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In Individual strategy and social structure (2001), Young demonstrated that the
stochastically stable configurations of his segregation game are precisely those
that are segregated. This paper extends the work of Young to configurations
involving three types of individuals. We show that the stochastically stable
configurations in this more general setting are again precisely those that are
segregated.

Schelling [1971] investigated self-organizing systems consisting of two groups
of individuals, two of whom could trade locations at each discrete time interval
to improve at least one’s contentment level without diminishing the other’s. He
identified the equilibria of these systems under various conditions. Most of the time,
these equilibria were more segregated in the sense that the individual members
of each of the groups tended to gather in larger clusters rather than be uniformly
mixed. Young [2001] used a Markov chain model to identify the stochastically
stable equilibria of these self-organizing systems with two groups of individuals.

By an equilibrium we mean a state in which no pair of individuals exist who
would prefer to trade positions. These equilibria are stable in sense that once one is
reached, there will be no further change in the system.

However, if we allow for the possibility of error, that is, trades of pairs of
individuals which do not benefit at least one of the two, without harming the other,
it is possible to move from some equilibria to others. Those equilibria which remain
stable in this more general context are called stochastically stable equilibria. They
are precisely the segregated equilibria, those with all of the individuals of a group
gathered into a single cluster.

After seeing this behavior modeled in a classroom activity, a student asked the
faculty author of this paper whether the same phenomena happened if there were
more than two types of individuals. Responding to that question, in [Burek et al.
2009] we showed that there are both segregated (all members of each group living
next to each other in a single cluster) and non-segregated equilibria in such a model,
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consistent with the work of Schelling. In this paper, we will show that the segregated
equilibria are the only stochastically stable equilibria, consistent with the work of
Young.

A real world example of this type of self-organizing behavior was provided in
2004 when Bill Bishop received national attention when he made the following
claim and coined the neologism the big sort: the phenomenon that Americans
have been sorting themselves into increasingly homogeneous political communities
according to city and even neighborhood. He published his argument in [Bishop
2009] using demographical data to justify his claims. Therefore, in recognition
of Bishop’s work, we will refer to our three groups of people as Republicans,
Democrats, and Libertarians.

Terminology

Let R, D, and L represent a individual that is a Republican, Democrat, and Lib-
ertarian, respectively. A configuration is an linear arrangement of individuals
members that contains at least four members from each party,with an explanation
for this restriction being given later. In general, let r , d, and l represent the total
number of individuals in each of the Republican, Democrat, and Libertarian parties,
respectively. We assume that our configurations are circular in the sense that the
first and last individuals are assumed to be neighbors of each other; this allows us
to not worry about end conditions. For instance, in the following configuration, the
leftmost R is considered to be next to the rightmost L:

RDL L L L L L L L L L L R R R R R RDRDL DDDL L L L R R R R R R R R R RL .

We consider the positions of the Republicans, Democrats, and Libertarians to be
ordered in this configuration. Thus, the configuration above is distinct from the one
obtained by shifting each individual nine positions to the right, displayed here:

R R R R R R R R R RL RDL L L L L L L L L L L R R R R R RDRDL DDDL L L L .

To avoid unnecessary repetition, we use exponential notation and define a cluster
of Y m to be a string of m Y ’s in a row, where 2≤ m ≤ q where q denotes the total
number of members in Y ’s party. Thus, the first configuration displayed above can
be somewhat more compactly conveyed as

RDL11 R6 DRDL D3L4 R10L .

While the positions are distinct, the individuals themselves are not distinguished
beyond their party affiliation.

Given any configuration, we need to determine an individual’s contentment level.
Measuring contentment was straightforward in [Young 2001] since Young only
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considered two types of individuals: either you’re next to at least one individual like
yourself (and are content) or you are not (and are therefore not content). Introducing
a third group adds a layer of complexity in the form of bias: which individuals
(aside from those of your own party) do you prefer to be next to, which are you
neutral towards, and which do you prefer not to be next to at all? In [Burek et al.
2009], we describe seven different scenarios with varying levels of bias. In this
paper, our focus is on individuals who have no aversion towards individuals of
either of the other two parties, but do have a preference for neighbors of their own
party.

