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In recent work, Monks described the supersingular locus of families of elliptic
curves in terms of , F-hypergeometric functions. We lift his work to the level of
3 F>-hypergeometric functions by means of classical transformation laws and a
theorem of Clausen.

1. Introduction and statement of results

Dating back to the works of Gauss, hypergeometric functions play an important
role in mathematics. More recently, these complex functions and their analogs have
been studied in terms of the complex periods of elliptic curves. The purpose of
this paper is to further develop these sorts of connections. We begin by setting the
notation and defining the hypergeometric functions which will be used throughout.
If n is a nonnegative integer, we recall the Pochhammer symbol (y),, defined by

)y = {1 itn=0,
R P N R R R VA VRS )
The classical hypergeometric function in parameters a1, ..., a, B1, ..., B; € Cis
defined by
e (m w - oap x) _ i (@D)n(@2)n(@3)n -~ (@1)n X"
A Bi - B = (BaBn- - Ba !
We are interested in the hypergeometric functions
b o @a (D) X"
Fo( = —_— 1-1
21( C‘x> ; BT 1-1)
and N
b),(d "
3F201 a b d Z (@)n(b)n(d)n x_, (1-2)
(©n(e)n n!

n=0
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and their truncations modulo primes p. For any odd prime p, we define these
truncations by

(p=1)/2
fa b _ (@)n(D)n x"
zFf< . x>p= go o, a1 modp) (1-3)
and (p—1)/2
ef@ b od| \ _'NY @a®nd) 1"
3F2( ., x)p— X::O O medp). (b

Monks [2012] studied elliptic curves and their relation to , F|"-hypergeometric
functions and proved that these polynomials give the supersingular loci of certain
families of elliptic curves. Here we lift his work from , F|'- to 5 F}'-hypergeometric
functions and establish a similar result for these hypergeometric functions with
additional parameters.

Remark. We note that above, tr denotes the truncation of a hypergeometric series
after x(»=D/2_ but in [Monks 2012], tr implies truncation after x” —1. We will see
that the relevant polynomials agree when reduced modulo p.

Let p be an odd prime and let F be a field of characteristic p. An elliptic curve
E/F is said to be supersingular if it has no p-torsion over F. In other words, there
is no element of order p in the group E (F). This condition is dependent only on the
Jj-invariant of E. There are only finitely many isomorphism classes of supersingular
elliptic curves in F p»» which Kaneko and Zagier [1998] determined using the theory
of modular forms.

Here we consider supersingular elliptic curves in certain families. A well-known
subfamily of elliptic curves is the Legendre family, which is denoted by

Eip():y’ =x(x—1(x —2)
for A # 0, 1. These curves can be studied by means of the supersingular locus

SpipM =[] (=)

Xoeﬁp
supersingular E /2 (Ao)

These polynomials have coefficients in [ ,.
El-Guindy and Ono [2013] studied the family of elliptic curves defined by

E1s(0) 0 y* = (x — D(x2 + ). (1-5)
We also consider the following families of elliptic curves:

Ei3(0): y2 + Ayx +A2y = x3,
Eijin(h) 1 y? = 4dx® —27ax — 271
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Fori € {1, 1, 75} and all primes p > 5, we let
Spi(h) = [[ - (1-6)
)»()Eﬂ?p

supersingular E;(1o)

Monks [2012] studied these families with respect to hypergeometric functions, and
he showed that their supersingular loci are given by certain , F|-hypergeometric
functions reduced modulo p. We extend these results of Monks, El-Guindy, and
Ono to prove the following theorem. Assume the notation above.

Theorem 1.1. The following are true:

(1) If p =5 is prime, then

111
2 _ -1/2 3 3 2
Spaja(x)’ = (x+ 1PV -3F2“(2 U1 x+1)p (mod p).
(2) If p = 5 is prime, then
) L2 11108x —2916
Sp,1/3(x)25x2 Lp/3] ,3F2tr<3 ; i ‘ x—2> (mod p).
p
) If p =5 is prime, then
15 1 1
Sp,l/lz(X)ZE(C;1)2~pr/6J-3F2tr(6 ? %‘1——) (mod p).
X
p

Here

(185

andd, =0,2,2,4 for p=1,5,7, 11 (mod 12) respectively.

