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In treating HIV infection, strict adherence to drug therapy is crucial in maintaining
a low viral load, but the high dosages required for this often have toxic side effects
which make perfect adherence to antiretroviral therapy (ART) unsustainable.
Moreover, even in the presence of drug therapy, ongoing viral replication can lead
to the emergence of drug-resistant virus variances. We introduce a mathematical
model that incorporates two viral strains, wild-type and drug-resistant, to theo-
retically and numerically investigate HIV pathogenesis during ART. A periodic
model of bang-bang type is employed to estimate the drug efficacies. Furthermore,
we numerically investigate the antiviral response and we characterize successful
drugs or drug combination scenarios for both strains of the virus.

1. Introduction

Over the last few decades, the rapid spread of the human immunodeficiency virus
(HIV) and the death toll of acquired immunodeficiency syndrome (AIDS) have
motivated a great deal of scientific and medical research. Treatment of the HIV
infection has traditionally consisted of antiretroviral therapy (ART), a regimen
of pharmaceutical treatments that often produces unwanted physical side effects
and can become costly over long periods of time. Moreover, strict adherence
to drug therapy is crucial in maintaining a low viral load, but the high dosages
required for this often have toxic side effects which make perfect adherence to ART
unsustainable. This in turn leads to the development of resistant strains [Kepler and
Perelson 1998; Kirschner and Webb 1997; Murray and Perelson 2005; Ribeiro et al.
1998]. Since its discovery in 1984, much research has been done and researchers
have increased their understanding of the virus, and consequently drugs have been
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successful in the treatment but not the cure of the disease. In the last decade,
it has become more and more evident that mathematical models are extremely
useful in understanding of various biological processes. They create a powerful
and inexpensive virtual laboratory where one can test and experiment different
competing hypotheses.

When HIV enters the bloodstream, it primarily targets crucial components of the
immune system [Fauci 1993], specifically, CD4+ T-cells or helper T-cells, whose
function is to assist the response to bodily infections by releasing chemicals that
signal other immune system cells, such as CD8+ (killer) T-cells, to kill infected
cells or infectious particles [Bofill et al. 1992; Cohen and Boyle 2004; Fauci 1993;
McMichael Winter 1996; Wilson et al. 2000; NHS 2008]. HIV is capable of
infecting other immune cells, such as macrophages [Perelson and Nelson 1999],
but the primary targets of infection are the CD4+ T-cells [Koup et al. 1994]. Hence,
they play a central role in existing mathematical models [Adams et al. 2005; Burg
et al. 2009; Huang 2008; Perelson et al. 1993; Perelson and Nelson 1999; Rapin
et al. 2006; Rong et al. 2007a; 2007b; Tarfulea et al. 2011; Tarfulea 2011b; 2011a].
However, the most significant and threatening problem that HIV presents is its
ability to continuously mutate in the body and form resistances to otherwise useful
drugs [Shiri et al. 2005; Smith and Wahl 2005; Wahl and Nowak 2000].

Building upon the model introduced in [Tarfulea 2011b], we include two distinct
viral strains (drug-sensitive and drug-resistant) and time-varying antiretroviral
treatment of bang-bang type. This mathematical model is described by a system
of six differential equations and is used to analyze the efficacy of different drug
combinations in tandem with the evolution of the resistant strain in each case. We
use the Floquet multipliers to investigate the stability properties of the infection-
free steady state. We obtain the expected monotonicity property, namely if the
treatment is periodic of bang-bang type and it can clear the infection, then the
infection is cleared more rapidly if the treatment is more efficient or lasts longer.
The multiple viral strains that this new model incorporates brought forth a much
more useful understanding to the conditions faced by the antiretroviral drugs and
the components of the infected immune system. Furthermore, we investigate the
consequences of different scenarios of antiviral therapy, as well as the influence
of different combinations of the major classes of drugs available for the treatment.
We also study their impact on the evolution of the disease and determine a possible
optimal treatment strategy that will lower the total viral load in the body. Thus, our
model could be used to suggest which drugs or combination of drugs are optimal
for a given patient, as well as to investigate the consequences of changing the
treatment frequency or imperfect adherence. The effect of periodic treatment that
includes pharmacokinetics on a multistrain model and the effect of STIs is an
ongoing investigation.
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variable description

T healthy T-cell concentration
Ts drug-sensitive infected T-cell concentration
Tr drug-resistant infected T-cell concentration
Vs drug-sensitive virus concentration
Vr drug-resistant virus concentration
E concentration of CD8+ T-cells

Table 1. Variables used in the differential equation systems.

2. Formulation of the problem

2.1. The mathematical model for the pretreatment case. We now present the
mathematical model for the dynamics of HIV before treatment (see [Tarfulea
2011b]). Building upon it, we will introduce in Section 2.2 the mathematical model
with time-varying drug efficacies of bang-bang type.

