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We first describe how one associates a cubic curve to a given ternary trilinear
form φ ∈C3

⊗C3
⊗C3. We explore relations between the rank and border rank of

the tensor φ and the geometry of the corresponding cubic curve. When the curve
is smooth, we show there is no relation. When the curve is singular, normal forms
are available, and we review the explicit correspondence between the normal
forms, rank and border rank.

1. Introduction

Given a multilinear map, i.e., a tensor1, how hard is it to evaluate? Two ways
mathematicians have chosen to quantify “hard” are the notions of rank and border
rank. We say a tensor φ ∈ V1⊗· · ·⊗Vn is of rank 1 if it is of the form v1⊗· · ·⊗vn ,
where each vi ∈ Vi .

Definition 1.1. Let φ ∈ V1⊗· · ·⊗Vn . The rank of φ, denoted R(φ) is the smallest
natural number r such that φ=

∑r
j=1 φ j , where each φ j ∈ V1⊗· · ·⊗Vn is of rank 1.

To better understand this concept, consider the reduction to linear algebra, in
which φ ∈ V1⊗ V2 may be considered as a linear map V ∗1 → V2. Recall that every
linear map on finite dimensional vector spaces can be written as a matrix, after
choosing bases, and that the rank of a matrix M is the number of rank 1 matrices Mi

needed to write M =
∑

i Mi . In this special case, the above definition is natural.2

But rank doesn’t give us the whole picture when n> 2. To illustrate this, consider
the following classical example.

MSC2010: 15A72, 68Q17.
Keywords: algebraic geometry, border rank of tensors, j-invariant of cubic, ternary trilinear forms.

1Throughout the paper, we will assume the reader is familiar with the tensor product of vector
spaces. For a quick review, see the Appendix.

2However, it is worth mentioning that rank as it is defined here is one of several generalizations of
the rank of a linear map (e.g., multilinear rank).
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The tensor

φ = a1⊗ b1⊗ c1+ a1⊗ b1⊗ c2+ a1⊗ b2⊗ c1+ a2⊗ b1⊗ c1

is of rank at most 3 since

φ = a1⊗ b1⊗ (c1+ c2)+ a1⊗ b2⊗ c1+ a2⊗ b1⊗ c1,

and it is not of rank 2 by explicit computation. However, notice that φ is the limit
as ε→ 0 of the following sequence of rank 2 tensors:

φ(ε)=
1
ε

(
(ε− 1)a1⊗ b1⊗ c1+ (a1+ εa2)⊗ (b1+ εb2)⊗ (c1+ εc2)

)
.

So the rank of the tensor is 3, but we can approximate it as closely as we like with
rank 2 tensors. We say φ has border rank 2, and we have the following definition.

Definition 1.2. A tensor φ ∈ V1⊗ · · ·⊗ Vn is said to be of border rank r , denoted
R(φ) = r , if it is the limit of tensors of rank r but not of tensors of rank s for
any s < r .

One way to approach the difficult general problem of understanding the border
rank of tensors is to reduce multilinear algebra to linear algebra. Below is one such
reduction, in which we consider φ ∈ A⊗ B⊗C = C3

⊗C3
⊗C3 as a linear map

A∗→ B⊗C and then represent the image in B⊗C as a matrix. We then take the
determinant of this representation to find an associated cubic curve to φ.

Choose bases {ai }, {bi }, {ci } for A, B,C , respectively, with {a∗i }, {b
∗

i }, {c
∗

i } the
dual bases. Now let

φ =
∑
i, j,k

φi jk ai ⊗ b j ⊗ ck ∈ A⊗ B⊗C,

where φi jk ∈ C are constants and let

a∗ = xa∗i + ya∗2 + za∗3 , x, y, z ∈ C,

be an arbitrary element of A∗ = (C3)∗. Then, the matrix representation of φ
parametrized by a∗, denoted [φy a∗], has ( j, k)-th entry

[φy a∗] j,k = φ1 jk x +φ2 jk y+φ3 jk z.

In the same way, we can find matrix representations [φy b∗] and [φy c∗] parametrized
by b∗ ∈ B∗ and c∗ ∈ C∗. For the tensors we study in this paper, all of these repre-
sentations turn out to be equal, so we work with [φy a∗] without loss of generality.

Let’s look at an example. If

φ = a1⊗ b1⊗ c1+ a2⊗ b2⊗ c2+ a3⊗ b1⊗ c2+ a3⊗ b3⊗ c3,

then,
φ111 = φ222 = φ312 = φ333 = 1,
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and φi jk = 0 otherwise. Thus,

[φy a∗] =

x z 0
0 y 0
0 0 z

 .
Now take the determinant to find the determinantal cubic associated to φ,

xyz = 0.

