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The A? conjecture holds for graphs of small order

Cole Franks
(Communicated by Ronald Gould)

An L(2, 1)-labeling of a simple graph G is a function f : V(G) — Z such
that if xy € E(G), then |f(x) — f(y)| = 2, and if the distance between x
and y is two, then | f(x) — f(y)| > 1. L(2, 1)-labelings are motivated by radio
channel assignment problems. Denote by A, | (G) the smallest integer such that
there exists an L(2, 1)-labeling of G using the integers {0, ..., 12 ;(G)}. We
prove that A, 1(G) < A2, where A = A(G), if the order of G is no greater than
(LAa/2]1+ 1)(A%2— A+1)— 1. This shows that for graphs no larger than the given
order, the 1992 “A? conjecture” of Griggs and Yeh holds. In fact, we prove more
generally that if L > AZ+1,A>1,and

L—1
Ve =@ -n (| ] +1) -1,
V(G =( ) A
then A, 1 (G) < L — 1. In addition, we exhibit an infinite family of graphs with
21(G)=A*—A+1.

1. Introduction

The channel assignment problem is the determination of assignments of channels
(integers) to stations in such a way that those stations close enough to interfere
receive distant enough channels. Hale [1980] formulated the problem in terms of
T -colorings, which are integer colorings in which adjacent vertices’ colors cannot
differ by a member of a set of integers 7" with {0} C T. Roberts [1988] proposed
a generalization in which closer transmitters would be required to have channels
that differed by more than those of the slightly more distant transmitters, adding a
condition for nonadjacent vertices as well. The L(2, 1)-labeling problem was first
studied by Griggs and Yeh [1992] in response to Roberts’ proposal. An L(2, 1)-
labeling of a graph G is an integer labeling of G in which two vertices at distance
one from each other must have labels differing by at least 2, and those at distance
two must differ by at least 1. Denote by A, 1 (G) the smallest number such that there
exists an L(2, 1)-labeling of G with the difference 1, ;(G) between the highest and

MSC2010: 97K30.
Keywords: L(2,1)-labeling, graph labeling, channel assignment.
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lowest label. If there is no possibility for confusion, A 1 (G) is sometimes written
A2.1. The L(2, 1)-labeling problem has been studied extensively with the central
goal of finding bounds on X, ;. Griggs and Yeh bounded the A, ; number for cycles,
paths, trees, and the n-cube. They also proved the bound A | < A(G)?+2A(G),
where A(G) is the maximum degree over the set of degrees of vertices in V(G). In
this paper, we will write A when the meaning is clear from context. Chang and Kuo
[1996] improved the bound to A2+ A, and by modifying their algorithm, Gongalves
[2007] reduced the bound to A%+ A —2. Bounds on the A2,1 number have been found
for many subclasses of graphs, such as Sakai’s bound [1991] of (A + 3)?/4 for
chordal graphs — graphs containing no induced cycle of length four. All examples
tested have corroborated the conjecture Griggs and Yeh made in their 1992 paper:

A? conjecture. If A(G) > 2, then A, | < A%

However, the conjecture remains unproven, and it is difficult to test the bound for
graphs of any significant size. The largest step towards the proof of the conjecture
was made by Havet, Reed, and Sereni [2012] who proved that the conjecture
holds for all graphs with A larger than some Ag, but Ag ~ 10%°. Consequently,
12.1(G) < A% + C for some absolute constant C. The upper bound set by the
conjecture, if proven, would be tight — the Moore graphs are known to satisfy
A2.1 = A? [Griggs and Yeh 1992].

2. Preliminaries

The proof of Theorem 3 involves a classic result of Pdsa about the existence of
Hamilton cycles and paths in graphs of high degree (see [Kronk 1969]). In this
respect, our argument has a similar flavor to the proof in [Griggs and Yeh 1992]
that Ap | < AZ? for graphs of order less than A2 + 1. In addition, we will use the
powerful result of Szemerédi and Hajnal [1970] on equitable colorings.

Theorem (Pésa). Let G have n > 3 vertices. If for every k, 1 <k <(n—1)/2 and
{v:d(v) <k}| <k, then G is Hamiltonian.

Corollary 1. Let G have n > 2 vertices. If for every k, 0 < k < (n —2)/2 and
{v :d(v) <k}| <k, then G has a Hamilton path.

Proof. The corollary follows easily by adding a dominating vertex to G and
observing that by Pdsa’s theorem the new graph is Hamiltonian. (]

Theorem (Szemerédi, Hajnal). If A(G) <r, then G can be equitably colored with
r + 1 colors; that is, the sizes of the color classes differ by at most one.

See also [Kierstead et al. 2010; Kierstead and Kostochka 2008].
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3. Main result

The following lemma is the key ingredient in the proof of the main result. The
lemma requires a concept which we will call the square color graph. Let G be a
graph. Let C, ..., C;_1 be the color classes of a proper coloring C of G? with [
colors, where G2 is the graph with V(G?) = V(G) and E(G?) = {xy|d(x, y) <2}.
The square color graph of C, denoted G, is the graph with

V(G)={Co,...,Ci-1} and E(G)={C;C;|G[C;UC/] contains an edge of G}.
Here G[C; U C|] denotes the induced subgraph formed by the vertices in C; U C;.

Lemma 2. Let G be a graph, and let C be a proper coloring of G* with | colors.
If the complement G° of the square color graph of C has a Hamilton path, then
r1(G) <l -1

Proof. By assumption, G¢ has a Hamiltonian path P = {pg, p1, ..., pi—1}. Recall
that the vertices of P are color classes partitioning G. Let f : V(G) — Z be defined
as f :v > i, where i is the unique index such that v € p;. We now check that f is
an L(2, 1)-labeling of G. If d(x, y) =2, then x and y are given two different labels
because C is a coloring of G2. If d(x, y) = 1, then x and y are in two distinct color
classes p; and p; such that p; p; € E(G). Then p;p; ¢ E(G°),soi # j=£1 because
otherwise p; p; € E(P). Therefore | f(x) — f(y)| > 2, and f is an L(2, 1)-labeling
for G. (I

Theorem 3. Let G be a graph with A = A(G) > 1, and let L be an integer with
L>A?+1. Then 21 (G) < L —11if

V(G)| < <L—A)(LL2—‘AIJ + 1) =

Before the proof of Theorem 3, we will discuss two corollaries that have impli-
cations for the A? conjecture.

Corollary 4. Let G be a graph of with A = A(G) > 1. Then A21(G) < A? if

V(G)| < Q%J + 1)(A2— At -1,

Proof. Using Theorem 3 with L = A2 + 1 gives the desired result. (I

Corollary 4 significantly expands the known orders of graphs that satisfy the
A? conjecture; it does so more dramatically as A(G) increases. For A(G) = 3,
|V (G)| < 13 suffices as opposed to the previously known |V (G)| < 10 [Griggs and
Yeh 1992]. For A(G) =4, we have |V (G)| <38 as opposed to |V (G)| <17 [loc. cit.].
If G is the Hoffman—Singleton graph, then A(G) =7, |V(G)| = 50 = A?+1,
and, in fact, Ay 1(G) = 49 = A? [loc. cit.]. It might seem productive to look
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among minor variations of the Hoffman—Singleton graph for counterexamples to
the A2 conjecture, but Corollary 4 suggests otherwise — the conjecture holds if
A(G) =7 and |V(G)| < 169. The bounds on |V (G)| established in Corollary 4
grow quickly with A, as they are cubic in A rather than quadratic as in [loc. cit.].

For some |V (G)|, we can also use Theorem 3 to find upper bounds on A, | (G)
that are stronger than the best known bound of Gongalves [loc. cit.]. The bound on
|V (G)] in the following corollary is larger than the bound in Theorem 3.

Corollary 5. Let G be a graph with A = A(G) > 3. Then A5,1(G) < A2+ A=210f

V(G < Q%J + 1)(A2—2) 1

Proof. Apply Theorem 3 with L = A> 4+ A — 2. This gives

V(G| < (L%%— %J +1>(A2—2)— I

Since we have assumed A >3, we have 0 < 1/2 —-3/(2A) < 1/2, so

-2 2] m

We now proceed to the proof of Theorem 3.

Proof. Let L be as in Theorem 3. We will show that for any integers g, r with
q>0,0<r<L-—1,and
Lq+r§M=(L—A)<LL—4J+1>—1,
2A
if |[V(G)| = Lg +r and A(G) = A, then G has an L(2, 1)-labeling with span
at most L — 1. This is sufficient to prove Theorem 3, as for any integer n, there
exist unique integers ¢ > 0 and r € {0, ..., L — 1} with Lg 4+ r = n. Suppose
|V(G)| = Lg +r. Recall that L > A2+1>A(G?+1. By the Szemerédi—Hajnal
theorem, G? has an equitable coloring C with L color classes. For convenience,
we will use all L color classes even if several are empty. This means L — r classes
have ¢ vertices and r classes have ¢ + 1 vertices. Our goal is to prove that the
complement of the square color graph of C, or G¢, has a Hamiltonian path. Note
that dg(V) < A|V| for all V € V(G). Write the degree of V in G as d.(V).
Ifg <|(L-1)/2A] — 1, then
A(g+1) < A{L—_IJ < {L—_IJ
- 2A | T 2

sothat §(G°) > L—1—|(L—1)/2] > (L —1)/2, and the conditions of Corollary 1
are satisfied. Therefore G¢ has a Hamiltonian path.
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Otherwise, ¢ = [(L —1)/2A] and

L—-1
r§L—1—A<L A J+1>5L—1

because otherwise Lg +r > M.
Now suppose k is an integer with 0 < k < (L — 2)/2 as in Corollary 1. If
d.(V) <k, then

LTZ>L—1—dg(V)>L—1—A|V|

sothat |[V| > (1/A)(L—1—(L—-2)/2)=(L —1)/2A+1/2A > gq. Therefore
|V|=¢q + 1, so we know there are at most r vertices with d.(V) < k. For any such
vertex V,

dc(V)ZL—1—(q+1)A:L—1—AQL2A1J+1)zrz(),

Now the conditions of Corollary 1 are satisfied, so G¢ still has a Hamiltonian
path. From Lemma 2, G¢ having a Hamiltonian path implies that 1, 1G <L —1. As

L—1 L—1
Lq+L—1—AQKJ+1)=(L—A)Q A J—|—1>—1=M

this argument works for any |V (G)| < M. O

Corollary 6. Let G be a graph of order n with A = A(G) > 1, and let L be an
integer with L > A* 4 1. If

n<(L— A)QLzAlJ“) 1,

then there is an L(2, 1)-labeling of G with a span at most L — 1 that is equitable. If
n > L, the labeling is no-hole.