A widely adopted mathematical model of HIV infection consists of a system
of differential equations describing the evolution of the concentrations of healthy
CD4+ T-cells, infected CD4+ T-cells, and free viruses in the body (see [Adams
et al. 2005; Perelson et al. 1993; Perelson and Nelson 1999; Rapin et al. 2006;
Rong et al. 2007a; 2007b; Stafford et al. 2000]).

The course of HIV infection varies widely across the infected population, and
this is at least partially explained by individually specific immunological responses.
The primary effector of the cell-mediated immune response is the CD8+ killer
T-cells (CTLs). The CD8+ T-cell kills infected cells bearing a specific antigen. The
activation of the killer T-cells is largely dependent upon the CD4+ helper T-cells,
which direct the immune response. Thus, incorporation of cellular compartments
representing both the helper and effector T-cells more completely represents the
body’s cellular immune system. In [Tarfulea et al. 2011], the authors consider a
model for HIV dynamics which includes the CTLs’ response.

To model the emergence of drug resistance and a possible treatment method,
a new model is required which accounts for the presence of drug-sensitive and
drug-resistant strains of the virus separately, rather than aggregating them. In this
manner, one could determine whether a certain treatment regimen was producing
an increase in the drug-resistant concentration of the virus over time, even if the
population of the drug-sensitive HIV virus was declining. Treatments which cause
the population of the drug-sensitive virus to decline, but allow the population of
the drug-resistant virus to increase over time are postponing the inevitable, as they
do not provide a long-term benefit to an individual infected with HIV. A model
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incorporating two strains of HIV has been utilized in [Rong et al. 2007a] to model
the effects of antiretroviral therapy (ART) on the appearance of drug-resistant strains
of HIV. In [Tarfulea 2011b], the author considers the following model for HIV
dynamics which includes the CTLs’ response:

dT

dt
D �T �T d � ksVsT � kr Vr T;

dTs

dt
D .1�u/ksT Vs � ıTs �m1ETs;

dVs

dt
DNsıTs � cVs;

dTr

dt
D uksT VsC kr Vr T � ıTr �m2ETr ;

dVr

dt
DNrıTr � cVr ;

dE

dt
D �E C cE.TsCTr /� ıEE;

(1)

together with initial data

T .0/DT0; Ts.0/D0; Vs.0/DV0; Tr .0/D0; Vr .0/D0; E.0/DE0; (2)

where T0; V0; E0>0. The variables used in system (1) are described in Table 1 and
the parameters used and their values are described in Table 2. Here u represents the
rate at which drug-sensitive T-cells mutate to become drug-resistant, and it applies
only when the two strains of virus differ by a single point mutation. HIV replicates
at a very high rate in untreated patients. Thus, there is a realistic chance that drug-
resistant variants exist even before the initiation of therapy [Ribeiro et al. 1998;
Rong et al. 2007a]. Moreover, since the wild-type virus dominates the population
before the initiation of therapy (see [Bonhoeffer et al. 2000; Nowak et al. 1997]),
the mutation from drug-resistant to drug-sensitive is neglected. Also, it is assumed
in this model that c, the clearance rate, and ı, the infected T-cell death rate, are the
same for both strains of virus.

System (1) has three possible positive steady states:

(1) The infection-free steady state:

S0 WD

�
T0 D

�T

d
;Ts0 D 0;Vs0 D 0;Tr0 D 0;Vr0 D 0;E0 D

�E

ıE

�
: (3)

(2) The boundary steady state Sb , when only the drug-resistant strain is present:

Sb WD .Tb;Tsb;Vsb;Trb;Vrb;Eb/; (4)
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where

Tsb D 0; Vsb D 0;

Trb D
c

Nrı

�T � dTb

kr Tb

; Vrb D
�T � dTb

kr Tb

; Eb D
�E

ıE
C

cE

ıE

�T � dTb

kr Tb

;

and Tb is the positive solution of the quadratic equation T 2�AbT �Bb D 0,
where

AbD
c

Nrıkr

�
ıCm2

�E

ıE
�m2d

c

Nrıkr

cE

ıE

�
and BbDm2

�
c

Nrıkr

�2
cE

ıE
�T :

parameter description value reference

�T Recruitment rate of uninfected d �T .0/ 1

cells
d Death rate of uninfected cells 0:01 day �1 1, 2

ks Infection rate of T-cells by the 2:4 � 10�5�l day�1 1, 3, 4

wild-type virus
kr Infection rate of T-cells by the 2:4 � 10�5�l day�1 1, 3, 4

drug-resistant virus
ı Death rate of infected cells 0:3 day�1 5

m1 Immune-induced clearance rate 10�2�l day�1 3

for infected Ts cells
m2 Immune-induced clearance rate 10�2�l day�1 3

for infected Tr cells
Ns Virions produced per infected 5000 1

drug-sensitive cell
Nr Virions produced per infected 5000 1

drug-resistant cell
c Clearance rate of free virus 23 day�1 1

�E Immune effector production 10�3�l day�1 3

(source) rate
cE Stimulation of CTL proliferation 0:3 day�1 5

ıE Death rate of immune effectors 0:1 day�1 3, 5

u Mutation rate from sensitive strain 3 � 10�5 1

to resistant strain

Table 2. Parameter definitions and values used in numerical simu-
lations. Key for references: 1 = [Rong et al. 2007a]; 2 = [Mohri
et al. 1998]; 3 = [Adams et al. 2005]; 4 = [Perelson et al. 1993];
5 = [Bonhoeffer et al. 2000].
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(3) The interior steady state Si , when both the wild-type and the resistant strains
coexist:

Si WD .Ti ;Tsi ;Vsi ;Tri ;Vri ;Ei/; (5)

where

Ti D
�T c

dcC ı.ksNsTsi C kr Nr Tri/
; Vsi D

ıNsTsi

c
;

Vri D
ıNr Tri

c
; E D

�E C cE.Tsi CTri/

ıE
;

and Tsi and Tri are the solutions of the system8̂̂̂<̂
ˆ̂:

.1�u/ksNsı�T

dcC ı.ksNsTsC kr Nr Tr /
� ı�

m1.�E C cE.TsCTr //

ıE
D 0;

ı�T .uksNsTsC kr Nr Tr /

dcC ı.ksNsTsC kr Nr Tr /
� ıTr �

m2.�E C cE.TsCTr //Tr

ıE
D 0:

(6)

In the special case that there is no mutation, i.e., uD 0, the interior steady state Si

reduces to another boundary steady state Sw, when only the wild-type strain is
present:

Sw WD .Tw;Tsw;Vsw;Trw;Vrw;Ew/; (7)

where

Trw D 0; Vrw D 0;

Tsw D
c

Nsı

�T � dTw

ksTw
; Vsw D

�T � dTw

ksTw
; Ew D

�E

ıE
C

cE

ıE

�T � dTw

ksTw
;

and Tw is the positive solution of the quadratic equation T 2�AwbT �Bw D 0,
where

AwD
c

Nsıks

�
ıCm1

�E

ıE
�m1d

c

Nsıks

cE

ıE

�
and BwDm1

�
c

Nsıks

�2
cE

ıE
�T :

The other steady states S0 and Sb are the same.
Let

Rs WD
Nsıks�T

cd
�
ıCm1

�E

ıE

� and Rr WD
Nrıkr�T

cd
�
ıCm2

�E

ıE

� (8)

denote the basic reproductive ratios of the wild-type strain and the drug-resistant
strain, respectively, and let � D .ksNs/=.kr Nr /. In [Tarfulea 2011b], it was shown
that the infection-free steady state S0 is locally asymptotically stable if Rr < 1 and
Rs < 1=.1�u/, and it is unstable if Rr >1 or Rs>1=.1�u/. In the case that uD0

in model (1) (i.e., there is no mutation), the infection-free steady state S0 is locally
asymptotically stable if Rr < 1 and Rs < 1, and it is unstable if Rr > 1 or Rs > 1.
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2.2. Model with antiretroviral therapy. There are two major classes of antiretro-
viral drugs which are utilized in HIV treatment: the reverse transcriptase inhibitors
(RTI) and the protease inhibitors (PI). Combinations of these are used in a regimen
known as highly active antiretroviral therapy (HAART) [Cohen and Boyle 2004;
Cohen 2005a; 2005b; El-Sadr et al. 2006; Nowak et al. 1997; Sharomi and Gumel
2008] designed to limit the virus’ ability to mutate and develop drug-resistant
strains. Nucleoside reverse transcriptase inhibitors (NRTIs) and nonnucleoside
reverse transcriptase inhibitors (NNRTIs) inhibit reverse transcription enzymes.
Entry inhibitors prevent the virus from attaching to the surface of the lymphocytes.
This class of drugs in our model would have an impact on reducing ks and kr , the
infection rates for the wild-type and the drug-resistant viruses. Protease inhibitors
inhibit the protein enzymes that cut viral proteins to the correct size. PIs go to work
after the process of reverse transcription by inhibiting the activity of protease, an
enzyme needed by the virus for the production of new virions in infected lympho-
cytes [Casiday and Frey 2001], and this would impact Ns and Nr , the number of
virions produced per infected drug-sensitive and drug-resistant cell, respectively.

We study the antiretroviral drug therapy in this system by introducing drug-
efficacy parameters, which are extensively used in numerous models, such as
[Adams et al. 2005; Perelson and Nelson 1999; Rong et al. 2007a; 2007b]. We
consider "s

RT
and "r

RT
to represent the efficacies of RTIs and "s

PI
and "r

PI
to be

the efficacies of PIs, for drug-sensitive and drug-resistant strains. These drugs are
incorporated into model (1) to obtain the following system (the initial condition
used is the values for the infected steady state in the no-treatment case given by (5)
and the parameter values used are from Table 2):

dT

dt
D �T �T d � ks.1� "

s
RT /VsT � kr .1� "

r
RT /Vr T;

dTs

dt
D .1�u/ks.1� "

s
RT /T Vs � ıTs �m1ETs;

dVs

dt
DNs.1� "

s
PI /ıTs � cVs;

dTr

dt
D uks.1� "

s
RT /T VsC kr .1� "

r
RT /Vr T � ıTr �m2ETr ;

dVr

dt
DNr .1� "

r
PI /ıTr � cVr ;

dE

dt
D �E C cE.TsCTr /� ıEE:

(9)

The case of constant drug efficacies has been addressed in several models (see
[Adams et al. 2005; Perelson and Nelson 1999; Rong et al. 2007a; 2007b; Tarfulea
et al. 2011; Tarfulea 2011b]). In this case, "s

RT
, "s

PI
, "r

RT
, and "r

PI
lie in Œ0; 1�. In
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the case that all are zero, i.e., no treatment, we obtain system (1); if all are 1, then we
obtain a complete cure of the disease since dVs=dt < 0 and dVr=dt < 0. Moreover,
we have that "s

RT
>"r

RT
and "s

PI
>"r

PI
since the wild-type virus is more susceptible

to drugs. Therefore we can consider that "r
RT
D ˛"s

RT
or that "r

PI
D ˛"s

PI
, where

0<˛<1 and ˛ represents the HIV mutants’ level of resistance; as ˛ decreases, there
is more resistance to the used drug for the drug-resistant strains. However, in reality,
the drug efficacies are not constant in time; thus the main purpose of this paper is to
investigate the effect of including periodic antiretroviral therapy of bang-bang type.

3. Time-varying drug efficiency

In this section, we include time-varying drug efficacy functions to model various
treatment regimens. Thereafter, we consider the model (9) where "s

RT
.t/, "r

RT
.t/,

"s
PI
.t/, and "r

PI
.t/ are functions of time with range the interval Œ0; 1� and they

represent the time-varying drug efficacies of the RTIs and PIs for drug-sensitive
and drug-resistant strains. When "s

RT
.t/, "r

RT
.t/ or "s

PI
.t/, "r

PI
.t/ are close to

zero, the drug has almost no effect, while if they are near 1, the viral replication
is almost completely inhibited. The shapes of these functions are determined by
the pharmacokinetics that describe what happens to a drug after the moment of
intake and before starting to be active at the infection site [De Leenheer 2009].
It is characterized by a fast rise to the peak value immediately after the drug
intake, followed by a slower decay. Thus, we consider that each of the drug
efficacies considered, "s

RT
.t/, "r

RT
.t/, "s

PI
.t/, and "r

PI
.t/, is periodic, that is

"s
RT
.t/D "s

RT
.tC � s

RT
/ and "s

PI
.t/D "s

PI
.tC � s

PI
/ for all t , where � s

RT
; � s

PI
> 0

are the principal periods for the RTIs and PIs for the sensitive strain. We have
similar relations for the efficiency of the drug-resistant strain. For example, the
period is 1 if medication is taken daily or 0:5 for a twice a day treatment schedule.
Moreover, we assume the efficiency functions to be of the bang-bang type, i.e., at
any time during treatment, the drug is either active or inactive. It is clear that is just
an approximation of the real shape of ".t/ determined by the pharmacokinetics, but
some key properties are to be revealed from this case. These functions are given by

"s
RT .t/D

�
es

RT
; for t 2 Œ0;ps

RT
�;

0; for t 2 .ps
RT
; � s

RT
/;

"s
PI .t/D

�
es

PI
; for t 2 Œ0;ps

PI
�;

0; for t 2 .ps
PI
; � s

PI
/;

(10)

with a similar behavior for "r
RT

and "r
PI

. An example of such functions is illustrated
in Figure 1. Here ps

RT
2 .0; � s

RT
/ is the time duration when the RT drug is active

with efficacy es
RT
2 Œ0; 1�, and ps

PI
and es

PI
are defined similarly. The drug is

assumed to be totally inefficient during the remaining part of the corresponding
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Figure 1. An example of periodic drug efficacies functions of the
bang-bang type, "RT .t/ (solid line) and "PI .t/ (dotted line). Here
RTI drug has the period "RT D 1 (i.e., 24 h), is active for 10 h
(i.e., pRT D 0:42) with efficacy eRT D 0:4; PI drug has the period
"PI D 0:5 (i.e., 12 h), is active for 4 h (i.e., pPI D 0:17) with
efficacy ePI D 0:6.

period. The same relations hold for drug-resistant drug efficacies. Furthermore, we
have that "s

RT
>"r

RT
and "s

PI
>"r

PI
since the wild-type virus is more susceptible to

drugs. Therefore, we can consider that "r
RT
D ˛1"

s
RT

or that "r
PI
D ˛2"

s
PI

, where
0< ˛1; ˛2 < 1 and ˛1, ˛2 represent the HIV mutants’ level of resistance; as ˛1 or
˛2 decreases, there is more resistance to the used drug for the drug-resistant strains.

