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(Communicated by Kenneth S. Berenhaut)

Let X be a set and Bin(X) the set of all binary operations on X . We say that
S ⊂ Bin(X) is a distributive set of operations if all pairs of elements ∗α, ∗β ∈ S
are right distributive, that is, (a∗α b)∗β c= (a∗β c)∗α (b∗β c) (we allow ∗α =∗β ).

The question of which groups can be realized as distributive sets was asked by
J. Przytycki. The initial guess that embedding into Bin(X) for some X holds for
any G was complicated by an observation that if ∗ ∈ S is idempotent (a ∗ a = a),
then ∗ commutes with every element of S. The first noncommutative subgroup
of Bin(X) (the group S3) was found in October 2011 by Y. Berman.

Here we show that any group can be embedded in Bin(X) for X =G (as a set).
We also discuss minimality of embeddings observing, in particular, that X with
six elements is the smallest set such that Bin(X) contains a nonabelian subgroup.
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1. Introduction

Let X be a set and Bin(X) the set of all distributive operations on X . We say that
S ⊂ Bin(X) is a distributive set of operations if all pairs of elements ∗α, ∗β ∈ S are
right distributive, that is, (a ∗α b) ∗β c = (a ∗β c) ∗α (b ∗β c) (we allow ∗α = ∗β). It
was observed in [Przytycki 2011] (see also [Romanowska and Smith 1985]) that
Bin(X) is a monoid with composition ∗1∗2 given by a ∗1 ∗2b = (a ∗1 b) ∗2 b and
the identity ∗0 being the right trivial operation, that is, a ∗0 b = a for any a, b ∈ X .

MSC2010: primary 55N35; secondary 18G60, 57M25.
Keywords: monoid of binary operations, distributive set, shelf, multishelf, distributive homology,

embedding, group.

433

http://msp.org
http://msp.org/involve/
http://dx.doi.org/10.2140/involve.2015.8-3


434 GREGORY MEZERA

The submonoid of Bin(X) of all invertible elements in Bin(X) is a group denoted
by Bininv(X). If ∗ ∈ Bininv(X) then ∗−1 is usually denoted by ∗̄.

We say that a subset S ⊂ Bin(X) is a distributive set if all pairs of elements
∗α, ∗β ∈ S are right distributive, that is, (a ∗α b) ∗β c = (a ∗β c) ∗α (b ∗β c) (we
allow ∗α = ∗β). Additionally, (X; S) is called a multishelf1.

The following important basic lemma was proven in [Przytycki 2011]:

Lemma 1.1. (i) If S is a distributive set and ∗ ∈ S is invertible, then S ∪ {∗̄} is
also a distributive set.

(ii) If S is a distributive set and M(S) is the monoid generated by S, then M(S) is
a distributive monoid.

(iii) If S is a distributive set of invertible operations and G(S) is the group generated
by S, then G(S) is a distributive group.

The question of which groups can be realized as distributive sets was asked
by J. Przytycki. Soon after the definition of a distributive submonoid of Bin(X)
was given in [Przytycki 2011], Michal Jablonowski, a graduate student at Gdańsk
University, noticed that any distributive monoid whose elements are idempotent
operations is commutative.

Proposition 1.2 [Przytycki 2011]. Consider ∗α, ∗β ∈ Bin(X) such that ∗β is idem-
potent (a ∗β a = a) and distributive with respect to ∗α. Then ∗α and ∗β commute.
In particular:

(i) If M is a distributive monoid and ∗β ∈ M is an idempotent operation, then ∗β
is in the center of M.

(ii) A distributive monoid whose elements are idempotent operations is commuta-
tive.

Proof. We have (a ∗α b) ∗β b distrib
= (a ∗β b) ∗α (b ∗β b)

idemp
= (a ∗β b) ∗α b. �

A few months later, Agata Jastrzębska (also a graduate student at Gdańsk Univer-
sity) checked that any distributive group in Bininv(X) for |X | ≤ 5 is commutative.

The first noncommutative subgroup of Bin(X) (the group S3) was found in
October 2011 by Yosef Berman. Soon after, Berman and Carl Hammarsten con-
structed an embedding of a general dihedral group D2·n in Bin(X) where X has 2n
elements. The embedding of Berman, φ : D2·3 → Bin(X), is given as follows:
if X = {0, 1, 2, 3, 4, 5} then the subgroup D2·3 ⊂ Bin(X) is generated by binary

1If (X; ∗) is a magma and ∗ is a right self-distributive operation then (X; ∗) is called a shelf, the
term coined by Alissa Crans [2004].
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operations ∗τ , which generates reflection, and ∗σ , which generates a 3-cycle;

∗τ =



1 1 3 5 5 3
0 0 4 2 2 4
3 3 5 1 1 5
2 2 0 4 4 0
5 5 1 3 3 1
4 4 2 0 0 2


and ∗σ =



2 4 2 4 2 4
5 3 5 3 5 3
4 0 4 0 4 0
1 5 1 5 1 5
0 2 0 2 0 2
3 1 3 1 3 1


,

where i ∗ j is placed in the i-th row and j -th column, and D2·3={τ, σ | τστ =σ
−1
}.