Proof. The proof follows immediately from the proof of Theorem 3. U

The next corollary concerns algorithms involved in finding these labelings. In
general, determining if A5 ;(G) < k for positive integers k > 4 is NP-complete
[Fiala et al. 2001].

Corollary 7. Let G be a graph of order n with A= A(G) > 1and L > A>41. There
is an algorithm with polynomial running time in n to compute an L(2, 1)-labeling
of G with span at most L — 1 for all n and L such that

n=w-m(| 55 +1)-1
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Proof. If L > 2n + 1, the appropriate labeling can be obtained by labeling the
vertices 0, 2, ..., 2n in any order [Griggs and Yeh 1992]. This can clearly be
done in polynomial time. Otherwise, in [Kierstead et al. 2010] there is shown to
be an algorithm, polynomial in 7, to equitably color G> with L colors. Degree
sequences satisfying the conditions of P6sa’s theorem also satisfy those of Chvatal’s
theorem [Bondy and Chvétal 1976], and the paper’s authors exhibit an algorithm,
polynomial in p, to find Hamilton cycles in graphs of order p which satisfy the
conditions of Chvétal’s theorem. From the proofs of Lemma 2 and Corollary 1, we
see that to find the labeling, it is enough find a Hamilton cycle in a certain graph,
namely G with a dominating vertex added, of order L + 1 < 2n + 2 that satisfies
the conditions of Pésa’s theorem. From [Bondy and Chvétal 1976], we can do this
with an algorithm that is polynomial in L + 1, which must also be polynomial in 7.
These two algorithms in succession yield the desired algorithm. ([

4. Comments on diameter-2 graphs

It was previously known that diameter-2 graphs satisfy the A? conjecture, and for
other than a few exceptional graphs, A% — 1 suffices to label diameter-2 graphs
[Griggs and Yeh 1992]. In this section, we knock this bound down by one, showing
that A? — 2 suffices to label all but a finite handful of diameter-2 graphs.

Theorem 8 [Griggs and Yeh 1992]. The A? conjecture holds for diameter-2 graphs.
In addition, A>1 < A* — 1 for diameter-2 graphs with A > 2 except for C3, C4, and
the Moore graphs. For these exceptional graphs, k.1 = A2,

The proof of these facts rely on Brooks’ theorem and several results from Griggs
and Yeh:

Theorem 9 (Brooks [Lovasz 1975]). If G is an odd cycle or a complete graph,
x(G) < A+ 1; otherwise, x (G) < A.

Lemma 10 [Griggs and Yeh 1992]. 12,1(G) < V(G| + x(G) —2.

Lemma 11 [Griggs and Yeh 1992]. There exists an injective L(2, 1)-labeling
of a graph G with span |V (G)| — 1 if and only if the complement of G has a
Hamilton path.
Theorem 12 [Griggs and Yeh 1992]. Let C,, be a cycle on n vertices. Then
A2, 1(Cy) =4

We now proceed to prove Theorem 8.
Proof. If A =2, one can verify the theorem readily using Theorem 12. Suppose

A > 3. We now split into cases.
In the first case, suppose A > (|V(G)|)/2. Lemma 10 implies

12.1(G) <2A 4 x(G) —2.
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If G is a complete graph, then clearly 1, 1(G) =2A(G). As A > 3, G is not an
odd cycle. Otherwise, 2A + x (G) —2 < 3A — 2 by Brooks’ theorem. Note that in
both cases, A(G) > 3 implies that A> 1(G) < A% —2.

In the second case, suppose A < (|V(G)|—1)/2. Then 6(G°) > (|V(G)|—1)/2.
Also, we have assumed G has A > 3, so |V(G)| = 7. By Corollary 1, G¢ has
a Hamilton path. By Lemma 11, there is an L(2, 1)-labeling of G with span
|V (G)| — 1. As the Moore graphs are the only diameter-2 graphs with |V (G)| =
A2 + 1, Theorem 8 holds. (|

In fact, we can do better by the following result:

Theorem 13 [Erdés et al. 1980]. Except Cy, there is no diameter-2 graph of or-
der A?.

This and the proof of Theorem 8 imply the following theorem.

Theorem 14. With the exception of Cs, Cy4, Cs, and the Moore graphs, any diameter-
2 graph with A(G) > 2 has »3,1(G) < A*> -2,

We also have some comments on a special family of diameter-2 graphs that have
large A 1 number. In order to do this, we must define the points of the Galois plane,
denoted PG, (n). Let F be a finite field of order n. Let P = F3\ {(0, 0, 0)}. Define
an equivalence relation = on P by (x1, x2, x3) = (y1, ¥2, ¥3) <= (X1, X2, x3) =
(cy1, cy2, cy3) for some ¢ € F. The points of PG,(n) are the equivalence classes.

Definition 15. The polarity graph of PG,(n), denoted H, is the graph with the
points of PG;(n) as vertices and with two vertices (x1, x3, x3) and (y1, y2, ¥3)
adjacent if and only if y;x; + y2x2 4 y3x3 =0.

By the properties of PG, (n), we know that the diameter of H is two, A(H) =
n+ 1, and its order is n> +n+ 1 = A? — A + 1 [Karteszi 1976]. This implies that
A2 1(H) > A?% — A. In fact, Yeh showed that A 1(H) = A2 —A [Griggs and Yeh
1992]. This is an infinite family of graphs, as finite fields exist for n = p* with p
prime.

However, we can improve this by one. This construction follows that of Erdds,
Fajtlowicz and Hoffman [Erdds et al. 1980]. A vertex (x, y, z) in H has degree n if
and only if the norm x24y?+z? is equal to 0. Suppose F has characteristic 2 and the
order of F isn. If (a, b, ¢) is in H then it is adjacent to the point (b+c, a+c, a+b),
which has norm equal to O and is also in H. In other words, every vertex in H
is adjacent to a vertex of degree n. We proceed to find the number of points of
degree n in H. Since F has characteristic 2, f(x) = x? is injective and hence
surjective on F. This means we can choose x? and y? freely as long as one of them
is nonzero, and then z? is determined. We must also eliminate proportional pairs,
so in total this leaves (n? — 1) /(n—1) =n+ 1 vertices of degree n.
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Now we can make an (n 4 1)-regular, diameter-2 graph H(n) by adding a vertex
that is adjacent to all vertices of degree n. This graph is of order n*> +n +2 =
AZ—A+2.

Theorem 16. The graph H(n) has hp (H) = A2 — A + 1.

Proof. Because H has diameter 2, )\2,1(171) > A2 - A+1. As A > 3, we have
A<(A2=—A+1/2=(V(H)|-1)/2. By the proof of Theorem 8, A, 1 (H) <
[V(G)|—1=A?2—A+1. O

Since H (n) exists for all n = 2, this is an infinite family of graphs.

Acknowledgements

The author would like to thank J. R. Griggs for helpful suggestions and interesting
discussions, as well as J.-S. Sereni for his astute observations which helped resolve
an error. The author also would like to thank the University of South Carolina for
its support.

References

[Bondy and Chvatal 1976] J. A. Bondy and V. Chvital, “A method in graph theory”, Discrete Math.
15:2 (1976), 111-135. MR 54 #2531

[Chang and Kuo 1996] G. J. Chang and D. Kuo, “The L (2, 1)-labeling problem on graphs”, SIAM J.
Discrete Math. 9:2 (1996), 309-316. MR 97b:05132

[Erdés et al. 1980] P. Erdés, S. Fajtlowicz, and A. J. Hoffman, “Maximum degree in graphs of
diameter 27, Networks 10:1 (1980), 87-90. MR 81b:05061 Zbl 0427.05042

[Fiala et al. 2001] J. Fiala, T. Kloks, and J. Kratochvil, “Fixed-parameter complexity of A-labelings”,
Discrete Appl. Math. 113:1 (2001), 59-72. MR 2002h:68075

[Gongalves 2007] D. Gongalves, “On the L(p, 1)-labelling of graphs”, pp. 81-86 in EUROCOMB
’05: combinatorics, graph theory and applications (Berlin, 2005), vol. 5, Elsevier, Amsterdam, 2007.

[Griggs and Yeh 1992] J. R. Griggs and R. K. Yeh, “Labelling graphs with a condition at distance 2",
SIAM J. Discrete Math. 5:4 (1992), 586-595. MR 93h:05141

[Hajnal and Szemerédi 1970] A. Hajnal and E. Szemerédi, “Proof of a conjecture of P. Erdds”, pp.
601-623 in Combinatorial theory and its applications, Il (Balatonfiired, 1969), North-Holland,
Amsterdam, 1970. MR 45 #6661

[Hale 1980] W. Hale, “Frequency assignment: Theory and applications”, pp. 1497-1514 in Proceed-
ings of the IEEE, vol. 68, IEEE, 1980.

