
inv lve
a journal of mathematics

msp

Stick numbers in the simple hexagonal lattice
Ryan Bailey / Hans Chaumont / Melanie Dennis / Jennifer McLoud-Mann /

Elise McMahon / Sara Melvin / Geoffrey Schuette

2015 vol. 8, no. 3



msp
INVOLVE 8:3 (2015)

dx.doi.org/10.2140/involve.2015.8.503

Stick numbers in the simple hexagonal lattice
Ryan Bailey, Hans Chaumont, Melanie Dennis, Jennifer McLoud-Mann,

Elise McMahon, Sara Melvin and Geoffrey Schuette

(Communicated by Colin Adams)

In the simple hexagonal lattice, bridge number is used to establish a lower bound
on stick numbers of knots. This result aids in giving a new proof that the minimal
stick number is 11. In addition, the authors establish upper bounds for the
stick number of a composite knot. Constructions for (p, p+1)-torus knots and
some 3-bridge knots are given requiring one more stick than the lower bound
guarantees.

1. Introduction

Most results concerning lattice knots have focused on knots in the simple cubic
lattice, sc or Z3. Various lower and upper bounds for stick number in the cubic
lattice have been given in [Adams et al. 2012; Janse van Rensburg and Promislow
1999; Hong et al. 2013]. Minimal stick numbers for the 31 and 41 knots are 12 and
14 [Huh and Oh 2005]; see Figure 1. The stick number for a (p, p+1)-torus knot
is 6p for p ≥ 2 [Adams et al. 2012]. Work has also been done for the minimum
stick number of the composition of two knots [Adams et al. 1997; 2012]. Relatively
little is known about analogous results in the simple hexagonal lattice. Mann,
McLoud-Mann and Milan [Mann et al. 2012] show that the minimum number of
sticks to create a nontrivial knot is 11.

In this paper, we will answer some questions regarding the simple hexagonal
lattice. In Section 3, we establish a lower bound on the stick number in terms on
the bridge number. In Section 4, we give the idea of a new proof of the result in
[Mann et al. 2012]. In Section 5, we give an upper bound for the stick number
of a composite knot. In Section 6, we catalog results about the stick number of
(p, p+1)-torus knots, some 3-bridge knots, and particular composite knots.
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Figure 1. Minimal stick 31 (left) and 41 (right) knots in the simple
cubic lattice.

2. Some preliminaries

We will adopt notation for the simple hexagonal lattice from [Mann et al. 2012],
which we include here for completeness. The simple hexagonal lattice is defined to
be the set of all integral combinations of vectors

x = 〈1, 0, 0〉, y =
〈 1

2 ,
√

3
2 , 0

〉
, w = 〈0, 0, 1〉;

that is,
sh=

{
a〈1, 0, 0〉+ b

〈 1
2 ,
√

3
2 , 0

〉
+ c〈0, 0, 1〉 | a, b, c ∈ Z

}
.

Further, let X =−x , Y =−y, W =−w, z =
〈
−

1
2 ,
√

3
2 , 0

〉
, and Z =−z so that

we can describe a polygon by a string of vectors. In Figure 2, the polygon may be
written as x5zw2 X3W 3 Z2w2 y3 X3W Y 2.

A maximal segment in a polygon P which is parallel to x = 〈1, 0, 0〉 will be
called an x-stick. Similarly, define y-, z-, and w-sticks to be maximal segments in P
which are parallel to

〈 1
2 ,
√

3
2 , 0

〉
,
〈
−

1
2 ,
√

3
2 , 0

〉
, and 〈0, 0, 1〉, respectively. A closed

nonintersecting polygon formed from x-, y-, z-, and w-sticks is called an sh lattice
knot. The number of x-, y-, z-, and w-sticks in a polygon P will be denoted |P|x ,
|P|y , |P|z , and |P|w, respectively, and the total number of sticks used will be |P|.

Figure 2. A trefoil knot in the simple hexagonal lattice.
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The stick number of a knot type K in the lattice, denoted s[K ], is the minimum
number of sticks required to form a polygon of type K . In Figure 2, |P|x = 3,
|P|y = 2, |P|z = 2, |P|w = 4, and |P| = 11. Further, observe that s[31] ≤ 11.

