotients Gi/Gi+1 for i ≥ 1 are abelian groups and are direct products of
cyclic groups of order p. The group G1 is a p-group.

(d) The group G0 is the semidirect product of a cyclic group of order prime to p
with a normal subgroup whose order is a power of p.

(e) The groups G0 and G are both solvable.

Suppose f is an irreducible polynomial of degree 14 defined over Q2 and let G
be its Galois group. From Lemma 2.2, we see that G is a solvable transitive
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subgroup of S14. Furthermore, G contains a solvable normal subgroup G0 such that
G/G0 is cyclic. The group G0 contains a normal subgroup G1 such that G1 is a
2-group (possibly trivial). Moreover, G0/G1 is cyclic of order dividing 2[G:G0]− 1.
Direct computation on the 63 transitive subgroups of S14 (using [GAP 2008],
for example) shows that only 15 of the 63 are possibilities for the Galois group
of f . Using the transitive group notation in [GAP 2008], these 15 groups are
TransitiveGroup(14,n), where n is one of the following possibilities:

{1, 4, 5, 6, 7, 9, 11, 18, 21, 29, 35, 40, 41, 44, 48}.

Showing that every degree 14 extension of Q2 has a unique septic subfield amounts
to showing that each of the above 15 groups possesses the corresponding group-
theoretic property. In particular, let K/Q2 be a degree 14 extension defined by an
irreducible polynomial f , and consider the subfields of K up to isomorphism. The
list of the Galois groups of the Galois closures of the proper nontrivial subfields
of K is important for our work. We call this the subfield Galois group content of K ,
and we denote it by sgg(K ).

The sgg content of an extension is an invariant of its Galois group. Indeed,
suppose the normal closure of K/Q2 has Galois group G and let E be the subgroup
fixing K . By Galois theory, the nonisomorphic subfields of K correspond to the
intermediate subgroups F , up to conjugation, such that E ≤ F ≤ G. Specifically,
if K ′ is a subfield and F is its corresponding intermediate group, then the Galois
group of the normal closure of K ′ is equal to the permutation representation of G
acting on the cosets of F in G. Consequently, it makes sense to speak of the sgg
content of a transitive subgroup as well.

For each of these 15 groups, we used [GAP 2008] to compute their sgg content.
We found that 5 of these groups — 4, 7, 40, 41, 48 — had 7T4 in their sgg content.
This means that polynomials whose Galois group is one of these 5 possibilities
must define an extension with a septic subfield whose normal closure has Galois
group 7T4. But as we will see in the next section, the only possible Galois groups
of degree 7 polynomials over Q2 are either 7T1 or 7T3. This means that these 5
groups cannot occur as the Galois group of a degree 14 2-adic field.

Therefore, there are only 10 possible Galois groups of degree 14 extensions
of Q2. For each of these possible Galois groups, Table 3 shows their respective sgg
contents. Notice that each group has exactly one entry of the form 7Tj. This shows
that degree 14 extensions of Q2 have a unique septic subfield.

3. Defining polynomials

As a consequence of Section 2, every degree 14 extension of Q2 can be realized
uniquely as a quadratic extension of a septic 2-adic field. Defining polynomials for
degree 14 2-adic fields are therefore straightforward to compute.
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e G poly

1 7T1 u7= x7
− x + 1

7 7T3 t7= x7
− 2

Table 1. Septic extensions of Q2, including the ramification
index e and Galois group G of a defining polynomial poly.

First, we compute all septic 2-adic fields. Such fields are tamely ramified and are
therefore easy to classify using [Jones and Roberts 2006]. Table 1 shows that there
are two septic 2-adic fields, the unramified extension (with cyclic Galois group)
and a totally ramified extension (with 7T3= C7 : C3 as its Galois group). Next, for
each septic 2-adic field, we compute all of its quadratic extensions using [Awtrey
2010]. In each case, there are 511 such quadratic extensions. But some of these
1022 extensions are isomorphic. Using Panayi’s algorithm [Pauli and Roblot 2001],
we discard isomorphic extensions to find a total of 590 nonisomorphic degree 14
extensions of Q2. Polynomials are available on request by emailing the first author.

Table 2 contains numerical data on the numbers of these extensions, excluding the
unramified extensions of the two septic 2-adic fields. The “base” column references
the two polynomials in Table 1. The column c is the discriminant exponent, G is the
Galois group of the defining polynomial, and #Q14

2 is the number of nonisomorphic
extensions over Q2. Notice that there are 78 extensions that are ramified quadratic
extensions of the unramified septic 2-adic field. There are 510 ramified quadratic
extensions of the unique totally ramified septic 7-adic field. These 588 extensions
plus the unramified extensions of the two septic 2-adic fields give 590 total degree 14
extensions of Q2. Krasner’s mass formula [1966] verifies that these are all such
extensions. We note that the number of extensions can also be verified using an
implementation of [Pauli and Roblot 2001] in [PARI 2012].