We can describe this low level of bias as follows, since we do not need to specify
the utility functions for our purposes. Let X, Y, and Z be arbitrary individuals, not
necessarily of distinct parties. Given an individual Y in a configuration, consider
the ordered triple consisting of Y and its immediate neighbors to the left and the
right, X and Z, respectively. Y has the highest contentment if both X and Z are of
the same party as Y. Y has a somewhat lower contentment level if exactly one of
X and Z is of the same party as Y. Finally Y has the lowest contentment level if
neither X nor Z is of the same party as Y. For example, in the configuration

RDL11 R6 DRDL D3L4 R10L ,

the first D individual has the lowest contentment level and the second to last D
has the highest contentment level. More than three levels of contentment would be
possible were we to allow higher levels of bias, as described in [Burek et al. 2009].

Two individuals in a configuration are willing to trade positions if at least one of
the individual’s contentment level increases as a result of this trade, and the other
individual’s contentment level does not decrease as a result of the trade. We call
this a favorable trade.

Notice that when two individuals trade positions, it moves us from the original
configuration s to a new configuration s ′. When we move forward to a new time
period, a pair of individuals are randomly chosen from among those pairs for whom
a favorable trade exists and these two individuals trade positions. Eventually, no
favorable trades remain and the system reaches an equilibrium configuration. Some
of these are segregated equilibrium configurations, in the form

Rr Dd L l or Rr L l Dd .

Segregated equilibrium configurations could start with Democrats or Libertarians
as well. In particular, note that the configuratons

L l Rr Dd and Dd L l Rr
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can be obtained from the first segregated equilibribium configuration above by
shifted positions to the right, but they can not be obtained from the second segre-
gated equilibribium above. Thus there are two fundamental classes of segregated
equilibria, those of the form RDL and those of the form RLD.

Other equilibria are non-segregated. In a non-segregated equilibrium, the mem-
bers of at least one party are separated into two disjoint clusters, each of which
contains at least two members. Some examples (with r = 6, d = 10, and l = 8) are

D8 R3L2 D2L4 R3L2, R3 D3L8 D5 R5, and L2 D10L6 R6.

If there are only three members of a party, then they must be in a single cluster in
every equilibria. Thus if there are only three members of each of the three parties,
there are no non-segregated equilibria. Thus to ensure that we have non-segregated
equilibria, we require that there be at least four individuals in each party.

We denote the set of all equilibrium configurations by E , the set of those equilibria
that are segregated by E S and those equilibria that are non-segregated by E N S .
Thus, E = E S

∪ E N S .
In our discussion so far, we have only allowed favorable trades to occur. To

investigate stochastically stable configurations, we need to allow the possibility
of non-favorable trades to occur as well. We define three types of such trades.
Let a, b, and c denote positive real numbers such that 0 < a < b < c. A type a
perturbation occurs when two individuals trade with one individual’s contentment
level rising and the other’s falling, or when two individuals trade with neither
individual’s contentment level changing. A type b perturbation occurs when two
individuals trade positions such that one individual’s contentment level decreases,
but the other individual’s contentment level remains constant. Finally, a type c
perturbation occurs when two individuals trade positions such that both of the
individuals’ contentment levels go down.

Markov chain model

Both the basic situation and the perturbed situation can be modeled as a Markov
chain. In this section, we describe those models, identify their key properties, their
relationship, and give the key theorem that we will use in our analysis. The reader
interested in more detailed discussion of Markov chains should consult [Ghahramani
2005] or [Norris 1998] for an introduction to the subject, or [Ross 2000] for a more
rigorous treatment.