3. Lower bound for stick numbers

Janse van Rensburg and Promislow [1999] established the lower bound for the stick
number of a knot in the simple cubic lattice with three directions x = 〈1, 0, 0〉,
y=〈0, 1, 0〉, and z=〈0, 0, 1〉; it was 6b[K ] where b[K ] is the bridge number of the
knot K (the minimum number of local maxima of any projection of a knot onto any
single vector). The proof guaranteed 2b[K ] sticks in each of the three directions.
Indeed, maximums in the up-down direction, or z-direction, will occur in xy-planes
and each maximum will have two z-sticks at the ends of the arc containing the max-
imum in the xy-plane. We give a similar result here for the simple hexagonal lattice.

Theorem 1 (lower bound for stick numbers). For any knot K in the simple hexago-
nal lattice, s[K ] ≥ 5b[K ].

Proof. A maximum in the w-direction, occurring in an xy-plane, will have two
w-sticks at the ends of the arc containing the maximum in the xy-plane. Note that
using a z-stick at the end of the arc would keep you in the same xy-plane. Since
there are at least b[K ] maxima, we have |P|w ≥ 2b[K ].

A maxima occurring in an xw-plane will have two sticks at the ends of the arc
containing the maximum in the xw-plane — these sticks can be y- or z-sticks. Since
there are at least b[K ] maxima, we have |P|y + |P|z ≥ 2b[K ]. One also consid-
ers maxima occurring in yw-planes and zw-planes to get two more inequalities
summarized below:

|P|w ≥ 2b[K ], (1)

|P|y + |P|z ≥ 2b[K ], (2)

|P|x + |P|z ≥ 2b[K ], (3)

|P|x + |P|y ≥ 2b[K ]. (4)

Summing inequalities (2)–(4) and dividing by 2 yields |P|x + |P|y + |P|z ≥ 3b[K ].
Then adding inequality (1) gives |P| = |P|x + |P|y + |P|z + |P|w ≥ 5b[K ]. �

At this point, we can say that the stick number of any nontrivial knot in the
simple hexagonal lattice is at least 10. However, in [Mann et al. 2012], it was shown
to be 11. In the next section we show that any polygon constructed with ten sticks
in the simple hexagonal lattice is the trivial polygon. Before we proceed, we point
out what must happen if |P| = 5b[K ].

Corollary 2. If |P| = 5b[K ], then |P|x = |P|y = |P|z = 1
2 |P|w = b[K ].
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P1 P2

P6 P3

Figure 3. Three crossing projections of ten stick sh knots.

Proof. Suppose |P|x 6=b[K ], |P|y 6=b[K ], |P|z 6=b[K ], or |P|w 6=2b[K ]. If |P|w>
2b[K ] is combined with |P|x + |P|y + |P|z ≥ 3b[K ], the argument above yields
|P|> 5b[K ]. For the remainder of the argument we may assume |P|w = 2b[K ].

If |P|x < b[K ], then |P|x = b[K ] − n for some n > 0. Inequalities (3) and (4)
imply that |P|y ≥ b[K ]+ n and |P|z ≥ b[K ]+ n. Thus |P| ≥ 5b[K ]+ n > 5b[K ].
Following a similar argument, if |P|y < b[K ] or |P|z < b[K ], then |P| > 5b[K ].
Hence for the remainder of the argument we may assume |P|x ≥ b[K ], |P|y ≥ b[K ]
and |P|z ≥ b[K ]. Observe that since one of these inequalities is strict from our
original assumption, it must happen that |P|> 5b[K ]. �

4. Stick number of the lattice

As mentioned in the previous section, the stick number of any nontrivial knot in the
simple hexagonal lattice is at least 10. The work in this section will show that a sim-
ple hexagonal knot constructed with ten sticks (necessarily using two x-sticks, two
y-sticks, two z-sticks, and four w-sticks from Corollary 2) is the trivial knot. This,
along with the eleven-stick trefoil in Figure 2, will establish the following result.

Theorem 3 (minimum stick number in the simple hexagonal lattice). In the simple
hexagonal lattice, the stick number of any nontrivial knot is at least 11.

Given a ten-stick knot K using two x-sticks, two y-sticks, two z-sticks, and four
w-sticks, consider the projection of K onto the xy-plane. If the projection contains
two line segments laying on top of one another or multiple crossings at one point,
then do a slight perturbation of the knot before projecting. If the projection contains
less than three crossings, then the knot is trivial. There are only a few possibilities for
projections containing three crossings; see Figure 3 for representative projections.