2. Nuts and bolts

Statement of Clausen’s theorem and transformation laws. Our main tools for
establishing these congruences are a theorem of Clausen and two classical , F fl
transformation laws. We make use of Clausen’s theorem [Bailey 1935] which gives
the following equality of hypergeometric polynomials:
2
x) . @D

20 2B a+p 1o B
Fcl — Fc
3 2( x) 211 a+,3+%

20+28 a+B+3
We also use two transformation laws in our proof so that we can apply (2-1) to
the hypergeometric functions. The first, given in [Bailey 1935], states that

afa b —a afa c—b X
2F11( . x>=(l—x) .2Fll( . > (2-2)

x—1
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The second, from Vidinas [2009], gives that

a b

_ clf 2 2
x) =,F] < a+b+1

2

Elementary reduction modulo p. By definition (1-4), we have that

4x(1 —x)). (2-3)

cl a b
2 Fi ( atb+1
2

SE 2
(T

(P=D/2 (1Y (2y (1 — n
M) =y, GL)G), Q0emer )
P

x2 (n!)3 x2n

n=0

For n > | p/3], any p will appear in the numerator of the expansion for (3) , (3), .

or (%)n so all of these terms will be congruent to 0 modulo p and will vanish. Thus
we can simplify to

Lp/31 (1Y (2} (1 — n
105 2016) 3 GO0, ose- 207
p

12 1
Fr(3 3 2
372 1 1 x2 (nh3 x2n

n=0
(2-4)

Similarly by (1-4) we have that

1 1y O 0,0, 0, (1Y

X
Foranyn > |p/6], p=1,5 (mod 6) will appear in the numerator of the expansion
of (3),(2),(3), causing all of these sequential terms to be congruent to 0 modulo p
and vanish, which gives

Lp/6]) (1 5 1 n
1y (8),(2).(2), 1
1— —)p - n§:o: T (1 - ;) (mod p). (2-5)

— O\ N

1
2
1

n=0

tl 501
(g

Work of Monks. The proof of Theorem 1.1 relies on recent work of El-Guindy
and Ono and Monks.

Theorem 2.1 [Monks 2012, pp. 2-3]. The following are true:

(1) If p =5 is prime,

— |0

1
Sp.1ja(x) = zﬂ“(“

—x) (mod p). (2-6)
p

(2) If p = 5 is prime,

— W

1 27
Sp13(x) =xtP3l -zFfr(3 ‘ ?) (mod p). (2-7)
p



3F,-HYPERGEOMETRIC FUNCTIONS AND SUPERSINGULAR ELLIPTIC CURVES 485

3) For p=1,5 (mod 12) and prime,
1 5

1
Sp,l/lz(x)Ec;l~pr/12J-zFltr<]2 112 ‘ 1—;> (mod p). (2-8)
P

&) For p=7,11 (mod 12) and prime,

7 1 1
Spaya@x) =c, ' x P/ -2F{r<12 112 ‘ 1—;> (mod p), (2-9)
p

where
.= <6 LI—’EIJ) +dp)
L]
andd, =0,2,2,4 for p=1,5,7,11 (mod 12) respectively.

Remark. We note that (2-6) is a direct result of ElI-Guindy and Ono [2013] and is
therefore not technically part of Monks’ theorem in [2012].

Squaring these supersingular loci in terms of the , F|"-hypergeometric functions,
we obtain congruent 5 F)"-hypergeometric representations in Theorem 1.1.

3. Proof of Theorem 1.1

To prove Theorem 1.1, we show the first part using the results of El-Guindy and
Ono. Then we calculate the equivalent statements for the remaining cases. We use
classical , F fl transformation laws to obtain the necessary forms to use Clausen’s
theorem, given in (2-1), and lift the , F{"-hypergeometric functions of Monks to
equivalent ,F," representations. First we require the following descriptions of
, F{"-hypergeometric functions:

Lemma 3.1. The following are true:

(1) If p =5 is an odd prime, then

1 3 2 1 1 1
w4 4| _ = (p—D/2 puwf2 2 2
2 F ( 1 x) =x+1) 3 F, ( L1l 1) (mod p).
p p
(2) If p = 5 is an odd prime, then
1227\ L2 11108x —2916
wf3 3|2 — puf3 3 32 s
2F] ( 1 X >p_3F2 ( 1 1 ‘ x2 >p (mOdP)-