4. Galois groups

It remains to identify the Galois group over Q2 for each of the 590 polynomials.
We follow the standard approach for determining Galois groups [Hulpke 1999].
We compute enough group-theoretic and field-theoretic invariants so as to uniquely
identify a polynomial with its corresponding Galois group. Our strategy is to divide
the above list of 10 groups into smaller pieces that are easily distinguished from
each other. Our first division will be at the level of centralizer order. The order of
the centralizer in S14 of the Galois group is useful as it corresponds to the size of
the automorphism group of the stem field defined by the polynomial. We divide
these smaller sets even further based on their sgg content and their parity. The
parity of a group G is +1 if G ⊆ A14 and −1 otherwise. Likewise, the parity
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base c G #Q14
2

u7 14 14T1 2
u7 14 14T6 2
u7 14 14T9 6
u7 14 14T21 7
u7 14 14T29 21

u7 21 14T1 4
u7 21 14T9 8
u7 21 14T29 28

t7 14 14T11 1
t7 14 14T18 1

t7 16 14T11 1
t7 16 14T18 1
t7 16 14T35 1
t7 16 14T44 1

t7 18 14T11 2
t7 18 14T18 2
t7 18 14T35 2
t7 18 14T44 2

base c G #Q14
2

t7 20 14T5 2
t7 20 14T18 8
t7 20 14T44 6

t7 22 14T11 2
t7 22 14T18 6
t7 22 14T35 6
t7 22 14T44 18

t7 24 14T11 4
t7 24 14T18 12
t7 24 14T35 12
t7 24 14T44 36

t7 26 14T11 4
t7 26 14T18 12
t7 26 14T35 28
t7 26 14T44 84

t7 27 14T5 4
t7 27 14T18 56
t7 27 14T44 196

Table 2. Ramified quadratic extensions of septic 2-adic fields.

of a polynomial f is +1 if its discriminant is a square in Q2 and −1 otherwise.
When this information is not enough, we introduce a single resolvent polynomial
[Stauduhar 1973] and use information about its irreducible factors over Q2. This
resolvent, denoted as f364, has degree 364. It corresponds to the subgroup S11× S3

of S14 and can be computed as a linear resolvent on 3-sets [Soicher and McKay
1985], i.e., as a resultant. It can also be computed in the following way. Let f (x)
define a degree 14 extension over Q2, and let r1, r2, . . . , r14 be the roots of f . Then,

f364(x)=
12∏

i=1

13∏
j=i+1

14∏
k= j+1

(x − ri − r j − rk).

We note that in our search for suitable resolvent polynomials, we also looked at a
lower degree linear resolvent (corresponding to the group S2× S12), subfields of the
field defined by this lower degree resolvent, and other subfield information of f364.
In order to keep the computational difficulty of our algorithm as low as possible,
we focused on subfields of degree less than 12, with a preference toward quadratic
subfields of the fields defined by the irreducible factors of the linear resolvents.
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G parity |CS14(G)| sgg f364 quad subs #Q14
2

14T1 −1 14 2T1, 7T1 7
14T5 −1 2 2T1, 7T3 7

14T6 +1 2 7T1 146, 282, 564 2
14T21 +1 2 7T1 146, 565 7

14T9 −1 2 7T1 146, 565 one 14
14T29 −1 2 7T1 146, 565 none 49

14T11 +1 2 7T3 282, 422, 56, 168 14
14T35 +1 2 7T3 422, 562, 168 49

14T18 −1 2 7T3 422, 562, 168 one 98
14T44 −1 2 7T3 422, 562, 168 none 343

Table 3. Invariant data for possible Galois groups of degree 14
2-adic fields.

Under these constraints, we found the degree 56 factors of f364 to be the smallest
degree factors that accomplished our needs.

Table 3 contains all pertinent invariant data for each Galois group. Notice that
all groups can be distinguished using parity, centralizer order, sgg content, and the
degrees of the factors of f364 except for two sets: 14T9/14T29 and 14T18/14T44.
But in both cases, the groups can be distinguished by counting quadratic subfields
of the fields defined by the degree 56 factors of f364. In these two cases, we have
also verified Galois group computations with [Milstead et al. 2015] by computing
sizes of splitting fields. As before, we include the column #Q14

2 , which represents
the number of nonisomorphic extensions over Q2 with the corresponding Galois
group (which can also be inferred from Table 2). The other columns are defined as
follows: |CS14(G)| gives the size of the centralizer of the group in S14, sgg gives
the sgg content of the group, f364 gives the degrees of the irreducible factors of
f364, and “quad subs” gives the number of quadratic subfields of the fields defined
by the degree 56 factors of f364.

On our workstation — two quad-core Intel Xeon processors (2.4GHz) — our
Galois group computations finished in just over 4 months (125 days). The most
difficult cases (where the Galois group was either 14T9/14T29 or 14T18/14T44)
took on average 20–25 hours per polynomial.
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