The first two projections are the trivial knot. For the last projection, it must have
alternating crossings to be a nontrivial knot. However, it cannot have alternating
crossings in the hexagonal lattice. Indeed, label the endpoints of the projection P1,
P2, P3, P4, P5, and P6 as in Figure 3. Without loss of generality, suppose that P1 P2

on level i crosses over P3 P4 on level j ; that is, i > j . Alternating crossings gives



STICK NUMBERS IN THE SIMPLE HEXAGONAL LATTICE 507

  

P

Q

PQ

Figure 4. Connecting sh lattice points P and Q with two sticks.

that P3 P4 on level j crosses over P5 P6 on level k and P5 P6 crosses over P1 P2. This
gives i > j > k > i .

5. Upper bound for stick composition

In order to compose sh knots we must identify places on the knots to compose
them; these will be called configurations. To achieve the highest reduction of
sticks and edges in the composition of sh lattice knots, we will compose knots with
configurations in planes parallel to the xy-plane. In particular, we will compose
with configurations in the top xy-plane or the bottom xy-plane of a knot.

Suppose K is a minimal stick conformation in the sh lattice — that is, it can’t be
constructed with fewer sticks. If K contains more than one connected component
in the top xy-plane, then the vertical sticks for one connected component can be
lengthened in order to push that connected component to a higher xy-plane without
increasing the number of sticks used to create K . Thus one may assume that the
top xy-plane (and similarly the bottom xy-plane) contains only one connected
component. The two endpoints P and Q of the connected component can either be
connected via one stick or two sticks since there are no other components to avoid
when creating a path. To see this, consider the angles between the vector

−→
PQ and the

vectors ±〈1, 0, 0〉,±
〈 1

2 ,
√

3
2 , 0

〉
,±
〈
−

1
2 ,
√

3
2 , 0

〉
. If one of the angles is zero, then P

and Q are connected with one stick. If not, then we construct a parallelogram with
P and Q on opposite corners using the two vectors which yield the smallest two
angles from above. Note that PQ forms the major axis of the parallelogram. In this
situation P and Q can be connected via two sticks. An example is given in Figure 4.

Thus after possibly rotating the knot around the z-axis, we have two possible
configurations occurring in the top or bottom xy-plane as shown in Figure 5.

Theorem 4. Given knots K and L in the simple hexagonal lattice,

s[K #L] ≤ s[K ] + s[L] − 3.

Proof. Let K and L be two knots in minimal stick conformations in the simple
hexagonal lattice. We will compose K along a configuration in the bottom xy-plane
and L along a configuration in the top xy-plane. Finally, when expressing K and L
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Configuration A Configuration B

Figure 5. Configurations in sh.

as strings we will choose convenient starting places and orientations to allow for
easier composition.

Case 1. Suppose K and L both have type A configurations. Then the bottom and
top configurations of K and L , respectively, can be viewed as in Figure 6. Let
K = sxn and L = Xm t , where the strings s and t represent what remains of K
and L after the type A configurations are removed. Note that s will begin with a w
and end with a W , whereas t will begin with a W and end with a w. Assuming
that n 6=m, we scale K by m and scale L by n. We have K = s̃xnm and L = Xnm t̃ ,
where s̃ represents s scaled by m and t̃ represents t scaled by n. (In the case that
n = m, s̃ = s and t̃ = t .) We may now compose K and L , and write K #L = s̃ t̃ . At
first glance it may seem that we have removed only two sticks (from the xs and Xs).
However, we have removed two more sticks. The end of s̃ and the beginning of t̃
have combined into one stick instead of two. Similarly the end of t̃ and beginning
of s̃ have combined into one stick. Thus we have a reduction of four sticks for this
case. That is, s[K #L] ≤ s[K ] + s[L] − 4.

Case 2. Suppose K has a type A configuration and L has a type B configuration.
Then the bottom and top configurations of K and L , respectively, can be viewed as
in Figure 7. Let K = sxn and L = Xm tY p, where strings s and t represent what

K L

Figure 6. K and L with type A configurations: bottom and top, respectively.

K L
Figure 7. K with type A configuration and L with type B config-
uration: bottom and top, respectively.
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K L

Figure 8. K and L with type B configurations: bottom and top, respectively.

remains of K and L after the type A and B configurations are removed. Note that s
will begin with a w and end with a W , whereas t will begin with a W and end with
a w. Assuming that n 6=m, we scale K by m and scale L by n. We have K = s̃xnm

and L = Xnm t̃Y np, where s̃ represents s scaled by m and t̃ represents t scaled by n.
(In the case that n = m, s̃ = s and t̃ = t .) We may now compose K and L , and
write K #L = s̃ t̃Y np. Thus we have a reduction of three sticks for this case — the
first for the xs, the second for the Xs and the third for putting end of s̃ together
with beginning of t̃ . Therefore s[K #L] ≤ s[K ] + s[L] − 3.