It has been known since as early as 1938 (see e.g., [Thrall and Chanler 1938]) that
any cubic curve in three variables is projectively equivalent to one of the following:

(1) triple line x3
= 0

(2) double line and a line x2 y = 0

(3) 3 lines intersecting at a point xy(x − y)= 0

(4) 3 lines in general position xyz = 0

(5) a conic and a tangent line z(x2
+ yz)= 0

(6) a conic and a transverse line x(x2
+ yz)= 0

(7) cuspidal cubic x3
− y2z = 0

(8) node x3
+ y3
− xyz = 0

(9) a smooth cubic: the general case

(10) a cubic identically zero

The tensors to which these other singular cases correspond are dealt with in [Thrall
and Chanler 1938] and later in more modern language in [Ng 1995]. In particular,
normal forms are given, and in [Allums 2011], the border rank of each of these
singular tensors is calculated.

Since the singular cases have been dealt with, the next question is: how is border
rank related to the intrinsic geometry of the determinantal cubic in the general case?
That is, how does the border rank vary in the open set of smooth cubics? To answer
this, we need to introduce the classical invariants S, T and J , which are rational
functions in the coefficients of a cubic.

Under the action of SL(C, 3) on the cubic, there is a unique (up to scale) degree 4
invariant S and a unique (up to scale) degree 6 invariant T [Sturmfels 1993]. These
generate the ring of invariants of a cubic of which

J :=
S3

T 2− 64S3 ,
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the j-invariant, is a member. The invariants S and T are extrinsic invariants of the
curve, while J is an intrinsic invariant3. Here this means S and T classify the curve
up to change of coordinates while J classifies smooth cubics up to isomorphism
as abelian varieties, i.e., as groups and as algebraic varieties. One goal of this
paper is to find out what relationship, if any, exists between the border rank of
φ ∈ C3

⊗C3
⊗C3 and the geometry of its determinantal cubic curve. Equivalently,

we want to describe the relationship between border rank and S, T and thus J .
The maximum possible border rank of φ ∈ C3

⊗C3
⊗C3 is 5 [Landsberg 2012],

and since a tensor of border rank 5 depends on twelve parameters, we start with
a smaller case and consider tensors of border rank 4, which we show depend on
only three parameters in Proposition 3.1. We take such a tensor and calculate
the invariants S and T of its determinantal cubic, summarizing our analysis in
Proposition 3.2. In particular, we conclude that there is no meaningful relationship
between the border rank of φ and S or T , and thus no meaningful relationship
between border rank and J , if the cubic is smooth.

2. Background

Some background material is given in the appendix. We present the rest here, with
most of it coming from [Landsberg 2012].

There exists a geometric interpretation of border rank as follows. Let V be a
finite dimensional complex vector space and let X ⊂ PV be a variety. For any
point q not on X , we define the join of q and X to be the set of all secant lines
containing q and some point of X , denoted J (q, X). If q = x ∈ X , we do the same
thing, but we also allow tangent lines at x since a tangent line is a limit of secant
lines. The secant variety of X is

σ(X) :=
⋃
x∈X

J (x, X),

where the bar denotes Zariski closure. The notation J (X, X)= σ(X) is also used.
We can also define the join of two distinct varieties Y, Z ⊂ PV by

J (Y, Z)=
⋃
q∈Y

J (q, Z),

where J (q, Z) is the set of all secant lines containing q ∈ Y and some point of Z .

Definition 2.1 [Landsberg 2012]. The join of k varieties X1, . . . , Xk ⊂ PV is the
closure of the union of the corresponding secant (k−1)-planes, or by induction,

3Consider the difference between “extrinsic” and “intrinsic” in surface theory: mean curvature is
extrinsic (invariant under Euclidean motion) but Gauss curvature is intrinsic (invariant under isometry).
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J (X1, . . . , Xk)= J (X1, J (X2, . . . , Xk)). Define the k-th secant variety of X to be
σk(X)= J (X, . . . , X), the join of k copies of X .

We move on to another crucial concept: the Segre variety.

Definition 2.2. The n-factor Segre variety is the image of the map

Seg : PV1× · · ·×PVn→ P(V1⊗ · · ·⊗ Vn),

([v1], . . . , [vn]) 7→ [v1⊗ · · ·⊗ vn].