(3) Forp=1,5 (mod 12),

—_
|
| —
N——
&)
Il
(98]
!
=
R
A=
— O\
— N —

‘l—l) (mod p).
X/ p
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(4) For p=7,11 (mod 12),

L 1\2 of L

iy T

zFl(lz 12 1_;) =X 3F2(6
P

Proof. For brevity, we give the proof of (2). The remaining cases follow in a similar
way. Applying the transformation law for , F;-hypergeometric functions given by
(2-3) witha = %, b= %, and x = 27/x, we see that

T AT TEE
241 1| x 241 1

We then square both sides of this equation and apply Clausen’s theorem in (2-1) to
the right-hand expression with @ = ¢, 8 =1, and x = (108x —2916)/x? to obtain

ll 2
F 3 3
21( 1

— O\t
—_ D=

‘ 1—1> (mod p).
Y p

108x —2916)

x2

‘ 108x — 2916)2
2

X

(-1

1

3

1

(L2
(5 :

By definition (1-1), when we expand the infinite hypergeometric series on the
left-hand side of this equation, we obtain

2 1y (2 N\2
Fel % % Z _ i (§)N(§)N . ﬂ
2! 1] x (N1)2 X ’
N=0
and when we expand the right hand side by definition (1-2) we get

a3 303 108x—2916 i Hn(G)y [108x —2916\"
372 11 (N')3 ' x2 '

=0
By (3-1), we have that these two infinite series expansions are equal and

(B G ) - e oo

N=0 =0

L
2
1

108x — 2916
. .

This means that in both series expansions, the coefficients for x =V, given by a(N)
and b(N) respectively, are equal. More precisely, by squaring we have

N (1 2 1 2
(5)uG)y By—s (G
T B Tl

n=0
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and by the binomial theorem,

N 1y (2) (L
b(N) = Z (3)n(3)n(2) <2n )(108)2” N( 2916)Nn

13
n=[N/2] ()

We note that for b(N), only n with [N /2] <n < N will actually contribute to each
coefficient value. When we truncate these series in (3-2) at N = p — 1 (i.e., truncate
at x'77), all of the coefficients will still be equal. The truncation of the series can
be explicitly expressed by

Iili 2) ‘(I)N n(%)N n_27N_x—N
(n‘)2 (N —n)hH?

=0n=0

= (3).(3).() n Y N-n =N
=X > LR (0 sy oo o
=0 n=[N/2]

We observe that since N, and consequently n, will never exceed p — 1, all of these
coefficients are p-integral since p does not appear in any of the denominators.
Therefore we can take both sides of (3-3) modulo p. In fact, we know that a lot of
terms will vanish modulo p because p will appear as a factor in the numerators of
the coefficient expansions of these series given by a(N) and b(N), making them
congruent to 0. More specifically, this is the case for N with (p—1)/2 <N <p—1
and n > (p —1)/2. We can write these simplified congruences as

ad ) (l)N n(%)N —n 27 N
ZOZ <n'>2 (V=1 (?>

(p—1)/2 (1) (g) 27\N 2
3)nv\3)N
(Z (N)? (7) ) mod P 3 4

N=0

and

— 3 (3),),(),

(n")3 (2}1 N>(108)2" N(_2916)N=n.xN

N=0 n=[N/2]

=S ey (106"

_ 2 N3 = ) (mod p). (3-5)

Finally, we see that the right-hand sides of (3-4) and (3-5) are congruent mod-
ulo p to the definitions of the truncated forms of the squares of the , F|- and
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3 F>-hypergeometric functions, respectively, given by:

27\2 (p—1)/2 4.3 27\N 2
?) E( 2 3&!)32N'(?) ) (mod p)

p N=0
and
1 2 1
(3 32 108x — 2916
2 11 2 ),
(p—1)/2 2
_ ! (%)N(§)N(%)N 108x —2916\"
= Z (N')3 : ) (mOdp)
N=0 : X
It follows that
Loz)ary 12 11 108x —2916
wf3 3| Z0) = fw(3 3 2
» Fy < 11 > )p—3Fz( 11 ' P )p (mod p),
which completes the proof. 0

Proof of Theorem 1.1. For the proof of (1), we begin with Lemma 3.1(1) which

gives
(p—1)/2 w2 % % X f % ?
(x+1) 3 F 1 1 ] =,F 1 —x | (mod p).
X+ » P

Substituting the left-hand side of the above congruence into the square of (2-6), we
obtain the congruence for the square of the supersingular locus S, (1/4) (x)? for the
family of elliptic curves given by Ey,4(A).