We model the basic situation as a Markov chain, P , by letting the set of states, S,
be the various configurations, s, of our neighborhoods. For each s, set ps,s′ = 0 for
any state s ′ such that there is no favorable trade which moves s to s ′. For all other
s ′, ps,s′ = k/n, where n is the number of favorable trades in s and k is the number
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of favorable trades which move s to s ′. As favorable trades occur, the system can
be thought to randomly evolve over time, with at most one trade occurring during
each time period.

If we allow the possibility of non-favorable trades as well, we can obtain a second
Markov chain, Pε , in which a type a perturbation occurs with probability εa , where
1>ε>0. A type b perturbation occurs with probability εb, and a type c perturbation
occurs with probability εc. Favorable trades occur with equal probabilities which
sum to 1−

∑
pr(x), where x ranges across all of the non-favorable trades. Thus

Pε has the same state space as P , and

ps,s′ =
∑

pr(y)+
∑

pr(x),

where y ranges across all favorable trades moving s to s ′ and x ranges across all
non-favorable trades doing the same.

We can say the following about P and Pε :

(1) The absorbing states of P are precisely the equilibrium states.

(2) Pε is irreducible.

(3) Pε has a unique stationary distribution, µε .

(4) Pε satisfies limε→0 pεs,s′ = ps,s′ , and there exists a unique r(s, s ′) > 0 such
that whenever pεs,s′ > 0 for some ε > 0,

0< lim
ε→0

pεs,s′
εr(s,s′) <∞.

(5) Pε is regular perturbed.

Briefly, these five items are justified as follows. In any non-equilibrium con-
figuration, there are a finite number of favorable trades; as time advances and
these trades happen, they are eventually depleted resulting in a configuration that
is at equilibrium and is an absorbing state of P . Because all trades (favorable and
non-favorable) have positive probability in Pε , there exists a positive probability
that of moving from any configuration to any other configuration in the future.
Hence Pε is irreducible. Further, since Pε has a finite state space, it has a unique
stationary distribution. The first limit in item four follows from our definition of
pεs,s′ . The second limit follows from our assignments of probabilities to the various
non-favorable trades. Finally, item five follows from items two and four.

In general, r(s, s ′) is called the resistance to moving from state s to state s ′, and
is the minimum, taken over all sequences of trades that begin in state s and end in
state s ′, of the sum of the resistances on the individual trades in the sequence. The
values a, b, and c are the resistance to the corresponding types of non-favorable
trades. A favorable trade has resistance 0.
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We now construct a graph theoretic model to compute the stochastically stable
states of Pε . Recall that the only absorbing states of P are the equilibrium states in
S. Denote these by E = {z1, z2, z3, . . .}. Construct a weighted complete directed
graph whose vertices are the elements of E and whose edges have weights equal to
the resistances r(zi , z j ). A z-tree is a set of |E | − 1 directed edges such that, from
every vertex different from z ∈ E , there is a unique directed path in the tree to z.
The resistance of a z-tree is the sum of the resistances on the edges that compose it.
The stochastic potential of the state z is the minimum resistance over all z-trees.

Figure 1 illustrates one such tree. In this illustration, z is an RLD segregated
equilibria, and each RLD and RDL vertex represents a one position shift from its
parent vertex. The ns vertices represent generic non-segregated equilibria. The
choice of edge weights, a, b, and a+ b, will be explained after Theorem 1.
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Figure 1. A z-tree for a RLD segregated equilibrium.
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The stochastically stable states are those states that occur with positive probability
in the long run while the probility of error, ε, is small but non-vanishing. That is,
the state s ∈ E is stochastically stable for the Markov chain Pε if

lim
ε→0

µεs > 0,

where µε is the unique stationary distribution of Pε . Young’s theorem provides a
method for determining these states, which is the goal of this paper.

Young’s theorem. Let Pε be a regular perturbed Markov chain and let µε be the
unique stationary distribution of Pε for each ε > 0. Then the stochastically stable
states are precisely those states that are absorbing states of P having minimum
stochastic potential [Young 1993].