In order to compare our results with results from related models using constant
efficacies, we define the average drug efficacy for each type of drug used, given by

N"s
RT WD

1

� s
RT

Z �s
RT

0

"s
RT .t/ dt and N"s

PI WD
1

� s
PI

Z �s
PI

0

"s
PI .t/ dt; (11)

and thus,

N"s
RT D

es
RT

ps
RT

� s
RT

and N"s
PI D

es
PI

ps
PI

� s
PI

;

for the sensitive strain, and

N"r
RT WD

1

�r
RT

Z �r
RT

0

"r
RT .t/ dt and N"r

PI WD
1

�r
PI

Z �r
PI

0

; "r
PI .t/ dt; (12)

and thus,

N"r
RT D

er
RT

pr
RT

�r
RT

and N"r
PI D

er
PI

pr
PI

�r
PI

;

for the resistant strain. Moreover, we introduce the overall treatment effects
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"s
D 1� .1� N"s

RT /.1� N"
s
PI / and "r

D 1� .1� N"r
RT /.1� N"

r
PI / (13)

for the wild-type and mutant strains, respectively.
There are two parameters which can vary in the efficacies ".t/ (for both RTIs

and PIs), namely the efficacy of the drug e and the time duration p. In the remain-
ing part of this section, we investigate their effect on the Floquet multipliers of
systems (15) and (16).

We begin by investigating the effect of only one drug in the system at a time. Let
us assume first that the efficiencies "s

RT
.t/ and "r

RT
.t/ are periodic (as described

above) and "s
PI
.t/ D 0 and "r

PI
.t/ D 0, i.e., only RTIs are administered in the

system. Notice that the infection-free steady state

S0 D

�
T0 D

�T

d
;Ts0 D 0;Vs0 D 0;Tr0 D 0;Vr0 D 0;E0 D

�E

ıE

�
is still an equilibrium solution of the model (9), regardless the inclusion of the drug
efficiency. Moreover, in our investigation we use only this steady state since its
stability implies that the treatment can clear the infection. Thus, we linearize the
system (9) about S0 and obtain the linear system

dx

dt
DA.t/x; (14)

where

A.t/D

0BBBBBBB@

�d 0 �as
RT
.t/ 0 �ar

RT
.t/ 0

0 �ı�m1E0 .1�u/as
RT
.t/ 0 0 0

0 Nsı �c 0 0 0

0 0 uas
RT
.t/ �ı�m2E0 ar

RT
.t/ 0

0 0 0 Nrı �c 0

0 cE 0 cE 0 �ıE

1CCCCCCCA
;

with as
RT
.t/Dks.1�"

s
RT
.t//T0 and ar

RT
.t/Dkr .1�"

r
RT
.t//T0. Here x is the six-

dimensional vector function whose components are the perturbations corresponding
to the main variables T , Ts , Vs , Tr , Vr , and E, respectively. The local stability
properties of S0 for system (9) are determined by the Floquet multipliers of (14)
(see [De Leenheer and Smith 2003]) which, given the block-triangular structure
of A.t/, are e�d� , �2, �3, �4, �5, and e�ı

E
� ; where �2 and �3 are the Floquet

multipliers of the planar � -periodic system�
Px2

Px3

�
D

�
�ı�m1E0 .1�u/ks.1� "

s
RT
.t//T0

Nsı �c

��
x2

x3

�
; (15)



A MATHEMATICAL MODEL FOR THE EMERGENCE OF HIV DRUG RESISTANCE 411

and �4 and �5 are the Floquet multipliers of the planar � -periodic system�
Px4

Px5

�
D

�
�ı�m2E0 .1�u/kr .1� "

r
RT
.t//T0

Nrı �c

��
x4

x5

�
: (16)

The infection-free steady state S0 is locally asymptotically stable for system (9) if
the Floquet multipliers of system (14) are contained in the unit disk of the complex
plane, which is satisfied if j�2j; j�3j; j�4j; j�5j< 1. Unfortunately it is well known
that for general functions ".t/ this condition is difficult to verify. If we consider the
drug efficacies "s

RT
.t/ and "r

RT
.t/ of the bang-bang form given by (10), we get that

the Floquet multipliers �2 and �3 of system (15) are the eigenvalues of the matrix

ˆ.es
RT ;p

s
RT / WD exp

�
.� s

RT �ps
RT /B.0/

�
exp

�
ps

RT B.es
RT /

�
; (17)

where the matrix function B. � / is defined by

B.es
RT / WD

�
�ı�m1E0 .1�u/ks.1� es

RT
/T0

Nsı �c

�
; (18)

for any value of es
RT

. Using the approach in [De Leenheer and Smith 2003], we
obtain that the Floquet multipliers are contained in the interior of the unit disk
of the complex plane if and only if the spectral radius �.ˆ.es

RT
;ps

RT
// of the

matrix ˆ.es
RT
;ps

RT
/ is less than 1. Furthermore, by applying Proposition 2 in

[De Leenheer and Smith 2003] to our system, we get the expected monotonicity
properties: the spectral radius is decreasing in each of its arguments. That is, if the
treatment is periodic of the bang-bang type and it can eradicate the virus, then the
infection is cleared more rapidly when the treatment is more effective or it lasts
longer. These effects are confirmed by the results obtained from the numerical
investigations described in the second part of this section.