[Havet et al. 2012] F. Havet, B. Reed, and J.-S. Sereni, “Griggs and Yeh’s conjecture and L(p, 1)-
labelings”, SIAM J. Discrete Math. 26:1 (2012), 145-168. MR 2902638

[Karteszi 1976] F. Karteszi, Introduction to finite geometries, Texts in Advanced Mathematics 2,
North-Holland, Amsterdam, 1976. MR 54 #11156 Zbl 0325.50001

[Kierstead and Kostochka 2008] H. A. Kierstead and A. V. Kostochka, “A short proof of the Hajnal—
Szemerédi theorem on equitable colouring”, Combin. Probab. Comput. 17:2 (2008), 265-270.
MR 2009a:05071


http://dx.doi.org/10.1016/0012-365X(76)90078-9
http://msp.org/idx/mr/54:2531
http://dx.doi.org/10.1137/S0895480193245339
http://msp.org/idx/mr/97b:05132
http://dx.doi.org/10.1002/net.3230100109
http://dx.doi.org/10.1002/net.3230100109
http://msp.org/idx/mr/81b:05061
http://msp.org/idx/zbl/0427.05042
http://dx.doi.org/10.1016/S0166-218X(00)00387-5
http://msp.org/idx/mr/2002h:68075
http://dx.doi.org/10.1137/0405048
http://msp.org/idx/mr/93h:05141
http://msp.org/idx/mr/45:6661
http://dx.doi.org/10.1109/PROC.1980.11899
http://dx.doi.org/10.1137/090763998
http://dx.doi.org/10.1137/090763998
http://msp.org/idx/mr/2902638
http://msp.org/idx/mr/54:11156
http://msp.org/idx/zbl/0325.50001
http://dx.doi.org/10.1017/S0963548307008619
http://dx.doi.org/10.1017/S0963548307008619
http://msp.org/idx/mr/2009a:05071

THE A2 CONJECTURE HOLDS FOR GRAPHS OF SMALL ORDER 549

[Kierstead et al. 2010] H. A. Kierstead, A. V. Kostochka, M. Mydlarz, and E. Szemerédi, “A fast
algorithm for equitable coloring”, Combinatorica 30:2 (2010), 217-224. MR 2011h:05097

[Kronk 1969] H. V. Kronk, “Variations on a theorem of Pésa”, pp. 193—197 in The many facets of
graph theory, edited by G. Chartrand and S. F. Kapoor, Lecture Notes in Math. 110, Springer, Berlin,
1969. MR 41 #99

[Lovasz 1975] L. Lovész, “Three short proofs in graph theory”, J. Combinatorial Theory Ser. B 19:3
(1975), 269-271. MR 53 #211 Zbl 0322.05142

[Roberts 1988] F. S. Roberts, 1988. private communication to J. R. Griggs.
[Sakai 1991] D. Sakai, 1991. private communication to J. R. Griggs.

Received: 2013-02-15 Revised: 2013-04-15 Accepted: 2013-10-02

franks@math.rutgers.edu Department of Mathematics, Rutgers University,
Hill Center - Busch Campus, 110 Frelinghuysen Road,
Piscataway, NJ 08854, United States

mathematical sciences publishers :'msp


http://dx.doi.org/10.1007/s00493-010-2483-5
http://dx.doi.org/10.1007/s00493-010-2483-5
http://msp.org/idx/mr/2011h:05097
http://msp.org/idx/mr/41:99
http://dx.doi.org/10.1016/0095-8956(75)90089-1
http://msp.org/idx/mr/53:211
http://msp.org/idx/zbl/0322.05142
mailto:franks@math.rutgers.edu
http://msp.org




INVOLVE 8:4 (2015)
dx.doi.org/10.2140/involve.2015.8.551

Linear symplectomorphisms
as R-Lagrangian subspaces

Chris Hellmann, Brennan Langenbach and Michael VanValkenburgh
(Communicated by Ravi Vakil)

The graph of a real linear symplectomorphism is an R-Lagrangian subspace of
a complex symplectic vector space. The restriction of the complex symplectic
form is thus purely imaginary and may be expressed in terms of the generating
function of the transformation. We provide explicit formulas; moreover, as an
application, we give an explicit general formula for the metaplectic representation
of the real symplectic group.

1. Introduction

1.1. Overview. As part of our symplectic upbringing, our ancestors impressed
upon us the Symplectic Creed:

Everything is a Lagrangian submanifold [Weinstein 1981].

Obviously false if taken literally, rather than a “creed” it might be called the
Maslow—Weinstein hammer, or, in French, la déformation professionnelle symplec-
tique, saying that “if all you have is a [symplectic form], everything looks like a
[Lagrangian submanifold],” or, in other words, to a symplectic geometer, everything
should be expressed in terms of Lagrangian submanifolds. In this paper we consider
a vector space endowed with rwo symplectic forms, namely the real and imaginary
parts Re »® and Im »® of a complex symplectic form »®, and begin with the simple
observation that

Not every Lagrangian submanifold [with respect to Re w®] is a Lagrangian
submanifold [with respect to Im .

We study its implications for the classification of real linear symplectomorphisms
‘H, as the graph of # is essentially by definition a Lagrangian subspace with respect
to Re w®; we ask, with some abuse of language:

MSC2010: 37J10, 51A50, 70H1S, 81S10.

Keywords: complex symplectic linear algebra, linear symplectomorphisms, Lagrangian
submanifolds, the metaplectic representation.
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Open problem. Is every 2n x 2n skew-symmetric matrix of the form Im w® | graph
for some H?

We believe that an answer would shed some light on the structure of linear
symplectomorphisms. While our primary reason for writing this article is to
precisely formulate the above open problem, which we do in Section 1.2, our
primary technical result is to rewrite it in terms of generating functions; after all, if
one guiding principle is the Symplectic Creed, another is that “symplectic topology
is the geometry of generating functions” [Viterbo 1992]. Or, to go further back,
while Sir William Rowan Hamilton first conceived of generating functions (or as
he called them, characteristic functions) as mathematical tools in his symplectic
formulation of optics, he later found, in his symplectic formulation of classical
mechanics, that the generating function for a physical system is the least action
function, in a sense that we will not make precise [Abraham and Marsden 1978;
Hamilton 1834]; this gives a striking connection with the calculus of variations.
Moreover, in Fresnel optics and quantum mechanics, the generating function is
used as the phase function of an oscillatory integral operator; the integral operator
is said to “quantize” the corresponding symplectomorphism [Grigis and Sjostrand
1994; Guillemin and Sternberg 1984]. (Loosely speaking, when differentiating
the integral, one finds that the phase function must satisfy the Hamilton—Jacobi
equation.) This topic will be touched upon in Section 3. For us, the generating
function corresponding to the linear symplectomorphism # is the scalar-valued
function @ in our main theorem:

Theorem 1. For each H € Sp(2n, R) there exists a quadratic form ® : C x Rg" —-R
such that

(e 28 .00
graphe H = {(Z 2 3z (Z,9)>- 30 (2,9)—0}’

and the restriction of w® to graph¢ H is given by

of ((z -282.0), (w. 252w, n)))

n  2n 2%

9 R
=2>"> me—wif)+2 > Wy —w;Zm). (1

Moreover, our construction provides an explicit general formula for ®.

Our notation will be explained in the following subsection, along with the necessary
background and a restatement of the open problem. We prove the theorem in
Section 2, and in Section 3 we show how our construction seems to adequately
answer a question of Folland [1989] regarding the metaplectic representation. We
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conclude with a broad indication of future work. In the Appendix we give addi-
tional linear-algebraic background and some new elementary results relevant to our
problem, and also give an additional restatement of our open problem.

1.2. Background and restatement of the problem. In a real symplectic vector
space there is already a natural complex structure; the model example is R*" with
the 2n x 2n matrix J = (9 7} ), where of course 7% = —I. What we mean by
“complex symplectic linear algebra” is something else; we instead consider C*"
with the above matrix 7, that is, we consider

C()C:dej/\dzj' OHCZXC?
=1

(a nondegenerate alternating bilinear form over C). The basic formalism of complex
symplectic linear algebra is not new; indeed, complex symplectic structures naturally
appear in the theory of differential equations and have been studied through that lens
(see, for example, [Schapira 1981] and [Sjostrand 1982], or [Everitt and Markus
2004] for another perspective). The point of view of this paper is that elementary
linear-algebraic aspects remain unexplored in the complex case and may help us
better understand the real case.

A symplectic vector space over a field' K is by definition a pair (V, @), where
V is a finite-dimensional vector space over K and w is a nondegenerate alternating
bilinear form on V. The basic example is R} x R with the symplectic form
w = Z?:l d%‘j /\deZ

n
o((x, &), (', &) =Y (&x; —x;&)). )
j=1
In fact, this is essentially the only example: for a general symplectic vector space
(V, w) over a field K one can find a basis {ey, ..., e, fi1, ..., fn} for V such that

w(ej,e) =0, o(fj, fi)=0, o(fj,e)=30jk for all j, k.

Such a basis is called a symplectic basis, and w is of the form (2) in these coordinates.
(In particular, a symplectic vector space is necessarily even-dimensional.) Note
that w vanishes on the span of the e;, and it vanishes on the span of the f;; such
a subspace is called a Lagrangian subspace: a maximal subspace on which w
vanishes. (A Lagrangian subspace of V is necessarily of dimension 7.)