Main result

In this section, we construct z-trees for both segregated and non-segregated equilibria
and demonstrate that the former have minimal stochastic potential. We begin by
proving three lemmas which will develop our argument.

Lemma 1. Given a non-segregated equilibrium, the resistance to moving to another
equilibrium by making a trade which moves an individual from one cluster to another
cluster of like individuals is a.

Proof. Given a non-segregated equilibribium state, suppose that one party, say the
Rs, has at least two clusters. Then at least two of the R clusters have neighbor
clusters of the same type, say L . Otherwise, there are exactly two R clusters, one
with two D clusters as neighbors and the other with two L cluster neighbors. (The
pattern is D− R− D− L − R− L .) In this case, we change our perspective to the
two D clusters, which have a common R cluster as a neighbor.

There are three patterns possible for the two R clusters and their L cluster
neighbors:

L l1−1 L Rr1 . . . L l2 RRr2−1,

L l1−1 L Rr1 . . . Rr2−1 RL l2,

Rr1−1 RL l1 . . . L l2−1 L Rr2 .

In each case, trading the bold faced individuals shifts one individual from one
cluster to another and results in a new equilibrium state. Each of these trades has
resistance a. �

Lemma 2. Given any segregated equilibrium, the minimum resistance to shifting
to another segregated equilibrium is b.
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Proof. Consider the segregated equilibrium

Rr−1 RDd L l−1 L.

We trade the boldfaced individuals, with resistance b, to get

Rr−1 L Dd L l−1 R.

However, this configuration is not an equilibrium. Therefore, we need to make a
favorable trade, which has resistance 0, to return to equilibrium. The two individuals
involved in this trade are indicated in bold:

Rr−1 L Dd−1 DL l−1 R.

Trading these two individuals results in the segregated configuration:

Rr−1 DDd−1 LL l−1 R.

Note that the new configuration is the the original equilibrium configuration shifted
one position to the left.

To obtain a smaller resistance, either one of the individuals trading had an
increase in their contentment level while the second had a decrease, or neither of
the individuals trading had any change in contentment level. However, when we
begin with a segregated equilibrium, both cases imply that any individual who
trades must trade with another individual of the same party, and that results in the
same equilibrium after the trade as before. Thus it is not possible to shift from one
segregated equilibrium to another with a resistance less than b. �

Lemma 3. Given any equilibrium, the minimum resistance to creating a new cluster
is b+ a.

Proof. Without loss of generality, consider an equilibrium containing the sequence

. . . L l1−1 L Dd1−1 DRr1 . . . .

In a trade between the bold L and the bold D, L’s contentment level would drop,
while D’s contentment level stays the same, resulting in a trade with resistance b.
The resulting configuration,

. . . L l1−1 DDd1−1 L Rr1 . . .

is not in equilibrium, so a trade between the second right-most L with the (new)
right-most D, with resistance a, results in an equilibrium with an additional cluster
of consisting of two L’s. This is the smallest resistance possible, since creating
a new cluster requires isolating an individual and consequently lowering their
contentment level, a type b perturbation. To return to an equilibrium state with this
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new cluster, another trade must occur in order to have a second individual join the
first. At best this is a type a perturbation. �

With these three lemmas in hand, we are ready to compute the minimum stochastic
potential for the z-trees. In the proof of Lemma 2, we assumed that the segregated
configuration has the ordering RDL of clusters. The alternative ordering is RLD.
Clearly the Lemma applies to this ordering as well. However, in both Theorem 1
and Theorem 2 below, we do need to treat the two orderings separately,so we let
E S

RDL and E S
RLD denote the two sets of segregated equilibriums, respectively. We

begin with z ∈ E S .