We obtain a similar result if we consider the effect of only PIs, in which case

B.es
PI / WD

�
�ı�m1E0 .1�u/ksT0

Ns.1� es
PI
/ı �c

�
;

or if we consider a cocktail of drugs where both inhibitors are present, in which case

B.es
RT ; e

s
PI /D

�
�ı�m1E0 .1�u/ks.1� es

RT
/T0

Ns.1� es
PI
/ı �c

�
:

3.1. Numerical results. In this section, we analyze our results from the numerical
investigations performed. We created MATLAB codes in order to solve the system
numerically which allowed us to test and validate the mathematical mode and to
explore various scenarios. We used ode45 and ode15s, two MATLAB functions
for the numerical solutions for our systems of differential equations (ode45 is based
on an explicit Runge–Kutta (4,5) formula, the Dormand–Prince pair, a one-step
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solver that needs only the solution at the immediately preceding time point, whereas
ode15s is a variable order solver based on the backward differentiation formulas,
Gear’s method, a multistep solver for stiff problems).

Our focus is placed on the following areas of interest: quantity of viral load
and uninfected cell count for individual drug intake where average drug efficacies
(N"s

RT
; N"s

PI
) are fixed and the time duration when the drug is active is varied, quantity

of viral load and uninfected cell count for both classes of drugs taken in conjunction
where drug efficacies are fixed and the time duration when the drug is active is
varied, the effect on viral load and uninfected cell count for both drugs taken in
conjunction where the ratio of their corresponding efficacies are varied over the
same period, the effect on viral load and uninfected cell concentration while strictly
varying the total efficacy of either drug, and the effect on viral load when the level
of resistances (˛1; ˛2) for the resistant-type viruses are varied.

We first consider a treatment scenario with only the reverse transcriptase in-
hibitor (RTI) drug where we fix the average efficacy, N"s

RT
and vary the step-

function parameters, es
RT

and ps
RT

. Note that "s D 1 � .1 � N"s
RT
/.1 � N"s

PI
/,

as defined by (13) (the same relation holds for "r ). We choose "s D 0:51 and
since we are only considering the RTI drug, we choose N"s

PI
D 0:00 and there-

fore N"s
RT
D 0:51. We also note that in the periodic step-function, we have

N"s
RT
D .es

RT
ps

RT
/=� s

RT
. We therefore pick the convenient ordered pair values for

.es
RT
;ps

RT
/ 2 f.0:51; 1:00/; .0:60; 0:85/; .0:85; 0:60/; .1:00; 0:51/g. As intuition

would lead us to expect, we see that the total viral load is lowest at the time when
the drug is active is the largest (i.e., the case for which .es

RT
;ps

RT
/D .0:51; 1:00/).

However, we also see the result in which the uninfected cell concentration has an
inverse relationship to the viral load, due to the resistant strain virus. The wild-type
viral load behaves similarly to the uninfected CD4+ T-cells. More specifically, the
uninfected cell concentration peaks the highest and also converges to the highest
steady state when the period over which the drug is released is the shortest (i.e., the
case for which .es

RT
;ps

RT
/D .1:00; 0:51/) (see Figure 2). This is a result similar

to the case when constant efficiencies "RT ; "PI .t/ are used (see [Rong et al. 2007a;
Tarfulea 2011b]). An analogous conclusion is obtained when investigating the
effects on viral load and uninfected cell concentration when considering a treatment
such that N"s

RT
D 0:00 and N"s

PI
D 0:51, in other words, a treatment using only

protease inhibitors (PIs) and varying the step-function parameters as done for RTIs.
In all the above mentioned cases, we consider ˛1 D ˛2 D 0:2.

We now consider a treatment scenario in which RTIs and PIs are used in conjunc-
tion. Our first investigation begins with setting the efficacies of both drugs to be
equal (i.e., "s

RT
D "s

PI
). Therefore, we again choose "sD0:51 (with ˛1D˛2D0:2),

and therefore it follows from "s D 1� .1� N"s
RT
/.1� N"s

PI
/ that N"s

RT
D N"s

PI
D 0:30.

Thus, the equivalence of the ordered pairs .es
RT
;ps

RT
/ and .es

PI
;ps

PI
/ follows. We
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Figure 2. Simulation over the first 350 days of infection with
N"s
RT
D 0:51 and N"s

PI
D 0:00; thus "s D 0:51 (see text for details).

therefore choose the convenient ordered pair values for .es
RT
;ps

RT
/D .es

PI
;ps

PI
/2

f.0:3; 1:0/; .0:5; 0:6/; .0:8; 0:375/, .1:0; 0:3/g. This simulation yields results which
are opposed that of the results when the two drugs were used individually and are
presented in Figure 3 for the uninfected T-cell and resistant strain virus concentra-
tions. The lowest viral peak with a convergence to the lowest steady state came from
the highest drug efficacy and shortest time release period (i.e., es

