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The solution to inverse problems is an application shared by mathematicians, sci-
entists, and engineers. For this work, a set of shallow soil temperatures measured
at eight depths between 0 and 30 cm and sampled every five minutes over 24 hours
is used to determine the diffusivity of the soil. Thermal diffusivity is a modeling
parameter that impacts how heat flows through soil. In particular, it is not known
in advance if the subsurface region is homogeneous or heterogeneous, which
means the thermal diffusivity may or may not depend on depth. To this end, it is
not clear which assumptions may apply to represent the physical system embedded
within the parameter estimation problem. Analytic methods and a simulation
based least-squares approach to approximate the diffusivity are compared to fit
the temperature profiles to different heat flow models. The simulation is based
on a spatially dependent, nonsteady-state discretization to a partial differential
equation. To complete the work, a statistical sensitivity study using analysis
of variance is used to understand how errors that arise in the modeling phase
impact the final model. We show that for the analytic methods, errors in the initial
fitting of the temperature data to sinusoidal boundary conditions can have a strong
impact on the thermal diffusivity values. Our proposed framework shows that this
soil sample is heterogeneous and that modeling depends significantly on data used
as top and bottom boundary conditions. This work offers a protocol to determine
the soil type and model sensitivities using analytic, numerical, and statistical
approaches and is applicable to modifications of the classic heat equation found
across disciplines.

1. Introduction

Inverse problems arise routinely across science and engineering disciplines. Using
a mathematical approach to such parameter estimation problems avoids the tedious
task of trial-and-error to match a mathematical model to experimental data. For this
work, we consider a heat transport model in the shallow subsurface and use both
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analytic and numerical approaches to fit data. Part of the challenge is that the nature
of the subsurface is not known in advance; thus it is not clear which model applies
or whether assumptions made to apply analytic models are reasonable. In applying
numerical approaches, assumptions on the types of boundary conditions can sig-
nificantly impact the results. In the presence of such uncertainty and the possible
addition of experimental error, the identified parameters may give suboptimal fits
or provide values far from truth. This work offers a protocol to determine the soil
type and model sensitivities using analytic, numerical, and statistical approaches
by comparing common approaches to heat flow in the shallow subsurface and
studying how choices made during the modeling phase can impact the results of
the inverse problem.

The propagation of heat in the subsurface can be modeled by the second-order
partial differential equation

@T

@t
DK

@2T

@z2
; (1)

where T .z; t/ is the time-dependent temperature distribution at depth z> 0 for t > 0.
Thermal diffusivity, K cm/min, which describes how easily heat propagates through
the medium, is proportionally related to thermal conductivity such that

K D
Ok

�c
; (2)

where Ok is the thermal conductivity, � is the density and c is the heat capacity.
Although in (1), K is often assumed to be constant in practice, due to the complex
nature of the subsurface, K is usually spatially dependent. We refer to these as
homogeneous and heterogeneous soils respectively. Heat flow in the heterogeneous
case would be described by
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where now K DK.z/. Analytic solutions to various forms of these models exist
[Carslaw and Jaeger 1986; Powers 2006; Narasimhan 2009] and have been studied
for decades. Alternatively, given the spatially distributed thermal conductivity along
with initial and boundary temperature, the temperature distribution over time can
be approximated numerically.

The inverse of this problem is the focus of this study. Mathematical approaches
can be used to help guide practitioners on the nature of the subsurface since it is not
known in advance how much the soil type actually varies. Specifically, subsurface
temperature data monitored at seven depths between 0 and 30 cm and logged over
time were used to determine the thermal diffusivity of the test site. Figure 1 below
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Figure 1. Temperature data.

shows temperature data as a function of time and depth. Analytic methods for
determining K from temperature profiles have been proposed in the literature and
implemented using data taken from the Loess Plateau in China [Gao et al. 2009].
Some of those methods are compared here but are based on the assumption that the
soil is homogeneous. We compare these approaches to a simulation-based approach
using a numerical approximation to the heterogeneous model in (3) and a minimiza-
tion of the least-squares error between the model output and the temperature data.
Since all of these methods include choices made during the modeling phase, we
conduct a sensitivity study to understand how these choices impact the final model.
The sensitivity study is based on a statistical analysis of variance.