The remaining cases use the congruences of the supersingular loci given by
Monks. We begin by squaring the , F{"-hypergeometric functions in (2-7)-(2-9).
Squaring (2-7), we obtain

2 2p)3 efd 227V
Sp.1/3(x) zx‘U’/J-zFlr(3 i ?) (mod p).

p

Then using the congruence in Lemma 3.1(2), we have

108x — 2916

12 1
Sp,1/3<x>zsx2'“’/“-3F2“(3 L] > )(modm,
p

X
completing the proof of (2).
In the third case, after squaring (2-8), we obtain

1 5 1\?
Spay2(x)* = (c; ) - xFP/12 'zFfr<12 112 1- ;) (mod p).

p
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Then we use our congruence given in Lemma 3.1(3) and substitute the 3F;-
hypergeometric function to give

— QN
—_— | =

1 1
Spay1(x)* = (¢, ) xlP/0 -3F2tr(6 ’ 1— )—C) (mod p).
P

We see in (3) and (4) of Lemma 3.1, for p = 1,5 (mod 6), the squared 2Fltr-
hypergeometric functions are congruent apart from the x in (4). We combine these
cases and alter the exponent of x to satisfy both, which then gives our result.

4. Examples

Example. Here we consider Ey,12(x) when p = 13. By Monks’ theorem, we know
that there is just one supersingular elliptic curve for Ey/12(x). It turns out that
E1/12(3) is that supersingular elliptic curve. To see this, we note that Ey,12(3)
over [Fi3 has 13 points including the point at infinity. By Monks, this implies that

S13.1/12(x) = (x —3) = (x + 10) (mod 13).
We square this to obtain
S13,1/12(x)* = (x +10)? = (x* +20x + 100) = x* + 7x + 9 (mod 13).

Using Theorem 1.1(3), we calculate

— O\
p— N —

1
—1\2 3/6 €
(cr3) - xL13/e] '3F2Lr<6 X

1
‘ 1-— —> (mod 13),
13

which gives (c1_31)2 = % (mod 13) and x13/6) = x2, Substituting these values into
our expression gives

1, 5 012\, 1 6

This polynomial can be factored modulo 13 as
X% +7x 4+9 = (x + 10)? (mod 13),
which is what we found after directly squaring S;31/12(x).

Example. We consider E,12(x) when p = 59. By Monks’ theorem, we know
that there are four supersingular elliptic curves for Ey,12(x). Those supersingular
elliptic curves are found to be Ey,12(32), E1/12(35), E1/12(24) and E1/12(22). To
see this, we note that Ey,12(x) for x = 32, 35, 24 and 22 over [s9 have 59 points
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including the point at infinity. By Monks, this implies that

S59,1/12(x) = (x — 32)(X — 35)()6 — 24)(x — 22)
= (x +27)(x +24)(x 4 35)(x +37) (mod 59).

After squaring this directly, we obtain
S50.1/12(X)? = (x +27)%(x +24)*(x 4+ 35)*(x +37)* (mod 59). (4-1)

Next using Theorem 1.1(3) we calculate
15 1 1
(c59)? - x%61Jpxr(8 6 211 —) (mod59).
- 1 1 X /59

For p =59, we have (c5y)? = 15 and x1*/¢) = x%, so we obtain
st (24800 3 10,38 0 10, 28, 30y
x  x2 x3  x* xS x0  x7T 0 x3 X
= x84 10x7 +45x° 4+ 4x> 4+ 39x* + 14x> 4+ 4x% + 7x +9 (mod 59).
This polynomial of degree 8 can be factored as
(x +27)(x +24)*(x +35)*(x +37)* (mod 59),

which is congruent modulo 59 to Sso | /12(x)2 as given in (4-1).
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