The symplectic formalism is fundamental in Hamiltonian mechanics: the sym-
plectic form provides an isomorphism between tangent space and cotangent space,

IDuistermaat’s book [1996] on Fourier integral operators contains a brief treatment of symplectic
vector spaces over a general field.
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mapping the Hamiltonian vector field of a function f to the differential of f:
df =w(-, Hy).
A linear symplectomorphism T on (V, w) is a linear isomorphism on V such
that 7*w = w, that is,
o(Tv, Tv) =w(v,v') forallv,v' € V.
This is equivalent to the property that a symplectic basis is mapped to a symplectic

basis.
We now let (V, w) be a real symplectic vector space. Then

(VxV,0o®—w)
is a real symplectic vector space. We write wy = w @ —w so that, by definition,
wo((v, w), V', w")) = w(v,v) — oW, w).

The following classical result (see [Tao 2012] for a broad perspective) justifies this
choice of the symplectic form:

Amap H :V — V is a linear symplectomorphism if and only if its graph

{(v, H(v)) : v € V} is a Lagrangian subspace of (V x V, ay).

For a basic example, let

HRY xR - RE xR, (x,8) = (v, m),

be a linear symplectomorphism. Then graph # is a Lagrangian subspace for

n
of = "d; ndx; —dn; Ady;.
j=1
The point of view of this paper is to consider graph # as an R-linear subspace of
a complex symplectic vector space. After all, with z; = x; +iy; and ¢; =§&; +in;,
we have the complex symplectic form

b = ng‘j Adzj onC] x Cy,
j=1

which induces the two real symplectic forms

n n
Rew® = ngj ANdxj—dn; Ady;, Imw® = stj ANdyj+dnj Ndx;
j=1 J=1
on [F\EJZC”% X [Rif,’fn. We then say that an R-linear 2n-dimensional subspace of [R{)ch‘é x R2"

y.n
is an R-Lagrangian subspace if it is Lagrangian with respect to Re w®, and an
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I-Lagrangian subspace if it is Lagrangian with respect to Im w®. Thus the graph of
H: R;‘Z’E — R% may be considered as an R-Lagrangian subspace of (C7 x (D:f, ®).
Writing a symplectic matrix H € Sp(2n, R) as H = (é g), we have

graph 1 = {((x, £), (Ax + BE, Cx + D§)) : (x, £) € R*"};
or, in terms of (z, ¢), we have
graphe H ={(x +i(Ax + B§),§ +i(Cx+ D§)) : (x,8) € Rz”}.

Thus
C ; C
w |graphq:7-£ =iImw Igraph"H
is given by

" ((x+i(Ax + B&), & +i(Cx + D§)), (x'+i(Ax'+ B&'), &' +i(Cx'+ Dg")))
c'—c —AT-D\ (x
— (T T
=il )<A+DT B—BT) (s)
The symplectic form Re w® vanishes, but the symplectic form Im w® might not
vanish; that is, graphp H is R-Lagrangian but not necessarily /-Lagrangian.

We have thus defined a map from the group of symplectic matrices to the space
of skew-symmetric matrices

A B c'—C -A"-D
X :Sp(2n, R) — so(2n, R), (C D)H (A—i—DT B—BT>'

We can thus restate our open problem:
Open problem. Is the map X : Sp(2n, R) — s0(2n, R) a surjection?

While we do not solve this problem, the main result of the paper is Theorem 1;
we can explicitly construct a generating function @ for # and thus give an alternate
characterization of a)C| eraph.. # and hence of X.

2. In terms of generating functions: the proof of the theorem

Generating functions (in the sense of symplectic geometry) were discovered by
Sir William Rowan Hamilton in his extensive work on optics. In modern language
(and in the linear case), light rays are specified by the following data: [Rii is a plane
of initial positions perpendicular to the optical axis of the system, £ € R? are the
initial “directions” (multiplied by the index of refraction), Ri is a plane of terminal
positions, and 7 € R? are the terminal directions. The spaces Ri, ¢ and R?n are given
the standard symplectic structures. Taken piece by piece, the optical system consists
of a sequence of reflections and refractions for each light ray, the laws of which
were long known; Hamilton’s discovery was that, taken as a whole, the optical
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system is determined by a single function, the generating function, or, as Hamilton
called it, the characteristic function, of the optical system. The transformation from
initial conditions to terminal conditions is a symplectomorphism expressible in
terms of a single scalar-valued function, “by which means optics acquires, as it
seems to me, an uniformity and simplicity in which it has been hitherto deficient”
[Hamilton 1828, Section IV, Paragraph 20].?

The optical framework gives an intuitive reason why, in the symplectic matrix
H = (é g), the rank of B plays a special role in characterizing H and thus its
generating function. Again, H maps the initial (position, direction)-pair (x, &) to
the terminal (position, direction)-pair

v\ _ (Ax+ B§

n) \Cx+DEg)"
The case B = 0 corresponds to perfect focusing: all the rays from a given position x
arrive at the same position y, resulting in a perfect image. And the case det B # 0
corresponds to no such focusing: two rays with initial position x but different initial

directions must arrive at different positions y. (See [Guillemin and Sternberg 1984]
for an exposition of symplectic techniques in optics.)

2.1. When B is invertible. We recall that
graphe H = {(x +i(Ax + BE), & +i(Cx + D§)) : (x, ) e R*"},

taken over the reals, is an R-Lagrangian subspace of (C7 x (CZ', %), and we note
that

7 :graphe H —> C", (2,0) 2,

is an R-linear transformation whose kernel is given by (x, &) € {0} x ker B. Thus
it is an R-linear isomorphism if and only if B is invertible. In this case, the general
theory of symplectic geometry gives the existence of a real C* function ® defined
on graphg H such that

_ _H 9P ) n
graphCH—{<z, 28Z(z)).ze<l§ }

2There are different types of generating functions in symplectic geometry, and, as Arnold writes,
“[the apparatus of generating functions] is unfortunately noninvariant and it uses, in an essential
way, the coordinate structure in phase space” [Arnold 1978, Section 47]. For our purposes, we may
take the term “generating function” to broadly mean a scalar-valued function which generates a
symplectomorphism (or, more generally, a Lagrangian submanifold) in the same sense that a potential
function generates a conservative vector field. Our generating functions are denoted by the symbol &
below.
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Hence if det B # 0, then
graphe H = {(x +i(Ax + BE), & +i(Cx + D§)) : (x, &) e R*}
={(z. —2(09/92)(2)) : z € C"}
={(p+iq, B~'(¢—Ap)+i(Cp+DB~'(q—Ap))): p+iqeC"},
where we write z = p +igq, so that
®(p.q)=3p" B~'Ap—p"B g+ 39" DB 4. 3)

This function appears in [Folland 1989, Equation (4.54)] and in [Guillemin and
Sternberg 1984, Section 11]. (Note that B~'A and DB~ are symmetric since #
is symplectic.) Substituting p = x and ¢ = Ax + B&, we arrive at the following
expression, with the obvious abuse of notation:

O(x, &) =3x" ATCx +x"C"Bg + 16" B' D¢. 4)
Or, writing @ with respect to z and z, we have
®(x)= 4§z (B'A+2iB™' -~ DB ')z
+ 1T BA-iBT) ' +iBT '+ DB
+3z"(B'A—2iB™' —~DB7')z.
Thus

P 1 p—1 cp—1 | . pT\—1 —1
— | =3B A—iB” +i(B")” +DB7).
0707

We can directly compute w® restricted to graphg # in terms of z and Z:

I L . P
(@ 2520). (2 2520)) =sm(Tai(52 )4)

BRE
T 0707

=2

(22} — Z7)-
If we substitute

z=x+i(Ax + B&),

7 =x"+i(Ax" + BE'),

then after a lengthy mechanical calculation we recover the expression

a)C(<z, -2220). (=, —2%’@’)))

2
=22 e iz =z =i (x7 §7) X(H) <x>

I 8z,82k Sl
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2.2. When B is not invertible. When B is not invertible, we seek
®=d(z,0) € C¥C" xRY)
such that
D 0d
graphe H =12z, —2—(2,60) | : —(2,0) =07%. )
0z a0

We follow the general method outlined by Guillemin and Sternberg [1977].
Let

W =graphp H, X ={(z,0);z€C"}, Y ={(0,¢);¢eC"}.

Since W is an R-Lagrangian subspace, we know that W NY and PW C X are

orthogonal with respect to Re w®, where P is the projection onto X along Y. Indeed,

WNY ={(0,&+iDE): £ eker B}, PW ={(x+i(Ax+ B£),0): (x, &) € R*"},
and we can check directly that, with £ € ker B,
®"((0,& +iDE), (x' +i(Ax'+ BE"),0) = i[¢T(A+ DT)x' + &7 B'].

Since graphg  is not a C-linear subspace but an R-linear subspace, for now we
prefer to write

wny ={(@,é&;0, D§) : £ € ker B},
PW = {(x,0; Ax + BE,0) : (x, £) € R*"}.

We note that PW & (W NY) has real dimension 2n, hence is a Lagrangian subspace
of (R*", Rew").