We proceed by describing the methods used to determine the thermal diffusivity,
both analytically and numerically, and then presenting those results in Sections 2
and 3. We follow with the sensitivity analysis in Section 4 and point the way
towards future work in Section 5.

2. Analytic approaches

We consider four methods that approximate K values explicitly using temperature
values at different depths. The methods are based on the homogeneous model in (1).

If we consider boundary conditions of the form

T .0; t/D TaCA sin.! t C�/ (4)

and
lim

z!1
T .z; t/D Ta; (5)

an analytic solution to (1) is given by

T .z; t/D TaCAe�z=D sin
�
! t �

z

D
C�

�
; (6)
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with D D
p

2K=!. Here, (4) states that the surface temperature varies as a sinu-
soidal function whose parameters include the time-average temperature Ta (ıC), am-
plitude A (ıC), radial frequency ! (rad s�1) and phase constant � (rad). The bottom
boundary condition (5) indicates that as depth increases sufficiently, the soil temper-
ature is not affected by the surface temperature and thus maintains a constant value.

Four analytic methods were used to approximate the thermal conductivities at
seven locations. The seven locations are between different depths, i.e., between
0 and 1 cm, between 1 and 5 cm, between 5 and 10 cm, and continuing until
30 cm deep. The methods described in [Gao et al. 2009; Horton et al. 1983] call
for a homogeneous soil thermal conductivity profile. With thermal conductivity
assumed homogeneous, the analytic methods call for only two depths to estimate
the conductivity. To perform the analytic methods, the raw data temperatures need
to be approximated by a sinusoidal curve of the form

T1.z1; t/D T 1CA1 sin.! t C�1/; (7)

T2.z2; t/D T 2CA2 sin.! t C�2/; (8)

where A1;A2 are half of the difference between the daytime maximum and night-
time minimum amplitudes for the soil depths. Furthermore, T 1;T 2 are the arith-
metic averages of the daytime maximum soil temperature and the nighttime mini-
mum soil temperature at depths z1; z2. The initial phases of the soil temperature,
�1 and �2, are obtained using a least-squares fit (as opposed to using a spline
to fit the data) because numerical values for those parameters are needed in the
analytic models to determine the conductivity. The resulting least-squares problem
is nonlinear and a variety of optimization methods would apply. Since a genetic
algorithm [Holland 1973] was being used in the project elsewhere, it was used here
as well. Genetic algorithms require no gradient information for minimization and
are thus attractive choices for an off-the-shelf optimization approach.

Since sinusoidal approximation is only needed at two depths for the analytic
models, the two depths whose sinusoidal curves give the least error compared to
the raw error are used to compute the thermal conductivity. With each producing a
residual of 10�1, the data located one centimeter and five centimeters deep were
used. Tables 1 and 2 show the results of the fit curve for each of the seven days of
data. Table 3 shows the top boundary condition sinusoidal parameters as well.

The four methods considered for this experiment are the amplitude method, the
phase method, the arctangent method and the logarithmic method. Essentially, if
we assume that K is independent of depth (i.e., the media is homogeneous) and
that the boundary temperature is sinusoidal, then the analytic solution of the one
dimensional heat equation can be used to approximate K. The amplitude and phase
methods are directly based on the analytic solution above. The arctangent and
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day A1 ! �1 T 1

1 1.45 �101 6.51 �10�3 3.13 3.98 �101

2 1.54 �101 5.58 �10�3 5.58 3.99 �101

3 1.45 �101 5.46 �10�3 5.46 3.88 �101

4 1.38 �101 5.16 �10�3 5.16 3.73 �101

5 1.58 �101 3.94 �10�3 3.94 3.35 �101

6 1.64 �101 5.49 �10�3 5.49 3.74 �101

7 1.73 �101 3.94 �10�3 2.44 3.28 �101

Table 1. Parameters obtained at a depth of 1 cm.