Theorem 1. For each z ∈ E S , its stochastic potential is

a ·|E N S
|+b ·(|E S

RDL |−1)+b ·(|E S
RLD|−1)+(b+a)= a ·|E N S

|+b ·(|E S
|−1)+a.

Proof. We will assume that z is an RLD type of segregated equilibrium. Each
non-segregated equilibrium has an outbound edge to another equilibrium in which
one of the clusters has one fewer individuals. By Lemma 1, this edge has resistance
(weight) a. All but two of the segregated equilibriums have an outbound edge to
another segregated equilibriums, which rotates the positions of the individuals by
one position. By Lemma 2, each of these edges has resistance b. The first exception
to the previous statement is the root equilibrium, z, which has no outbound edge
associated with it. The second exception is the RDL equilibrium at which a new
cluster is generated in order to begin the transition to an RLD equilibrium. By
Lemma 3, this particular equilibrium has an outbound edge that has resistance b+a.
Summing the resistances on the various edges gives the result. �

Figure 1 illustrates the proof for a typical z-tree, when z is a segregated equilib-
rium. The target RLD equilibrium is in the lower right corner, and the transitional
RDL equilibrium has a resistance of b+ a. In this illustration, each segregated
equilibrium is rotated until it reaches z, or until the transitional configuration is
reached. Each non-segregated state progressively moves to states with smaller
and/or fewer clusters, eventually becoming segregated.

Next, we compute the minimum stochastic potential for an arbitrary z-tree where
z is in E N S . Notice that in Theorem 1, we were able to calculate the minimum
stochastic resistance precisely. In the following theorem, we are only able to
determine a lower bound. This is because it is may be required to create many new
clusters, with the creation of each of these clusters increasing the sum given in the
theorem. Fortunately, the result is sufficient for our purposes.

Theorem 2. For each z ∈ E N S , its stochastic potential is at least

a · (|E N S
| − 1)+ b · (|E S

RDL | − 1)+ (b+ a)+ b · (|E S
RLD| − 1)+ (b+ a)

= a · |E N S
| + b · (|E S

| − 1)+ a+ b.
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Figure 2. Minimal z-tree for a non-segregated equilibrium.

Proof. We will assume that z has only four clusters, the minimum possible in a
non-segregated equilibriums. Each non-segregated equilibrium, other than z, has
an outbound edge to another equilibrium with in which one of the clusters has one
fewer individuals. By Lemma 1, this edge has resistance a. All but two of the
segregated equilibriums has an outbound edge to another segregated equilibriums
rotating the positions of the individuals by one position. By Lemma 2, each of these
edges has resistance b. The two exceptions to the previous are the RLD equilibrium
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and the RDL equilibrium at which new clusters are created; by Lemma 3, these two
equilibriums have outbound edges with resistance b+ a. Summing the resistance
on the various edges gives the result. �

Figure 2 illustrates the proof for a z-tree in which z is a non-segregated equilib-
rium. Again, the target non-segregated equilibrium is in the lower right corner, and
the transitional RLD and RDL equilibriums have resistance b+ a.

Since the sum in Theorem 1 is smaller than the sum in Theorem 2, we are able
state our main result.

Theorem 3. In segregation games with three types of individuals and the lowest
level of bias, the stochastically stable equilibriums are precisely those that are
segregated.

Open questions

The model described in this paper assumes that no individuals have a bias against
members of one of the other groups. In [Burek et al. 2009], we outline six other
scenarios describing varying biases that are available among three groups. For
example, would we get the same results in a scenario where Republicans and
Democrats each prefer to live near Libertarians over each other, but Libertarians
hold no such bias? What if Democrats prefer Republicans, Republicans prefer
Libertarians, and Libertarians prefer Republicans? Demonstrating stochastic results
similar to those presented in this paper would extend our model.

Furthermore, it would be interesting to extend the analysis in this paper to a
2-dimensional perspective. Doing so would allow for a more realistic geo-political
interpretation of the results, such as that suggested by Bishop’s work.
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