We seek to write graph H as the graph of a function from PW & (W NY) to
a complementary Lagrangian subspace; as a first step, we choose a convenient
symplectic basis. We let {by, ..., by} be an orthonormal basis for ker B and extend
to an orthonormal basis {b, ..., b,} for R", so that

{(0,0;;0,Dbj):j=1,...,k}
is a basis for WNY, and
{(0,0; Bb;,0): j=k+1,...,n}U{(b;,0; Ab;,0): j=1,...,n}
is a basis for PW. We then extend to the following symplectic basis for (R**, Re »®):
{(0,0; Ab;,0): j=1,...,k} < {(0,b;;0,Dbj): j=1,...,k},

{(0,0;Bbj,O):j=k—|—1,...,n}<—>{(O,ATﬁj;O,ﬁj):j=k+1,...,n}, 6)
{(D;,0;Ab;,0):j=1,...,n} <> {(0,-b;;0,0): j=1,...,n},
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. n 1
where the {8;};_, ., satisfy

{ATﬂj € (ker B)* =Im BT,

T (N
byj-B ,szfslj forall J e{k+1,...,n}.

One advantage of using the particular symplectic basis (6) is that the vectors on the
left are all “horizontal,” and the vectors on the right are all “vertical”. (The arrows
signify the symplectically dual pairs.)

The following proposition implies the existence of {8;}"

j=k+1-

Proposition 2. The set {Aby, ..., Aby, Bbyt1, ..., Bb,} is a basis for R".

Proof. Suppose

k n
Y ajAbj+ Y a;Bb;=0.
j=1

J=k+1
We take the dot product with Dby, J € {1,...,k},togeta; =---=a; =0, and
the rest are zero by the linear independence of {Bby1, ..., Bb,}. O

Thus for J € {k+1, ..., n} we can take 8, to be the unique vector orthogonal
to the set

{Aby, ..., Aby, Bbey, ..., Bby, ..., Bb,}
(where the wide hat denotes omission) and satisfying
By Bby=1.

We will now describe graph H in terms of the above symplectic coordinate system:
we write a general linear combination of the 4n vectors and find necessary and
sufficient conditions on the coefficients to make the vector in graph #. Explicitly,
we write the general vector in R* as

k n n
> £(0,0: Ab;, 0)+ > #/(0,0; Bb;, 0)+ > 1, ;(bj, 0; Ab;, 0)
j=1 Jj=k+1 j=1

k n n
+> 07(0,b;:0,Dbj)+ > 070, ATB;:0. )+ > 0/, (0, —b;;0,0) (8)
j=1 j=k+1 j=1

(the primes are not necessary but are useful for bookkeeping), and we will describe
graph H as (¢/, 0”) as a function of (¢, 6).

We have the following necessary and sufficient conditions for the vector (8) to
be in graph H:
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k
Zt}Abj— Z 07AB" B; + Z 0, Bb
j=1

=k 1 j=k+1
P LTI P T0RS wUNLOS o
j=k+1 Jj=k+1

In matrix form, this says:

| | | | | |
Aby -+ Aby (—AB"Biy1) -+ (—AB"B,) Bby --- Bb, || ¥
| | | | | |

| I I |
On.k (—=CB"B41) --- (=CB"B,) Dby --- Db, | | 6"

| | | A
(| |

(_Bbk-i-l) T (_an) On,n
| |

On,n—k Cbl Cbn

We would now like to invert the matrix on the left to get (¢/, 6”) as a function of
(t",6"). Once we do that, we are close to our goal of expressing graph # in terms
of a generating function .

Letting IT denote the orthogonal projection onto ker B, we find that the inverse
of the matrix on the left side of (9) is

- Db, -

Ok,n
- Dby, -
—— D(IICT"B—-I)byyy —— ———— Bbjyy ———
—— pmc'B-nb, —— ——— Bb, —
- (pnA'™-nchy —— — Aby ———
\—— (DNAT—DCh, ——— ——— Ab, -
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Thus, defining the functions

£ = Z [Bb; - Db;] t”+Z[Bb Ch;lt),; fori=k+1,....n

Jj=k+1 j=1

fla@h = Z [Cb; - Bb,] t”+Z[Ab Chbjlt),; fori=1,....n,

Jj=k+1 j=1

we see that (9) is equivalent to the conditions ¢’ =0, 6" =

f”(t"). Noting that

173 1
2{; = Z{, foralli, j €k+1,...,n
and defining
1 n n
F'h=5 Y, Y t/[Bbi-Dbjlj
i=k+1 j=k+1

561

+ ZZI”[BI) Chjltyy; + 5 ZZt,’[Jﬂ[Ab Ch;lt), .

i=k+1 j=1 i=1 j=1

we conclude that the vector is in graph  if and only if

t/ — O, t”( //) — 0//
We now define
(p(t/, t//; 9/, 9//) — 0/ . t/ + F(t//) + (0// _

Then in (¢, t"; 6’, 6”)-coordinates, graph # is given as

dp g\ Jg de
t/y t//;_v . :0,
{( ot aﬂ/) 90’ 00"

f//(t//))z.

:o},

Or, written in terms of the standard basis, graph # is the set of values of

n

k
3 10,0 Ab; 0)+ > 170, 0; BbJ,O)—I—ZtrH_l(bj,O; Ab;,0)

j=1 j=k+1 j=1

n

k
g ) dp Tg.
+Zg(z,9)(0,bj,o, Db+ > o (00, AT 0. 8))

j=1 ""J j=k+1 "J

+Za” (t,6)(0, —bj;0,0) (10)

j=1 "+J

subject to the condition that g—(g(t, 0) =
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We return to complex coordinates, in the standard basis; for that purpose we
write the “horizontal” parts of (10) as

n

k n
=3 "itiAbj+ Y it]Bbj+ Y 1) (I +iA)b;.
j=1

j=k+1 j=1

That is,

Rez—ZtHl
Imz_Zt Abj+ Z 1/ Bb; —I—Ztnﬂ

j=k+1

With the same notation as before, the inverse transformation is given by

t;=—bj-Rez+Db;-Imz forje{l,... k},

t]=—A"B;-Rez+B;-Imz forje{k+1,....n}, (11)
n+J—b -Rez for j e{1,...,n}
We write the “vertical” part of (10) as:
k n
Z (z 0)b; + Z —(z 0)A Za” (t,0)b;,
j=l1 j=k+1 J j=1 Tt j
(12)
Z (t 0)Db; + Z //( 0)8;.
j=1 Jj=k+1 J
Using ¢t = #(z) to denote the transformation (11), we define
Q(z,0) :=p(t(2),0),
so that (12) says
ad
{ =—-2— (Z’ 9)
0z
In summary, we now have the following expression for graphg H:
od od
graphe H =12, 2—(2,0) | : — (2,0) =0¢, (13)
0z a6

where the § € R** are considered as auxiliary parameters, as in (5).
As for a)C|graph<D #, we use the expression

ol 9)_82d> 9+a2q> +azq> _
9z =T 500 022 “ T 9z07 ¢
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to compute

wC((z, ~282.0)), (w. -252w,m ))

0P R0
=2z- B—Z(W, n—2w- E(Z’ )

23y PO 023 L m—wa, (4)
= ZiNe —W;j — ZjWym —WiZm),
o1 =1 8Zj39g ine ot =1 8Zj32m s e

where the variables are related by the conditions

E)CD( 6) =0 d E)CD( ) =0
—_— = N —_— = U.
a6 @ : a6 v

Of course, from Section 1, we know that (14) is equal to
x/
P (T ET) X (g> (1)
where

z=x+i(Ax + B§), w=x"+i(Ax + BE'),
oD . 0P P st /
—Za—z(z,9)=$+l(Cx+D$), —za—z(w,n)zs +i(Cx"+ DE').

This completes the proof of the theorem.

We leave it as an illustrative exercise for the reader to compute @ and its deriva-
tives in the special cases when B = 0 and when B is invertible (to be compared
with the generating function (3) in Section 2.1).

3. Application: the metaplectic representation

In the previous section, we showed how to associate to a linear symplectomorphism
‘H a (real-valued) generating function ®. For the purposes of Fresnel optics and
quantum mechanics one then associates to the generating function & an oscillatory
integral operator

wH): SR —>S®Y, ur>ah>"? f/ e PEHO My (Y dx do. (16)

The map p : H — (M) is called the metaplectic representation of the symplectic
group, and p(H) is said to be the “quantization” of the classical object 7. As
defined, the operator p(H) maps Schwartz functions to tempered distributions, but
in fact it extends to a bounded operator on L?*(R™); we choose a so that u(H) is
unitary on L?(R"), and here & > 0 is a small parameter. These are the operators
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of “Fresnel optics,” a relatively simple model theory for optics which accounts for
interference and diffraction, describing the propagation of light of wavelength A
[Guillemin and Sternberg 1984]. For the analytic details we refer the reader to a
text in semiclassical analysis [Dimassi and Sjostrand 1999]; here we only show that
the standard conditions are indeed satisfied.

The above (real-valued) generating function ®, for an arbitrary H € Sp(2n, R),
has the property that the 1-forms d(d®/036;), ..., d(0D/06,,) are linearly indepen-

dent. Equivalently, with the notation from the previous section, the matrix

32D 32D | |
d(Rez)00’ 9(Rez)db” (=b1) (—bx) *
BRE 32D | |
9(Imz)30’ 9(Imz)do” | |
92D 92d Db, Dby, *
3072 30'30" I I
BRES ERES Ok Ok, 2n—k)
00706’ 00" O0n—k).k 21on—k),2n—k)

has linearly independent columns. (The asterisks denote irrelevant components.)
This condition says that quadratic form ® = ®(z, ) is a nondegenerate phase
function in the sense of semiclassical analysis [Dimassi and Sjostrand 1999].

Folland writes: “it seems to be a fact of life that there is no simple description of
the operator 1 (.A) that is valid for all A € Sp” [Folland 1989, p. 193]; however, we
believe that (16), combined with our construction of @ in the proof of Theorem 1,
is such a description.