day A2 ! �2 T 2

1 8.73 �101 5.75 �10�3 3.25 3.75 �101

2 8.65 �101 5.69 �10�3 1.55 3.80 �101

3 8.12 �101 5.11 �10�3 1.67 3.69 �101

4 7.60 �101 5.02 �10�3 1.19 3.62 �101

5 8.37 �101 5.60 �10�3 2.66 3.66 �101

6 9.93 �101 3.87 �10�3 1.97 3.31 �101

7 9.39 �101 4.51 �10�3 2.95 3.47 �101

Table 2. Parameters obtained at a depth of 5 cm.

day amplitude ! phase T

1 1.74 �101 6.81 �10�3 3.00 3.76 �101

2 2.14 �101 5.68 �10�3 2.33 3.82 �101

3 1.96 �101 5.21 �10�3 2.18 3.61 �101

4 1.84 �101 4.85 �10�3 2.81 3.35 �101

5 2.05 �101 4.79 �10�3 2.40 3.34 �101

6 2.28 �101 5.48 �10�3 2.59 3.51 �101

7 2.26 �101 5.27 �10�3 2.92 3.48 �101

Table 3. Parameters obtained for the boundary condition.

logarithmic methods are based on the notion that a Fourier series can reduce errors
introduced by the assumption that a single sinusoidal wave is sufficient to estimate
the surface temperature. We state these approaches here and point the reader to
[Gao et al. 2009; Horton et al. 1983] for more details.

The amplitude method:

K D
!.z1� z2/

2

2 ln.A1=A2/2
: (9)
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The phase method:

K D
!.z1� z2/

2

2.�1��2/2
: (10)

The arctangent method: This method is based on the notion that soil temperature
can be described by a Fourier series,

T D T C

nX
iD1

.ai sin.i! t/C bi cos.i! t//:

With nD 2, K can be estimated with
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where temperatures Tj and T 0j are recorded at 6 hour time intervals and two different
depths z1; z2.

The logarithmic method: Using the same assumptions as the arctangent method,
K can be expressed as

K D

 
0:012�z

ln .T1�T3/2C.T2�T4/2

.T 0
1
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3
/2C.T 0

2
�T 0

4
/2

!2

: (12)

Table 4 shows the results for each method for the seven days studied. As can
be observed, the amplitude method and logarithmic method estimate the thermal
conductivity on the same order of magnitude over the seven days. The other two
methods, phase and arctangent, estimate the thermal conductivities with significant
variability. They do not hold the order of magnitude constant over the seven days,
thus producing significantly different results from other methods.

day amplitude phase arctangent logarithm

1 1.11 �10�2 2.18 9.43 �10�2 1.45 �10�2

2 9.39 �10�3 6.29 �10�2 1.63 �10�1 3.92 �10�3

3 9.91 �10�3 7.73 �10�2 2.86 �10�1 4.56 �10�3

4 1.02 �10�3 9.62 �10�1 5.19 3.04 �10�3

5 8.43 �10�3 1.98 �10�2 2.75 �10�2 1.21 �10�3

6 9.69 �10�3 5.12 �10�1 2.95 �10�2 2.91 �10�3

7 7.93 �10�3 1.30 �10�1 5.09 �10�2 3.42 �10�3

Table 4. Estimated conductivities (cm/min).
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Figure 2. Estimated conductivities.

The thermal conductivity changes with days shown by Figure 2. As there are
noteworthy differences between each method, the arctangent and phase methods
seem to have the most significant change.

The thermal conductivities found can be used to determine temperature profiles
for each method. As seen in Figure 3, not one method provides an accurate
estimation of the data profile. Large errors in the original sinusoidal fitting or the
inaccuracy of assuming thermal conductivity homogeneity could account for this
difference in estimation. To this end, although attractive for their simplicity, the
analytic methods do not provide an accurate approximation to the data.