2. Regular distributive embedding

We now show that any group G can be embedded in Bin(X) for some X .

Theorem 2.1 (Regular embedding). Every group G embeds in Bin(G). This embed-
ding (monomorphism), φreg

: G→ Bin(G), sends g to ∗g, where a ∗g b = ab−1gb.

Proof. (i) We check that the set {∗g}g∈G is a distributive set. We have

(a ∗g1 b) ∗g2 c = (ab−1g1b) ∗g2 c = ab−1g1bc−1g2c,
and

(a ∗g2 c) ∗g1 (b ∗g2 c)= (ac−1g2c) ∗g1 (bc−1g2c)= ab−1g1bc−1g2c,

as needed.

(ii) Now we check that the map φreg is a monomorphism. The image of the
identity ∗0 is the identity in Bin(G). Furthermore, a ∗g1g2 b = ab−1g1g2b and
a ∗g1 ∗g2b = (a ∗g1 b) ∗g2 b = ab−1g1bb−1g2b = ab−1g1g2b, as needed. We have
proven that φreg is a homomorphism. To show that φreg is a monomorphism, we
substitute b = 1 in the formula for a ∗g b to get a ∗g 1= ag; so different choices
of g give different binary operations in Bin(G). Notice that φreg(g−1)= ∗̄g. �

We call our embedding regular, analogous to the regular representation of a
group. We do not claim that the regular embedding is minimal, so finding minimal
distributive embeddings is a very interesting problem in itself.

3. General conditions for a distributive embedding

We now discuss a method that can be used to embed groups into subsets of Bininv(X)
satisfying an arbitrary condition. We then use this method when the condition is
right distributivity, which leads us to the regular distributive embedding of G in
Bin(G) and should be a natural tool to look for minimal embeddings. For the
group S3, we know, by Jastrzebska’s calculations, that X consisting of six elements
is the minimal set such that S3 embeds in Bin(X).
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We start from the following basic observation:

Lemma 3.1. There is an isomorphism between Bininv(X) and S|X |
|X | , where |X | is

the cardinality of |X | and S|X | is the group of permutations on set X ( i.e., bijections
of the set X ). The isomorphism α : Bininv(X)→ S|X |X = 5y∈X Sy

X is described as
follows: α(∗)(y) : X → X is the bijection where (α(∗)(y))(x) = x ∗ y. In other
words, α(∗)(y) is the bijection corresponding to the y-coordinate of S|X |X .

Using the map α, we can translate conditions on a set of binary operations
in Bin(X) into a group-theoretic condition on (coordinates of) elements of S|X |X .
With some work, we can use this to find an embedding of a group into Bin(X).
This is possible since the group axioms require that such an embedding must sit
inside Bininv(X). Let us consider distributive, invertible sets S of binary operations
in Bininv(X). These are subsets S⊆ Bininv(X) that satisfy

(x ∗i y) ∗ j z = (x ∗ j z) ∗i (y ∗ j z) for all ∗i , ∗ j ∈ S and x, y, z ∈ X.

Let σi,y = pyα(∗i ), where py : S
|X |
X → SX is projection onto the y-th coordinate.

Then translating the distributivity condition via α,

σ j,z(x ∗i y)= σi,(y∗ j z)(x ∗ j z)

or
σ j,z(σi,y(x))= σi,σ j,z(y)(σ j,z(x)),

which leads to
σi,σ j,z(y) = σ j,zσi,yσ

−1
j,z .

Now the problem of embedding a group into Bininv(X) is reduced to finding
subsets of S|X |

|X | satisfying the condition above that are isomorphic to the group. We
can then use tools of group theory (e.g., representation theory) to solve the problem.
This process can be attempted for subsets of Bininv(X) satisfying any condition and
leads to the embedding defined in the previous section for distributive subsets.

4. Future directions; multiterm homology

Przytycki [2011] defined multiterm homology for any distributive set. This provided
motivation to have many examples of distributive sets. The regular embedding of
a group (Theorem 2.1) provides an interesting family of distributive sets ripe for
the study of their homology (compare with [Crans et al. 2014; Przytycki 2011;
2012; Przytycki and Putyra 2013; Przytycki and Sikora 2014]). As a nontrivial
example, we propose computing n-term distributive homology related to the regular
embedding of the cyclic group Zn . Another problem related to Theorem 2.1 is
determining which monoids are distributive submonoids of Bin(X).
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A key motivation is to use multiterm distributive homology in knot theory.
This possibility arises from the relation of the third Reidemeister move with right
distributivity (and eventually the Yang–Baxter operator) and the important work of
Carter, Kamada, and Saito [2001] and other researchers on applications of quandle
homology to knot theory.
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