4. Conclusion

The open problem and results presented in this paper were motivated by the basic
question of the relationship between real and complex symplectic linear algebra.
Our approach to this question was to consider a real symplectomorphism as a
Lagrangian submanifold with regard to the real part of a complex symplectic form.
We believe the resulting problem of the nature of the restriction of the imaginary
part of the complex symplectic form to this submanifold (formally, X(#) for a
symplectomorphism ) is relevant to the structure of the real symplectic group.
(We direct the reader to the Appendix for a list of properties of X and reformulations
of our open problem which lend credence to this belief.) Accordingly, we view the
main result of this paper as primarily a means for further investigation of the open
problem of the image of X. In addition to solving our open problem, we believe
that, in line with our generating function formulation, it would be interesting to
have a “complexified” theory of the calculus of variations. At present we only have
trivial extensions of the real theory.
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Appendix

A. Elementary properties of X. We first note some standard facts about symplectic
matrices that are used throughout the paper; for further information, see, for example,
[Cannas da Silva 2001] or [Folland 1989]. We write

0 -1
7=(1 7o)
for the matrix representing the standard symplectic form.

Proposition 3 [Folland 1989]. Let H € GL(2n, R). The following are equivalent:

(1) H € Sp(2n, R).

Q) HI'TH=J.

G Ht =gy =( ).

4) HT € Sp(2n, R).

5) ATD—-Cc'B=1, ATC=CT"Aand B'"D=D"B.
6) ADT—BCT =1, ABT =BA" and CD" = DC".

While X may be extended to all of M2 (R),
X: MR)—so2n,R), M~ JIM+M"7, (1)

for purposes of our open problem the resulting linearity of X does not seem to help
when X is restricted to Sp(2n, R).

The following proposition presents some of the most interesting elementary
linear algebraic properties of X, which follow immediately from the definition.

Proposition 4. Let X: M*(R) — s0(2n, R) be defined as above. Then:

(1) ker(X) = sp(2n, R), the symplectic Lie algebra.

(2) Forany " € SpQ2n,R), X(H) = T (H+H ™).
In particular, fortd € U(n) = {(g _g) € Sp(2n, R)} we have U= =UT,
so XU)=TJU+U).

(3) For any H € Sp(2n, R), X(H) is invertible (equivalently, Im a)@|grath is
nondegenerate) if and only if —1 is not a member of the spectrum of H>.

(4) For 1, R € Sp(2n, R), we have HT X(R)H = X(H~'RH).

We now take some examples.
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Examples of symplectic matrices and their images under X.

A 0 0 —AT— ATy~
M (0 (AT)—1> i (A—i—A“ 0 )

In particular,

(2) For B = BT,
I B 0 =21
o1) 7 \or o)
I 0 0 =21
cir)”\ar o)
0 —1I 00
@) jz(l 0)'_>(0 0)‘
(5) Fort e R,
(cost)] (—sint)l . 0 —2(cost)I
(sint)I (cost)l 2(cost)I 0 '

(6) For any H € Sp(2n, R), we have X(H) = X(H~1).

(3) ForC =CT,

Thus in Examples (2) and (3), graphg H is an RI-subspace (R-Lagrangian and
I-symplectic). And in Example (4), graph: H is a C-Lagrangian subspace (R-
Lagrangian and /-Lagrangian).

The exact nature of the image of X is an open question. The following is a partial
result

Proposition 5. For each k € {0, 1, ..., n}, there exists Hy € Sp(2n, R) such that
rank(X(Hy)) = 2k. Moreover, for any H € Sp(2n, R), we have ker X(H) =
ker(H? +1).

Proof. We fix k € {0, 1, ..., n} and write
(x,&) =, x",&,&"), x,&eR, x' & eR™

Let
Hi(x', x", &', 8" = (', =&", &, x").
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The matrix representation of Hy is

I Ok
On—k _In—k
Sp(2n, R).
0 I € Sp(2n, R)
Infk Onfk
Then
=21
_ On—k
Onfk
so that

rank(X(Hy)) = 2k.

The last statement of the proposition follows from (1).

567

O

B. Restatement of the problem. It is sometimes convenient to work with the ex-

tension of X to all of M?*(R):
XMy =IM+M"7.

Then X : M(2n, R) — so(2n, R) is a linear epimorphism with kernel sp(2n, R), the
symplectic Lie algebra (see, for example, [Folland 1989, Proposition 4.2]). Thus
the map X|spn,r) is surjective if and only if every element of the quotient space

M(2n, R)/sp(2n, R) contains a symplectic matrix. So our question is:

Question. Canevery M eM(2n,R) be written as M =H+.A for some H € Sp(2n, R)

and some A € sp(2n, R)?

Proposition 6. Every M € M(2n, R)/sp(2n, R) has a unique representative of the

form
0 &
S3 D)’
where Sy and S3 are skew-symmetric.

Proof. Existence: let

(M M,
M= (M3 M4) e M(2n, R).

Since (;‘ ’g) esp(2n, R) ifand only if § = —a’, B =BT, y =yT, we may replace

).

M by

~ M, My + MT)>
M=M — 2 2 _
(%(M3 + MT) -Mr

_ 0 7 (My— MJ)
1M —MI)  Ms+ M
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Uniqueness: suppose

08\ (08
<83 D) = (Sg D/> e M(2n, R)/sp(2n, R),

with the S; and S} skew-symmetric. Thus

0 &S-8)\ (a B
<S3—S§ p_p )=\, —ar € sp(2n, R).
This shows that §; — S} is symmetric and skew-symmetric, hence zero, and it is
clear that D ="7D'. O

Thinking geometrically, we are to find the projection of Sp(2n, R) onto

0 &Y. .
{( S5 D) 15,83 skew—symmetrlc}

along sp(2n, R). That is, let = (2 5) € Sp(2n, R). Then
0

3(B—BT)
wc-ch A"+p )’

0S5
S; D
of this form?

For a possible simplification, the map

T(H) = (

Is every

V:Sp@2n,R) — s0(2n,R), Hr> X(—TH)=H—-HT,

has the same image as X : Sp(2n, R) — so(2n, R) and may be easier to understand.
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Maximization of the size of
monic orthogonal polynomials on the unit circle
corresponding to the measures in the Steklov class

John Hoffman, McKinley Meyer, Mariya Sardarli and Alex Sherman

(Communicated by Sever S. Dragomir)

We investigate the size of monic, orthogonal polynomials defined on the unit
circle corresponding to a finite positive measure. We find an upper bound for the
L growth of these polynomials. Then we show, by example, that this upper
bound can be achieved. Throughout these proofs, we use a method developed by
Rahmanov to compute the polynomials in question. Finally, we find an explicit
formula for a subsequence of the Verblunsky coefficients of the polynomials.

1. Introduction

Let V =C(T;C), where T ={z € C:|z| = 1}. We define an inner product on V by

(&) = /T orern

where du is of the form

n
dp = p©)do + Y m;s6—0)),
j=1
where p(0) is a continuous function, § is the Dirac delta function, and the m; are
masses placed at the 6; satisfying m; > 0. We will confine our analysis to measures
in the restricted Steklov class of order §, denoted Sg, which consists of measures
with the properties

p(O)>8, mi=0, (1,1)4, =2. (1-1)
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This inner product gives a norm || - || defined as

Ifllap = /(S flap-

Given a measure du € Sg, there exists a unique set of monic orthogonal polyno-
mials {¢,(z; du)} [Simon 2005]. We will adopt the convention that ¢, (z; d) is the
polynomial of degree # in this set. When there is no ambiguity about what measure
is being used, we will simply write these polynomials as ¢,(z). Corresponding to
the set {¢,(z; du)} is the set {p,(z)} of orthonormal polynomials, defined by

én(2)
I$n()II
These polynomials form an orthonormal set. Uniqueness of this set follows the
from uniqueness of {¢,(z)}.!
A conjecture of Steklov stated that the sequence

on(z) =

M, 5= sup max|g,(z:dp)l
duesSs zeT
is bounded in n. This was disproven by Rahmanov [1979]. In particular, Rahmanov
proved the existence of a probability measure dn = ¢(0) d6 + 27:1 m; (0 —0;)
such that
lon(1,dn)| = CIn(n) + B

for some constants B, C. The hard part in making such estimates is that, in general,
there are few tools available to compute ¢, (z) other than the Gram—Schmidt process.
To establish his result, Rahmanov found a formula for computing the ¢, (z; dn),
where dn=du+> j_om;8(0—6;) in terms of ¢, (z; di), meaning that dn differs
from du only in its masses. This formula uses the Christoffel-Darboux kernel

Kn(z,6) =) 0;()e;(®). (1-2)

j=0
The roots of the Christoffel-Darboux kernel are those §; satisfying
=0 fori#j,

K,(&,& 1-3
e { 20 o7 (13)
Rahmanov’s formula, in light of these definitions, is
n
mjpn(§j:dp)
bz dn) = sy = 3 —HOGEA) ey

i= 1 +man—1(§j, Sj)

1Originally, the last condition given for the Steklov class is stated as (I, 1)g,, = 1. This is a minor
modification though, because ¢, (z)/ /2 is in the Steklov class S /72 given the original definition.
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We now outline our results. In Theorem 2.3, we use Rahmanov’s method
for computing ¢, (0) for the measure dn = d6/2x + Z]an/f Im 8(60 —0;), with
0 = 2nj — m)/n, mj = 4/n and show that the corresponding polynomials
én(z; du) are uniformly bounded above by 8/(572) log(|n/4] — 1) 4+ C, where C
is a constant. Our next main result is Theorem 4.1, where we construct a family of
measures dit, such that ¢, (1; duy,) > 1/7 logn + ¢, ¢ a bounded constant. Finally,
in Theorem 5.1, we show that, given the measure dyu = d6 /2w +Z;’=1 m;§(0—0;),
with 6 =27 j /n— 0y, the subsequence {o,x—1} 3, of the Verblunsky coefficients
aj(dp) satisfies

n

ink6q mj
Oyle—_1 — € S EEEE——
nk=1 ; 1 +mjnk

The reader may notice that all of our results are stated in terms of ¢,(z), while
Steklov’s conjecture is stated in terms of ¢, (z). We will end this introduction with
a lemma, proven by Rahmanov [1979], that shows why bounds on ¢, (z) imply
bounds on ¢, (z), and thus why it is sufficient to evaluate {¢,(z)}.