Note that for fixed n ∈N, the image of the Segre map is the projectivization of
the rank 1 n-tensors.

A tensor φ ∈ V1⊗ · · ·⊗ Vn may be interpreted as a linear map

V ∗1 → V2⊗ · · ·⊗ Vn, . . . , V ∗n → V1⊗ · · ·⊗ Vn−1.

Recall a matrix is rank 1 if and only if all its 2× 2 minors are 0. The set of rank 1
tensors in V1⊗ · · ·⊗ Vn is exactly the set of tensors such that each of the previous
linear maps has rank 1 [Landsberg 2012]. The collection of these 2× 2 minors are
homogeneous polynomials called flattenings. Thus, using Definition 5.3, the set
of tensors of rank 1 is an algebraic variety.

Tensors of border rank r are described as limits of tensors of rank r , so the set
of tensors of border rank at most r is the closure of the set of tensors of rank r ,
where a tensor of rank r is contained in the linear span of r points of the set of
tensors of rank 1. Since in this case the Zariski and Euclidean closures coincide
(see [Mumford 1976, Theorem 2.33]), the (projectivization of the) set of tensors
of border rank at most r is thus exactly σr (Seg(PV1× · · ·×PVn)), and so we now
have an entirely geometric interpretation of border rank with which to work. In
particular, we can now restate some of the introduction in more modern language.

For A⊗ B ⊗C = C3
⊗C3

⊗C3, the representation of φ as a matrix defines a
vector space of matrices in φ(A∗)⊂ B⊗C of dimension 3 parametrized by a∗ ∈ A∗.
When we move into projective space, it becomes a copy of P2

⊂ P(B ⊗C). By
requiring that its determinant vanish, we are demanding that the matrix be of rank
at most 2. That is, we want the matrix to be contained in σ2(Seg(PB×PC)). Our
goal is then to see how border rank varies in the intersection

{P(φ(A∗)) | φ ∈ A⊗ B⊗C} ∩ σ2(Seg(PB×PC)).

3. Primary results

First, we show that a general point in σ4 := σ4(Seg(PA×PB×PC)), i.e., a tensor
of border rank 4, depends on only three parameters.

Proposition 3.1. A general point in σ4, up to the action of GL(C, 3), depends on
exactly three parameters.
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Proof. Let ζi , αi , βi , γi ∈C be constants and choose bases {ai }, {bi }, {ci } for A, B,C .
We first show that a1⊗b1⊗c1+a2⊗b2⊗c2+a3⊗b3⊗c3 is a general point in σ3

by beginning with an arbitrary general point in σ3. To do this, define

ui = αi1 a1+αi2 a2+αi3 a3,

v j = β j1 b1+β j2 b2+β j3 b3,

wk = γk1 c1+ γk2 c2+ γk3 c3,

where αi p, β j p, γkp are constants such that each set {ui }, {v j }, {wk} is linearly
independent, which can be done in any open set; so this is a sufficiently arbitrary
choice of elements. Let

u1⊗ v1⊗w1+ u2⊗ v2⊗w2+ u3⊗ v3⊗w3

be a general point in σ3. Since our group of normalizations, GL(C, 3), is 9-
dimensional, we can send each ui 7→ a1, v j 7→ b j and wk 7→ ck , totaling nine
transformations. We then have

a1⊗ b1⊗ c1+ a2⊗ b2⊗ c2+ a3⊗ b3⊗ c3, (11)

as desired. A general point in σ4 is obtained by taking an arbitrary point in
Seg(PA×PB×PC) and adding it to (11) to obtain a point on an honest secant line:

a1⊗ b1⊗ c1+ a2⊗ b2⊗ c2+ a3⊗ b3⊗ c3

+ (α1a1+α2a2+α3a3)⊗ (β1b1+β2b2+β3b3)⊗ (γ1c1+ γ2c2+ γ3c3).

Since GL(C, 3) is 9-dimensional, we may make six dimensions worth of changes
by sending αi ai 7→ ai and β j b j 7→ b j , with three dimensions worth of changes
left over. However, these transformations add additional constants to the first three
summands; we end up with

3∑
i=1

1
αiβi

ai ⊗ bi ⊗ ci + (a1+ a2+ a3)⊗ (b1+ b2+ b3)⊗ (γ1c1+ γ2c2+ γ3c3).

Using our last three dimensions to send

1
αiβi

ci 7→ ci

gives

3∑
i=1

ai⊗bi⊗ci+(a1+a2+a3)⊗(b1+b2+b3)⊗(α1β1γ1c1+α2β2γ2c2+α3β3γ3c3).