RT
D es

PI
D 1:0

and ps
RT
D ps

PI
D 0:3); that is, it is better if the drug is effective longer than if it
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Figure 3. Simulation over the first 350 days of drug treatment
with "s D 0:51 and N"s

RT
D N"s

PI
D 0:3.
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Figure 4. Simulation over the first 750 days of drug treatment,
varying the HIV mutants’ level of resistance. For all but black
dotted line, N"s

RT
D N"s

PI
D 0:71, and for the black dotted line,

N"s
RT
D N"s

PI
D 0:81

has a higher peak. However, as in the case of the individual drug treatment cases,
the uninfected cell concentration had inverse results to the resistant strain viral
concentration and behaves similarly to the wild-type viral concentration.

Our next analysis considers the effects on the viral load and uninfected cell
concentrations while varying the efficacies for both drugs. We continue to consider a
fixed overall treatment effect where "sD0:51. We then examine the average efficacy
values .N"s

RT
; N"s

PI
/ 2 f.0:51; 0:0/; .0:41; 0:17/; .0:3; 0:3/, .0:17; 0:41/g. Here again

˛1D ˛2D 0:2. We considered the results of .N"s
RT

, N"s
PI
/D .0:51; 0:0/ in a previous

section and used these values again for comparison. It is not surprising to see that
this is, in fact, the least efficient scenario since the others involve a drug cocktail
as opposed to this one-drug treatment. It is noted that the best result, having
the lowest viral peak and convergent steady state with the highest uninfected cell
concentration, comes from a drug cocktail in which the drug efficacy ratio (RTI:PI)
is 1:4. Moreover, as we would expect, administering any cocktail of drugs with any
chosen efficacies (without keeping a constant overall efficacy) gives better results
than the individual classes of drugs alone.

Recall that we use resistance rates, ˛1 and ˛2, such that "r
RT
D ˛1"

s
RT

and
"r

PI
D ˛2"

s
PI

, with ˛1; ˛2 2 .0; 1/. We consider the effects on viral load for
varying levels of resistance. We let ˛1; ˛2 2 f0:25; 0:5; 0:75; 1:0g. Note that when
˛1D ˛2D 1:0, the efficacy for the drugs against the mutant virus is equal to that of
the drug-sensitive-type virus. We see the intuitive results that demonstrate that when
˛1; ˛2 get closer to 1, the total viral load for the resistant-type, the mutant virus
decreases. We next consider fixing one of the resistant rates (i.e., the resistant rate
for one of the drugs) and vary the other. We observe the total viral load in the case
where we fix ˛2 D 0:25 and vary ˛1 2 f0:25; 0:5; 0:75; 1:0g. It is noted that, again,
we see the lowest viral load is obtained when ˛1 D 1:0, and as ˛1 becomes closer
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Figure 5. Uninfected T-cell concentration T .t/ under suboptimal treatment.

to 1, the viral load of the resistant-type virus decreases. An analogous observation
is made for fixing ˛1 and varying ˛2. In Figure 4, we consider the efficacies for the
two classes of drugs to be N"s

RT
D N"s

PI
D 0:71, which guarantees that the wild-type

virus is suppressed. We let ps
RT
D ps

PI
D 0:71 and we see that for values for ˛1

and ˛2 lower than 0:3, the drug-resistant strain persists. Moreover, if we increase
the drug efficacies to 0:81, for ˛1 D ˛2 D 0:2, the drug-resistant strain still persists.

One of the critical obstacles to successful HIV drug therapy is the imperfect
adherence to a prescribed drug regimen due to its complexity or severe side effects.
Receiving treatment for HIV is expensive and people can be careless; therefore we
want to look into the effects of missing doses. We investigate numerous efficacy
combinations and RTI/PI individual and/or combined treatments. The results unan-
imously indicate that skipping a dose of either drug at any combination has certain
undesirable effects which included a weaker drop in viral load and lower overall un-
infected cell concentration. In Figure 5, we present the dynamics of uninfected T-cell
concentration when every other dose of RTIs, PIs, or both are missed and compare
with the dynamics of a regular treatment. In Figure 5(a) we consider N"s

RT
D N"s

PI
D

0:51, ps
RT
D ps

PI
D 0:51, and ˛1 D ˛2 D 0:2, whereas in Figure 5(b) we consider

N"s
RT
D N"s

PI
D 0:71, ps

RT
D ps

PI
D 0:71, and ˛1D ˛2D 0:3. In the latter case, the

viral load is eradicated under perfect adherence, but the uninfected T-cell concentra-
tion decreases and both strains of virus persist even when only one drug is missed.

4. Conclusions

We have developed and analyzed a mathematical model that accounts for multiple
viral strains during the course of antiretroviral therapy with periodic antiretroviral
therapy of bang-bang type. There were many different circumstances that we
investigated thoroughly. The first area of interest was determining how the system
behaves when only the presence of one antiretroviral class of drugs is used. This
was done for each of the two classes of interest, namely protease inhibitors and
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reverse transcriptase inhibitors. It was noted, based on the periodic step-function
used for our analysis, that, upon taking only one of the two available drugs, when
the efficacy of either drug was increased and the period over which the drug would
be active, the total viral load decreased. There was an identical scenario for either
drug taken alone.