Lemma 1.1. Given a measure dju € Ss, § > 0, there exists a constant C such that

1
ez d)l = llen(z. di)ll = Clign(z. dp)|
foralln > 0.

Proof. Since

|Pn(2)]
||¢n(z)||du’

it suffices to find constant upper and lower bounds on ||¢, (z) | 4y-

lon(2)| =

To find an upper bound, we first claim that ¢, (z) minimizes the integral

/ PGP e,
T

where P(z) is any monic polynomial of degree n. Let ¢(z) be an arbitrary poly-
nomial of degree less than n. Then, since ¢,(z) is orthogonal to all polynomials
of degree less than n under the measure du and the inner product of a polynomial
with itself is nonnegative, we have

(#n(2) +4(2). 6n(2) +4(2))au
= (Pn(2), dn(2))ap + (n(2). 4(2))ap + (4(2). dn(2))au + (4(2). 4(2)) au

= (¢n(2), ¢n(2)ap + (4(2). 4(2)) ap
> (Pn(2). Pn(2))dpe-
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Hence ¢, (z) minimizes the integral fv | P(z)|? dyu. In particular this gives us

2w 2w 2w
60 = [ @R s [T Pd= [T rau=2. a9

We can derive a lower bound using the fact that du € Ss and, in particular,
that dyu satisfies (1-1), which gives

2 ) [ .
0w = 2 [ 1o 0) 0+ 3 myln(e P
j=1

5 2 .
>34 f (@) db.
0

— 2

Let the coefficient of the z¥ term of ¢n(z) be ay.. In particular, a, = 1. Using that
the integral of k0 over the unit circle is 0 for a nonzero integer k, we get

2 ) 2 2w
|pn(e'®)|? d6 = a2do> | a2do=2m.
k n
0 O k=0 0

Hence, ||¢n(Z)||glu z 4.

Combining this with the upper bound on ||¢,(z) ”flu from (1-5) gives

8 < llgn(2)II7, <2,

and as a result

|¢n(2)] |¢n(2)]

2. Review of Rahmanov’s result

We begin by reviewing Rahmanov’s argument [1979] to show that the growth of
the monic polynomials under Rahmanov’s scheme is bounded below by c logn,
where c is a constant. Before doing that, though, we need to prove two lemmas that
simplify our future calculations.

We now characterize the roots of the Christoffel-Darboux kernel (which we
defined on page 2) for a certain measure:

Lemma 2.1. For dip = d0/2m, the roots of the Christoffel-Darboux kernel are the
n-th roots of unity times a constant of modulus one.
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Proof. Recall the definition of the Christoffel-Darboux kernel and its roots from
(1-2) and (1-3). For our du, ¢j = z/, so assuming &; is of modulus one for all j,

n—1
Kn1(i8) =) & /€]
j=0
§'/6) —1
=2 (since this is a geometric series)
&i/8—1
gn_gn
S S - 2-1)
(& — éj)éj
Therefore, by (2-1), & = e2imilng where 1 < j < n and & is an arbitrary
point on the unit circle, and so &; is an n-th root of unity times a constant. O
Lemma 2.2. We need only assess ¢n(z; dj) at z = 1, since
sup max [¢,(z:dp)| = sup [@n(1:dp)l.
pess Z€T HESs
Proof. Let
m
duy = p(0)do + > m;5(6—06;),
j=1
where du; € Ss. Then du, € Ss, where
m
duy = p(0—60%)d0 + ) m;8(6—6*—0;). 6*[0.27).
j=1
In particular, ¢, (e dp1) = ¢u (e @+ dps).
Hence,
max | (z; dpy)| = max |¢n (z; dpr)|.
z€T z€T
sup max ¢, (z:dp)| = sup [@a(l:dp)l.
ness Z€T UESs
Henceforth, we will only look at ¢, (z; du) evaluated at z = 1. d

Theorem 2.3. Under a finite measure dn = du + Z]an/fj m; (0 — 0;), the monic
polynomials are not uniformly bounded from above; specifically, there exists a dn
such that the maximums are greater than or equal to 8/(57%)log(|n/4] —1).

Remark 2.4. This is Rahmanov’s result [1979], whose proof we have included for
the reader’s convenience.

Proof. First, we will deal generally with some dn without specifying the added
masses.



576 JOHN HOFFMAN, MCKINLEY MEYER, MARIYA SARDARLI AND ALEX SHERMAN

In light of Lemma 2.1, let ; = (27j —x)/n for 1 < j < [n/4]. Then, using
Rahmanov’s formula in (1-4), we have
[n/4]
$n(z:dn) = Gu(z;dp) — )
J

=1

m;j (]bn('i:j;d/i)
1+mjK,—1(&.§)

Kn—l(z”i:j)’ (2'2)

which, by noting that K,_1(§j,&;) = Z;';ll 1 = n and substituting z and §; into
(2-2), becomes
/4] g
&
pn(zidn) =z"— ) .
j=1
[n/4] n
_ N J Z"+1
e jgl l+mjn 1 —ze 0"

—z"—1

1 +mjn Ze_iej —1

Now we want to find a lower bound for |¢y|:
[n/4] n
mj "+ 1
Im
(Z * Z l+mjn 1—ze™ ’9/)‘
We take z = 1, in line with Lemma 2.2, to get

[n/4]
m;j 1
Im(1+2
m( * jz 1+mjn l—e_’gf)‘

Ln/4] i 1
-2 .
‘ ( Z 1+m;n 11— _,9,.|2)‘

Note that 0 < 6; < 7/2, |1 —e~%| < ¢;, and

max |pn(z;dn)| > max

max [gn (23 dn)| =

: 20;
Im(e’% — 1) = sin 0;>=L forfe (O, E),
b4 2

which gives
/4] it [n/4]
mj i—1 mj 2
Im(1-2 >2y —L = 2-3
’ m( Z l+mjn |1— —19j|2)‘ - ; 1 +mjn m0; 23)

Now, we specify the masses of dn to get a precise bound. Let m; = 4/n for
all j. This simplifies (2-3) to

/4] WA
1;12%|¢n(2;d77)| = Z (2] 5712 Z
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a a—1
Note that loga = [ 1/xdx > ) 1/j since 1/x is decreasing.
1 j=1
Therefore,
8 n
max ¢ (z: )| = — log(| § | ~1). 2-4)

Since 4/(572)log(|n/4] — 1) is strictly increasing in 7, max,et |¢, (2, dn)| is not
uniformly bounded from above. O

3. Finding a general upper bound

In this section, we find a general upper bound for the growth of the monic orthogonal
polynomials under a dn which differs from d6/2m only in the discrete portion. We
prove the following theorem by making a sequence of overestimates of |¢, (1, dn)|.

Theorem 3.1. Let dn be a measure such that

n
dn=%d9+2mj5(9—9j),
j=1
where mj > 0,0; =2mj/n+ 0y for1 < j <n,and 8y € [0, 2m).
Then
(1. dn)| < % logn +C,

where C is a constant uniformly bounded in n.

Remark 3.2. Note the generalized offset 6 in the theorem. In Section 2, we used
the specific offset of 6y = —m/n, but here, we find a general upper bound under
any offset.

We prove the theorem using two lemmas. The first, Lemma 3.3, finds an overes-
timate for |¢, (1, dn)| using Rahmanov’s formula [1979] . The second, Lemma 3.4,
makes another overestimate using Taylor series.

Lemma 3.3. Let dn be a measure such that

n
1
dn = §d9+2m,~5(9—ej),
J:

where mj > 0and 0; =2nj/n+6y, 1 < j <n.
Then

|1_ein80|
2

n .

m; sin 0; .
'Zl 1+mjn 1—cos6; ) +en if0o #0,
J:

[Pn(D)] =

where |c,| < 2 for all n.
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Proof. We first consider the case where 0y = 0. If 6y = 0, then K,,_; (1, e!%) =0
for 1 < j <n and K,_;(1,e%) = n. From Rahmanov’s formula (1-4),

mpy

_n‘<1.
1 4+ mpyn

[Pn(D)] = ‘ -
Therefore, ¢, (1) is not increasing in n for 8y = 0. Henceforth, we restrict ourselves
to working with 6y # 0.
From Rahmanov’s formula in (1-4) and applying Lemma 2.1, we derive

n . . ian_l
Pu(l) = 1_2Le ng; € 7 71

= l+mjn ol 1

Then, using algebra, we find that

— einb;

1 1
én(1) = +Z 1+mjn T

infp " : (-1
:1+1—e OZ mj | —i sin 6; ’
2 —~ 1 +mjn 1 —cos 0;
j=1
which implies by the triangle inequality that
bu(]) 1—eimbo I\ m sin 0; |1 —eino) m;
— i
" 2 j=11—|—mjn 1 —cos 8 2 1+mjn
Note that
. _ pinbo .
|1 1n90|<2 and 0< m; <l’ SO |1 e | mj <1
l+mjn " n 2 — 1 +mjn
Hence,
1 —einbo " ; in6;
(1) — e ; m; sin 6; 5 0
2 —~ 1+mjn 1—cos0;
j=1
Thus, it is sufficient to consider the growth of
|1 —einto) mj sin 0; (3-2)
2 — 1+mjn 1—cost;|

We want to eliminate the magnitude around the sum in (3-2).
Since mj > 0, and sin6; /(1 — cos 0;) is positive on (0, 7) and negative on
(r, 27), we have
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n

Z mj sin 0;
1 +mjn 1—cosb;

j=1
Z m; sin 0;
6, e0.m) l+mjn 1—cosb;

’

< max{

Z n’IJ Sin@j
6 c(mam) 1 +mjn 1—cos0;

3

Now, if we alter dn so that the masses are instead located at 0 = —2mj/n — 6y,
essentially reflecting the discrete portion of the measure over the real axis, we see
that (3-2) does not change.