The assumption that thermal conductivity is homogeneous throughout the soil
may be inaccurate. Instead of assuming homogeneity from 0 to 30 cm, homogeneity
can be assumed on small subintervals. This assumption is reasonable if the porous
media is layered so that it is homogeneous in x�y directions and constant on layered
intervals in the z direction. These results are shown in Table 5. By displaying a
change in thermal conductivity with depth in Figure 5, results either confirm that
homogeneity was an inaccurate assumption or that errors from the initial fitting are
having an impact on the final values.

depth (cm) amplitude phase arctangent logarithmic

1–5 8.50 �10�3 7.20 �10�2 2.52 �10�1 2.90 �10�3

5–10 1.70 �10�2 3.70 �10�2 2.40 �10�2 1.40 �10�3

10–15 7.70 �10�3 3.17 �10�2 8.73 �10�2 3.20 �10�3

15–20 3.58 �10�2 8.60 �10�1 1.64 �10�2 5.79 �10�4

20–25 6.19 �10�2 6.03 �10�2 8.09 �10�1 3.88 �10�5

25–30 2.05 �10�2 2.88 �10�2 4.90 �10�2 4.26 �10�3

Table 5. Differences in conductivities at each depth on day 7.
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Figure 3. Temperature distributions.

We will show later that small variations in fitting the sinusoidal curve impact
the analytic solutions greatly. Moreover, with regard to the inaccurate assump-
tion of homogeneity, a new approach is taken below. We proceed by analyzing
the simulation-based optimization approach to conduct the experiment with the
assumption that thermal conductivities are heterogeneous.

3. Simulation-based approach

In the first approach, thermal conductivities are calculated using four analytic
methods. However, the results indicate that the assumption of homogeneity may not
be valid. To this end, an optimization framework where the least-squares error (LSE)
between data and a simulated temperature profile facilitates the incorporation of
spatially varying thermal conductivities. For the simulation, finite differences
were used to discretize (3) in space with backward Euler in time. To validate the
simulation tool, results were compared to a problem with a known solution using a
forcing term f .z; t/ on the right hand side and a known function K.z/ to ensure
accurate truncation error. To account for the fact that data would be used in the
subsequent study for K, we use a spline to describe the variation of K in space and
then differentiate it to obtain @K=@z.
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Figure 4. Structure of the optimization scheme.

In this new context, the logged data T obs is an Nt � Nz matrix, where Nt is the
number of time points and Nz is the number of spatial nodes. The least-squares
problem is then

min
K2�

J.K/D

1
2

PN
iD1.
yTi.K/�T obs

i /2

1
2

PN
iD1.T

obs
i /2

; (13)

where � represents reasonable bound constraints on K. The simulated temperature
profile yT .K/ is obtained by numerically solving the heat equation. Since the
temperature at the surface has been recorded from the meteorology station, a
Dirichlet boundary condition can be easily incorporated.

Because evaluation of the objective function in (13) requires output from a
simulation tool, we use sampling methods for the optimization since gradient
information is not available. To proceed, we use the same genetic algorithm that
was used to fit the sinusoidal boundary condition from the above study. The
optimization framework is displayed in Figure 4. At each iteration, the optimizer
will pick a set of six K values based on the bounds � and previous function
evaluations. This vector of K values is then used as input for the numerical solver
for the heat equation that outputs the temperature profile. The simulated profile is
compared to actual data to obtain the error at the current iteration. The optimization
terminates when the error becomes sufficiently small, resulting with the current set
of K values as a potential optimal solution.