Certainly, the optimal scenario for drug treatment is by means of a patient taking a
cocktail of both classes of drugs. Therefore, it was of great importance to investigate
the functionality of using both drugs of interest simultaneously. When the two drugs
were taken in conjunction, they had an inverse effect on the infected body. In other
words, when we increased initial efficacy of the drug cocktail and decreased the
period, the total viral load decreased. For any of the scenarios investigated, however,
the total uninfected cell count responded inversely to the response of the resistant
strain viral load. This led us to the conclusion that the drug cocktail was not only
the proper choice, but we also observed that it was most effective given at a 4:1 ratio
(protease inhibitors: reverse transcriptase inhibitors). Furthermore, the examination
of the effects of using different ratios of both drugs to further optimize the efficacy
of the treatment was also of substantial interest. Scenarios for both varying efficacy
and varying the level of resistance to the drug therapy by the drug-resistant-type
virus were examined. As the level of drug efficacy increased, there were noticeable
increases in the uninfected cell count as well as a stronger decrease in the total viral
load. When the level of resistance was increased, we noted an increase in viral load
as we expected. Although seemingly intuitive, we were also sure to investigate the
functionality of the system when varying both drug efficacies, individually and in
tandem, and the results of the evolution of drug resistance.

Given the staggering percentage of infected people that are either unable to
obtain the appropriate drug therapies or simply cannot take all the recommended
doses, we also numerically investigated the effect of imperfect adherence to the
prescribed treatment regimen. That is, we investigated what would happen when
someone is under a drug regimen and particular doses were skipped. The last area
of results we obtained consisted of scenarios where the infected person missed a
certain number of doses for either drug and for both drugs together. Skipping doses
for either drug alone had nearly identical effects; there was significantly less of a
drop in viral load and the uninfected cell count was much lower. The results of
missing doses when the drug cocktail was being administered followed directly
from the individual missed doses as well.

Appendix

The following table contains all of the symbols used throughout the paper (in the
order of appearance).
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symbol description

T healthy T-cell concentration

Ts drug-sensitive infected T-cell concentration

Tr drug-resistant infected T-cell concentration

Vs drug-sensitive virus concentration

Vr drug-resistant virus concentration

E concentration of CD8+ T-cells

�T recruitment rate of uninfected cells

d death rate of uninfected cells

ks infection rate of T-cells by the wild-type virus

kr infection rate of T-cells by the drug-resistant virus

ı death rate of infected cells

m1 immune-induced clearance rate for infected Ts cells

m2 immune-induced clearance rate for infected Tr cells

Ns virions produced per infected drug-sensitive cell

Nr virions produced per infected drug-resistant cell

c clearance rate of free virus

cE stimulation of CTL proliferation

ıE death rate of immune effectors

u mutation rate from sensitive strain to resistant strain

S0 vector .T0;Ts0;Vs0;Vr0;E0/ with the infection-free steady state

Sb vector .Tb;Tsb;Vsb;Vrb;Eb/ with the boundary steady state

Si vector .Ti ;Tsi ;Vsi ;Vri ;Ei/ with the interior steady state

Sw vector .Tw;Tsw;Vsw;Vrw;Ew/ with the wild-type steady state

Rs basic reproductive ratio of the wild-type strain

Rr basic reproductive ratio of the drug-resistant strain

"s
RT

efficacy of RTIs for drug-sensitive strain

"r
RT

efficacy of RTIs for drug-resistant strain

"s
PI

efficacy of PIs for drug-sensitive strain

"r
PI

efficacy of PIs for drug-resistant strain

˛ HIV mutants’ level of resistance

� s
RT

principal period for the RT inhibitors for the sensitive strain

� s
PI

principal period for the P inhibitors for the sensitive strain
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symbol description

ps
RT

time duration when the RT drug for the sensitive strain is active

pr
RT

time duration when the RT drug for the resistant strain is active

ps
PI

time duration when the P drug for the sensitive strain is active

pr
PI

time duration when the P drug for the resistant strain is active

es
RT

efficacy of RT drugs for the sensitive strain

er
RT

efficacy of RT drugs for the resistant strain

es
PI

efficacy of P drugs for the sensitive strain

er
PI

efficacy of P drugs for the resistant strain

˛1 HIV mutants’ level of resistance for the RT drug

˛2 HIV mutants’ level of resistance for the P drug

N"s
RT

average efficacy of RT drugs for sensitive strain

N"r
RT

average efficacy of RT drugs for resistant strain

N"s
PI

average efficacy of P drugs for sensitive strain

N"r
PI

average efficacy of P drugs for resistant strain

"s overall treatment effect on the sensitive strain

"r overall treatment effect on the resistant strain
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