Case 3. Suppose K and L both have type B configurations. Then the bottom and
top configurations of K and L , respectively, can be viewed as in Figure 8. Let
K = ymsxn and L = X ptY q , where the strings s and t represent what remains of K
and L after the type B configurations are removed. Note that s will begin with a w
and end with a W , whereas t will begin with a W and end with a w. Assuming that
n 6= p, we scale K by p and scale L by n to obtain K = ymp s̃xnp and L = Xnp t̃Y nq ,
with s̃ being s scaled by p, and t̃ being t scaled by n. We may now compose K
and L , and write

K #L =


ymp−nq s̃ t̃ if mp > nq,
s̃ t̃Y nq−mp if mp < nq,
s̃ t̃ if mp = nq.

Thus we have a reduction of at least three sticks for mp 6= nq and a reduction of at
least six sticks for mp = nq . In other words,

s[K #L] ≤
{

s[K ] + s[L] − 3 if mp 6= nq,
s[K ] + s[L] − 6 if mp = nq.

Thus we have a minimum reduction of three sticks over all cases. Hence,

s[K #L] ≤ s[K ] + s[L] − 3. �

6. Knot constructions

Adams, Chu, Crawford, Jensen, Siegel and Zhang [Adams et al. 2012] use con-
structions combined with the lower bound on stick number to establish that the
stick number of the 3-bridge knots 820, 821, and 946 are 18 in the simple cubic
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Figure 9. 16-stick hexagonal 820 knot (left) and 821 knot (right).

lattice. In a similar manner, one considers these knots in the simple hexagonal
lattice. Figures 9 and 10 show these knots built with 16 sticks. Inspection of these
knot constructions does not yield any obvious one stick reductions. Using the
constructions and Theorem 1, one gets the following theorem.

Theorem 5. In the simple hexagonal lattice, knots 820, 821, and 946 have stick
number either 15 or 16.

Another use of knot construction combined with using the lower bound for stick
number can been seen with (p, p+1)-torus knots.

Theorem 6 (stick number for (p, p+1)-torus knots). For a (p, p+1)-torus knot K,
5p ≤ s[K ] ≤ 5p+ 1.

Figure 10. 16-stick hexagonal 946 knot.
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Proof. Consider a (p, p+1)-torus knot K which can be constructed in the simple
hexagonal lattice in the following way:

Yw p X3+p(p−1)/2 y pW x3+α
p−2∏
i=0

(Y 3−i+αw2i+2z2−i+αW 2i+3x3−i+α),

where α = (p− 2)(p− 1)/2 and an exponent on a letter refers to the edge length
of the stick. Notice there are 5p+ 1 sticks used in this construction. In [Schubert
1954], it is shown that b[K ] = p. Using Theorem 1, we have s[K ] ≥ 5p. Therefore,
s[K ] = 5p or s[K ] = 5p+ 1. �

Corollary 7. For a (p, p+1)-torus knot K, 10p− 5≤ s[K #K ] ≤ 10p− 4.

Proof. Using two configurations of type B, one sees from Theorem 4 that

s[K #K ] ≤ 2(5p+ 1)− 6= 10p− 4.

On the other hand, [Schubert 1954] says

b[K #K ] = 2b[K ] − 1= 2p− 1,

and Theorem 1 yields

s[K #K ] ≥ 5b[K ] ≥ 10p− 5. �

7. Further work

With all the constructions in the previous section where it is not obvious how to re-
duce the stick number, it leads one to conjecture that the stick number of a knot is one
more than five times its bridge number. It would be nice to prove this improved lower
bound or find an example to demonstrate why the standing lower bound is sharp.

Conjecture. For any knot K in the simple hexagonal lattice, s[K ] ≥ 5b[K ] + 1.

One could try to extend the results to other lattices such as the face-centered
cubic lattice and the body-centered cubic lattice. Preliminary investigations of
lower bounds for minimal stick number are not great; following similar inequality
arguments for these two lattices yields lower bounds of 7 and 8 respectively for
2-bridge knots but has been conjectured to be 9 and 12 via knot constructions [Mann
et al. 2012]. A cursory inspection of upper bounds for stick numbers of composite
knots suggests that one cannot do better than being subadditive. That is, the stick
number of a composite knot is less than or equal to the sum of the stick numbers.
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