Finally, for the sake of notation, relabel

λi = αiβiγi .
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Thus, a general point in σ4,

a1⊗ b1⊗ c1+ a2⊗ b2⊗ c2+ a3⊗ b3⊗ c3

+ (a1+ a2+ a3)⊗ (b1+ b2+ b3)⊗ (λ1c1+ λ2c2+ λ3c3),

depends on only the three parameters λ1, λ2, λ3. �

Note that the action of GL(C, 3) on σ4 does not change S or T as these are
invariant under changes of coordinates. Now represent this tensor as a matrix, as
described in the introduction:x + λ1(x + y+ z) λ2(x + y+ z) λ3(x + y+ z)

λ1(x + y+ z) y+ λ2(x + y+ z) λ3(x + y+ z)
λ1(x + y+ z) λ2(x + y+ z) z+ λ3(x + y+ z)

 .
Take the determinant to find the determinantal cubic curve, which is

(1+ γ1+ γ2+ γ3)xyz+ γ1 y2z+ γ1 yz2
+ γ2x2z+ γ2xz2

+ γ3x2 y+ γ3xy2. (12)

From here, one uses the formulae for S and T found in [Sturmfels 1993].

Proposition 3.2. The border rank of φ ∈C3
⊗C3
⊗C3 is not related to the projective

geometry of its determinantal cubic curve, if it is smooth.

Proof. The polynomials S and T are in the ten coefficients of a cubic in general,
but as shown in Proposition 3.1, the coefficients of our curve depends only on three
parameters γ1, γ2, γ3, so here S and T are in three variables. Now fix γ1 = γ2 = 1.
Then S and T become nonconstant polynomials in the single complex variable γ3:

S = 1
16γ

4
3 −

5
12γ

3
3 +

7
8γ

2
3 +

43
108γ3+

169
1296 ,

T =− 1
8γ

6
3 +

5
4γ

5
3 −

113
24 γ

4
3 +

283
54 γ

3
3 +

691
216γ

2
3 −

559
324γ3−

2197
5832 .

By Picard’s theorem, S and T each either attain every value in C or attain all but
one value in C. However, if there was some w ∈ C not hit by S or T , then S = w
would have no solution. But since C is algebraically closed, S−w = 0 does have
a root. Thus, S and T are onto, so we may obtain any value for them by suitable
choices of γ1, γ2, γ3. �

4. On the 24 singular cases

Define
1 := T 2

− 64S3

to be the discriminant of a cubic curve. Since a cubic is singular if and only if
1= 0, one expects each of the determinantal cubics associated to the normal forms
in [Ng 1995] to have 1= 0. The determinantal cubics are:
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xyz = 0 {1, 2, 3, 5, 6, 8}

xyz− x3
= 0 {4, 9, 10}

(λ− 1)xyz = 0 {7}

y2z+ yz2
= 0 {11}

x2 y+ xy2
= 0 {12}

x2 y− xz2
= 0 {13, 14}

(λ− 1)(λz3
+ xyz)= 0 {15}

xyz− λz3
+ y3
= 0 {16}

xyz+ λx3
= 0 {17, 18}

z2 y− zy2
− xy2

= 0 {19}

xz2
+ y3
+µzy2

= 0 {20}

−µx2 y− xy2
+ x2z = 0 {21, 22}

(λ3λ5)z3
+ (λ1λ5+ λ4λ6)xz2

+ (λ2λ6)y2z+ (λ2λ5+ λ3λ6)yz2

− (λ4λ6+ λ1λ5)xy2
+ (λ1λ6)xyz = 0 {23}

−µz3
− 2µ3 y2z+ 3µ2 yz2

+ 3µxy2
= 0 {24}

The set of numbers to the right are the normal forms to which the curve corresponds
and

λ1 = (λ− 1), λ2 = (λ− 1)2(λ2
+ λ+ 1), λ3 = (λ

2
− 1)(λ2

+ λ+ 1),

λ4 = (λ+ 1), λ5 = (λ
2
+ 1), λ6 = (λ

2
− 1),

where λ 6= 0, 1 for {7, 15}; λ 6= 0 for {16, 17, 18}; λ 6= 0, ω for {23} (where ω3
= 1);

µ = 0, 1 for {20, 21, 22}; and µ 6= 0 for {24}. Using the formulae in [Sturmfels
1993], we find 1= 0 for each of these cubics.