With the simulation tool in place, we fit the temperature profile in each layer at
24 hours by optimizing conductivities at 1, 5, 10, 15, 20, 25, and 30 cm. As a first
attempt, we assumed that the conductivity varies linearly between these locations
and was constant from 30 cm to the location of the bottom boundary condition and
between the top of the domain and 1 cm. To this end, since the mean subsurface
temperature is not known, we also include the temperature at the bottom depth
as a decision variable. We used a depth of 70 cm to enforce the bottom boundary
condition and used �z D 0:1 cm and �t D 0:1 minutes. The temperature data used
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depth K (cm/min)

1 cm 3.2809 �10�2

5 cm 3.1440 �10�1

10 cm 2.6486 �10�2

15 cm 3.9509 �10�1

20 cm 1.9201 �10�1

25 cm 9.8476 �10�3

30 cm 2.6704 �10�1

Table 6. Preliminary optimization results, for a temperature of
35:3ıC, LSED 5:9633 �10�5 and ED 0:895ıC.

over space and time is given above in Figure 1. The temperatures range from about
13 to 67ıC in the first 24 hours. Table 6 shows the optimal values obtained for each
depth at the 24th hour. The last two rows show the least-squares error (LSE) and
the maximum temperature difference (E) over each depth.

The results are promising and the temperature fit can be seen in Figure 5. The
maximum error across all depths over time is only 6:2ıC, which is a significantly
lower than the corresponding first day results in Figure 3. These results confirm
that the data likely corresponds to heterogeneous soil. However, in general, this
is not known in advance. Thus, it is important to understand the strengths and
weaknesses of all methods applied here. To this end, the sensitivity study presented
in the next section quantifies how errors in these modeling components impact the
overall quality of the inverse problem solution.

Figure 5. Comparison of simulated temperatures and data at each
sensor location over time and maximum temperature difference.
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4. Sensitivity analysis

Analysis of variance (ANOVA) is a way to determine whether model parameters
have an effect on the model output by comparing the ratio of the variation between
sample means to the variation within each sample. For this study, we consider
how the parameters in both analytic and simulation-based approaches impact the
estimation of K and the model fit. The starting point for the procedure is to sort
each parameter into groups. Analysis is done by considering changes in a response
as the group changes. Specifically, ANOVA is a hypothesis test with null hypothesis
H0D�1D�2D � � � D�k , where k is the number of experimental groups. Each �
represents the mean of the single parameter, often called a factor, that is being
found by the values in each experimental group. When rejecting the null hypothesis,
the alternative hypothesis states that at least one mean is different from another;
however, it does not specify which one. The experimental groups are different
equally spaced intervals for a single variable. The ANOVA examines the source of
variation by finding the sum of squares of deviation from the mean for each of these
groups. Using a statistical F-test, the procedure is able to determine whether or not
at least one mean is deviating from the others. The F-test will produce a p-value;
if this value is below a significance of 0.05 then the null hypothesis is rejected. If
the significance is above 0.05, the null hypothesis is failed to be rejected. For this
work, we seek to understand the sensitivity of parameters for both the analytic and
the numerical approaches to matching the temperature data.

4.1. Sensitivity analysis of analytic methods. Even if a soil sample is homoge-
neous, there could be errors within the initial sinusoidal fitting of the data due to
experimental noise. A sensitivity study can be used to understand how errors in this
fitting will impact the resulting temperature profile, in particular, if we consider a
hypothetical problem with known model parameters. In other words we sampled
variations of the parameters in (7) and (8) and determined how they impacted
the ability to identify the conductivity. Specifically, we varied A1;A2;T 1;T 2; �1

and �2 and compared the calculated K to the known value. Using a Latin hypercube
sampling (LHS) approach to assure a uniform distribution of selections with intervals
surrounding the true values, we considered 1,600 values of each parameter. The
bounds used for the LHS sampling are displayed in Table 7 as well as the true
parameter value. Following the sampling, the parameters were grouped and an
analysis of variance (ANOVA) was performed to show how errors in the initial
least-squares fit impact the thermal conductivities from the four analytic methods.