Notice that some of these cubics are projectively equivalent. Some of these
equivalences are immediate4, such as

{1, 2, 3, 5, 6, 8}, {7} ∼ (4),

{4, 9, 10}, {15}, {17, 18} ∼ (6),

{11}, {12} ∼ (3),

{16} ∼ (8),

4Explanation of notation by example: The cubics {1, 2, 3, 5, 6, 8} in [Ng 1995] correspond to
xyz = 0 above, and this corresponds to three lines in general position, which is case (4) in [Thrall and
Chanler 1938]. Additionally, {7} corresponds to (λ− 1)xyz = 0, which is projectively equivalent to
xyz = 0 and so (4) as well. Thus we write {1, 2, 3, 5, 6, 8}, {7} ∼ (4).
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where the numbers to the right come from the classification in the introduction. To
find the others, we find the singular points and expand in a Taylor series about that
point. We then look at the second order term: if it is of rank 1, then the singularity is
a cusp, and if it is of rank 2, the singularity is a node. As an example, let’s examine
f (x, y, z)= x2 y− xz2, which is the cubic corresponding to {13, 14}. The curve is
singular at a point p if and only if the differential, D, vanishes at p. In this case,

D = (2xy− z2, x2,−2xz).

Since D(p)= 0 if and only if p = [x : y : z] = [0 : 1 : 0], this is our singular point.
Expand in a Taylor series about this point:

f (x, y, z)= f (p)+ x fx(p)+ y fy(p)+ z fz(p)+ 1
2 x2 fxx(p)+ · · · .

The only nonzero term of second order is 1
2 x2 fxx(p)= x2, which is of rank 1. Thus,

our curve has a cusp and corresponds to case (7).
The classification of the remaining cases is a simple exercise in calculus, and we

end up with
{13, 14}, {19}, {20}, {21, 22}, {24} ∼ (7),

{23} ∼ (8).

5. Appendix

We begin with the definition of the tensor product of vector spaces. Although the
tensor product is typically defined by its universal property, those familiar with it will
have no trouble relating the following definition, which is sufficient for our purposes,
to the standard one. In all cases, ⊗=⊗C and recall that for a vector space V , we
denote by V ∗ the dual space to V , which is the space of all linear maps V → C.

Definition 5.1. Let V1, . . . , Vn,W be finite-dimensional vector spaces. A map
f : V1×· · ·×Vn→W is said to be n-linear if it is linear in each factor. The tensor
product of these spaces is

V1⊗ · · ·⊗ Vn ⊗W = { f : V ∗1 × · · ·× V ∗n →W | f is n-linear}.

Note that when W = C, we have that

V1⊗ · · ·⊗ Vn ⊗W = V1⊗ · · ·⊗ Vn ⊗C' V1⊗ · · ·⊗ Vn.

This is a standard result, whose statement in full generality can be seen in, e.g.,
Theorem 5.7 in [Hungerford 1980]. It is a straightforward exercise to show that
V ⊗W is the space of linear maps V ∗→ W , the space of linear maps W ∗→ V ,
the space of bilinear maps V ∗×W ∗→ C, etc. Inductively, we have many different
equivalent ways to realize V1⊗ · · ·⊗ Vn ⊗W . The tensor product of vector spaces
is again a vector space, whose elements are called tensors.



354 DEREK ALLUMS AND JOSEPH M. LANDSBERG

Next, since our work is done in complex projective space, we need a defini-
tion; n-dimensional complex projective space is the space of all one-dimensional
subspaces (lines) in Cn+1 [Harris 1995]:

Definition 5.2. Define n-dimensional complex projective space to be

Pn
= PCn

:= (Cn+1
\{0})/∼,

where ∼ is the equivalence relation given by Cn
3 (v1, . . . , vn)∼ (λv1, . . . , λvn)

for some nonzero scalar λ.

For a complex vector space V of finite dimension, denote the set of equivalence
classes of some v ∈ V by [v] ∈ PV . Let

π : V \{0} → PV,

v 7→ [v]

denote the projection. For a subset Z ⊂ PV , let Ẑ := π−1(Z) denote the cone
over Z . Call the image of such a cone in projective space its projectivization. We
need a final crucial definition from [Harris 1995]:

Definition 5.3. A projective variety is the projectivization of the set of common
zeros of some collection of homogeneous polynomials on V .

Should the reader want to read more relevant background material, see the
sections on the tensor product in [Landsberg 2012; Hungerford 1980; Dummit
and Foote 2004] and the sections on basic algebraic geometry in [Landsberg 2012;
Harris 1995].
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