We consider one response for each of the four analytic methods to determine K.
These are found by taking the difference between the true conductivity and the
conductivity found using the perturbed parameter values. Values for each of the
independent parameters were grouped into eight subsets determined by equal sized
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parameter lower bound upper bound

A1 D 5:5974ıC 3ıC 7ıC
A2 D 2:2885ıC 1ıC 5ıC
T 1 D 20ıC 18ıC 22ıC
T 2 D 20ıC 18ıC 22ıC
�1 D 0:776 �1 1
�2 D�0:1880 �1 1

Table 7. True parameter values and LHS bounds.

ranges within the lower and upper bound of the parameter. ANOVA compares
the variance of the objective function within each group to that same variance
between the groups. If this ratio is sufficiently small, then the objective function is
sensitive to changes in that parameter. This test provides a p-value that establishes
a confidence level for sensitivity.

ANOVA results are easily visualized through main effect plots, one developed
for each parameter analyzed. Large changes in dependent variable values within
each plot show the method is sensitive to changes of that independent parameter.
In other words, a flat line means little sensitivity to variation of the parameter value.
The vertical axis shows the mean value of the response for values of the parameter
of that specific group. A p-value is found to numerically measure the sensitivity,
with a p-value close to zero indicating that the parameter is sensitive. The main
effects results of the analysis of variance for the amplitude, phase, arctangent and
logarithmic methods are shown in Figures 6–9.

As seen, all methods are most sensitive to variations of the amplitude param-
eter. Thus, errors in estimating the amplitude result in large changes in thermal
conductivity results from the four analytic methods. It appears that variations of
the other parameters have an impact but are not nearly as significant as variations
within the amplitude.

4.2. Sensitivity analysis of a heterogeneous system. The simulation-based ap-
proach uses an optimization algorithm to determine a temperature profile. This
technique calls for variation with the bottom boundary condition and seven thermal
conductivities. A similar study using ANOVA is conducted to understand the impact
of each of these parameters on the model fit by considering the LSE as the output.
As with the analytic results, a Latin hypercube sampling is used to sample all
parameters. The bounds for the LHS were Œ20; 45� degrees Celsius for the bottom
temperature and Œ10�4; 10�1� for each thermal conductivity.

Parameters are considered to be sensitive if their corresponding p-value is less
than 0.05; p-values are given in Table 8. ANOVA results are displayed visually
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Figure 10. Day 7: conductivities at different depths.

using main effects plots shown in Figure 11. The horizontal axis shows the number
of the group, where the intervals above were split into eight equal subintervals. The
vertical axis is the average least-squares value corresponding to each group.

From these results, we can see that several of the conductivities are sensitive. Re-
lated work analyzes the impact of errors in the boundary and initial data on solution
to the inverse problem [Fu and Leventhal 2011]. Here we find that our solutions are
not sensitive to this boundary condition. Often in practice, ANOVA is done in ad-
vance to understand which model parameters should be included in the optimization
and thereby reduce the size of the design space. In this context, the analysis can
be used to weight those sensors more heavily in a subsequent optimization study.
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parameter p-value

depth 0
bot. temp (ıC) 6.22207 �10�1

K1 3.4870 �10�5

K5 1.4413 �10�1

K10 1.2058 �10�1

K15 2.6220 �10�2

K20 1.3701 �10�7

K25 5.2570 �10�1

K30 0

Table 8. ANOVA results.
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Figure 11. Main effects plots for simulation-based approach.

5. Conclusion

In this work, we have considered an inverse problem to determine the thermal
conductivities for a heat transport model using temperature data in the shallow
subsurface. Since it is not known in advance if the soil is homogeneous or hetero-
geneous, analytic and numerical approaches were used. Furthermore, sensitivity
analyses can be paired with optimization and modeling problems to help understand
how choices made during the solution procedure impact the quality of the results.
These ideas provide a protocol for approaching these types of problems.

In this study, not one of the analytics methods for estimating thermal conductivity
fit the temperature profile within the given degree of desired accuracy. Each
parameter is significant in each method with amplitude being the most significant
parameter. Thus small deviations in the amplitude cause large deviations within the
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resulting thermal conductivity. The amplitude and logarithmic methods display the
general trend of temperature values however still not within the desired error. The
numerical approach gave satisfactory results and a significantly smaller error than
the analytic methods, indicating that this data corresponds to heterogeneous soil.
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