Hence, since we are looking to find an upper bound of (3-1) that is independent
of m; and 6, we can assume without loss of generality that we are only looking at
8 € (0, ), and thus take

|1_ein90| n

2

. i . _ ,infy . . .
mj sin 0; <|1 etnvo| mj sin 0;

2 6, <o) 1 +mjn 1—cosb;

o 1+mjn 1—cosb;

Since replacing 6 with 6y + 27 /n and then shifting the index of the m; does not
affect the value of (3-2), assume 6y € (—27/n,0). Having made these simplifica-
tions, we can now move on to the main lemma, which finds an upper bound as
described in the theorem.

Lemma 3.4.

|1 —einbo| sin 6; ( 1 1 7
Moo s 0Ly L)),
2 Z 1 —cos =" +n+n g 2

where 0j =2mj/n+ 0y, 0Oy € (—2m/n,0).

Proof. We separate the first term from the sum, since that term contributes the most
to the magnitude. Recall that 6; = 27r/n + 6y. Thus,

11 _ein90| in00|

sin 0; l—e sin 0 sin 0;
Y e s, X Toeng
gem)  COSY COSUL g c@asnmy - SOV

since |1 —e?"%| < 2. We now bound these two terms of the sum separately.
We claim that

|1—ei™%|  sin6,
<n
2 1 —cos 6

for 6y € (—2m/n,0). Recall ; = 0y + 27/n, so hence |1 —e'"00| = |1 — /101 ],
Denote 6, by ¢, where ¢ € (0, 2r/n). We do the calculation
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[1—e™| sint
2 1 —cost
. V(1 —cosnt)? + (sinnt)?  sint _ ~v2—2cosnt sint
2 2(sin £)? 2 2(sin £)*

Because sin(nt/2) is nonnegative for ¢ € (0,27/n), we have

. nt sint sin %’(2 sin % cos %) sin ”Tt cos %
sin — = =
2 o 1)2 o 1)2 sin £
2(sm 2) 2(s1n 2) 2

sin(nt/2)/sin(¢/2) is nonnegative for ¢ € (0, 27r/n) and cos¢/2 is bounded above
by 1. Hence, the expression is bounded above by sin(nt¢/2)/sin(¢/2). It remains to
show this is bounded above by n.

This is clearly true for n = 1. Let n > 1. Recall that nt € (0, 2r). Consider an
(n + 1)-gon inscribed in a unit circle in which 7 of the sides of the polygon form
a central angle of 7. The last side of the polygon forms a central angle of n¢ (this
angle may be reflexive.) Recall that the length of a chord of a unit circle which
forms a central angle of ¢ is 2sin(z/2). Similarly the length of the chord which
forms a central angle of nt is 2 sin(ntz/2). As the polygon is not degenerate, the
sum of the lengths of the n equal side lengths is greater than the length of the
remaining side length. Namely 27 sin(¢/2) > 2 sin(nt/2) as desired.

We now handle the second term. To bound

Z sin 9]
0je2n/n,m) I —cos Qj

note that sin 8 /(1 —cos 6;) is decreasing on (0, 27), so

Z sin 0; - L%%J sin(ZT”j)
0je2n/n,m) 1-cos Qj - j=1 I_COS(ZTﬂj)

Recall from the Taylor expansion that we can approximate sin x/(1 — cos x)

near 0 by 2/x. In fact, since
) sin x 2
lim —————=0
x—>01—cosx x

and for x € (0, ], we have
d ( sin x 2)
———-——] <0,
dx\1—cosx x

sin x

we arrive at the inequality

2
—— < — forx e (0,n].
l1—cosx — x
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Therefore,

L%Z:J Sm(m) <Ln/22J 22/:1
i 1—cos(3E 2” i n iz

a a
Recall that loga = [ 1/xdx = )" 1/j since 1/x is decreasing, so that
1 j=2

[n/2] [n/2]
n 1 n  n 1 __n  n n
;Z;;;;E;;;;@ﬂ
and thus
|1 —einto) sin 0; 1 1
ELLUBSA I Y :
ZI—COSG_(++og2>
6 €(0,m)

Returning to the statement of the theorem,

|1 — e m; sin 6;
D=2
(D} =2+ 2 Il +mjn 1—cosb;
=1
<2_i_|1—e,>"”6’0| 1 sind;
- 2 n 1—cosb;

1 1 n
S+ dedioz]
_3+n+n og >

Since log|n/2] is equal to logn plus some uniformly bounded term, we can
conclude that

[¢n(D)] < 7 logn +C.
where C is constant in n, which completes the proof of the theorem.

Remark 3.5. Note that here we used that

If we were to use the Rahmanov scheme of distributing masses and setallm; =1/n

then
mj 1

l+mjn  2n’
and the monic orthogonal polynomials given by the Rahmanov type of measure
would have growth bounded from above by 1/2m logn + b, where b is a bounded
constant.
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4. Proving the lower bound

In this section, we construct a measure that achieves the upper bound of 1/ logn
plus a bounded term, as described in Theorem 3.1. We accomplish this primarily
by applying the technique of Lagrange multipliers to find an optimal measure.

Theorem 4.1. For all n € N, there exists a measure

n
1
dn = Ed@+2}m,~5(9—9]),
j:

where mj > 0 and Z;-’=1 mj =1 such that

|¢n(1.dn)| = Llogn +c.
where c is a bounded constant.

We will prove this theorem as a sequence of lemmas.

The first lemma, Lemma 4.2, finds a lower bound for the expression from
Lemma 3.3 which is simpler to manipulate. In the second lemma, Lemma 4.4, we
apply the technique of Lagrange multipliers to that lower bound to find a critical
“point”, in our case a scheme of m;s. Finally, in the third lemma, Lemma 4.6, we
insert those derived m; into the approximation and find that we achieve the growth
stated in the theorem.

Set 8; = (2nj — m)/n. Inserting those 6; into (3-1), we have that

n .
m; sin 6;
+cn = +c
8 'Z I4+mjn 1—cost;| "
Jj=1

n .
Z m] Sin 0]
oy 1+mjn 1—cos 0;

[1—e™|

2

[¢n(D)] =

for some constant |c,, | <2. We know that sin 6 /(1—cos 8;) is positive for 6; € (0, )
and negative for ; € (i, 27r). Thus, in order to maximize |¢,(1)|, we set m; =0
for all j such that 6; € (7, 2r), which prevents destructive interference from the
other side of the circle.

Under this setting, we can say that

_L%%J mj sin 0;
B = 14+mjn 1—cosb;’

We next bound this equation from below with a simpler expression.

n

Z mj sin 0;
ot 1+mjn 1—cosb;

Lemma 4.2. For0; = 2nj —n)/nand mj >0,

ln/2] n/2]

Z mj sin 0; >1LZ nm;
o l+mjn 1—cosf; ~ m ot 1+mjn

+d,

1
J

where d is some constant.
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Remark 4.3. It may appear contradictory that we first find a lower bound when we
want the n-th degree monic polynomial to be as large as possible. However, this
lower bound is easier to manipulate, and we show in the subsequent lemmas that it
actually achieves the growth stated in the theorem.

Proof. We prove this lemma using two approximations. We first approximate
sin®; /(1 — cos 6;) by 2/6;, from the Taylor series; we then approximate 2/6;
by 1/(7j).

First, we show that 2/6; is a good approximation of sin 6 /(1 —cos 8;). Let
sin 0; 2

M = max
0j€l0,7]

l—cost; 0;
This maximum, M, is achieved because

‘ sin 6; 2

l—cost; 0;

is continuous in an open neighborhood containing [0, 7r]. Thus, 2/6; is a good
approximation and we can bound the following difference by a constant:

L%Z:J m; sin 6; L%Z:J mj 2
oy 1 +mjn 1—cos0; iz 1 +mjn 0;

ln/2] .
< J
- Z 1 +mjn

j=1

Having established this, we can now replace 2/6; with 2n/((2j — 1)) and
attain the inequality

sin 0; 2

l—cosf; 0

j=

ln/2] [n/2]
M 2o b
i l+mjn 0 — m o l+mjn j
Combining this and the previous inequality proves the lemma. O

Now that we have the simplified lower bound

1 L%Z:J m; 1
w o Lmin j ’
we can apply the method of Lagrange multipliers to it in order to construct the m;
that prove the theorem.

Lemma 4.4. Let n € N. Consider any | € N with | < n. Under the constraints
mj > 0 and Z;Zlmj = 1, we achieve the maximum of
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>
= (1 +nmj)j
by setting

=2 i)

forall1 < j <[, where

/ 1 1
my = 1+_)—__.
( n) T

J =
Proof. Set up f, the function to be maximized, and the constraint g, where m is
the vector listing all m2;:

1

. m]'}’l
S (m) _; (1 +nmj)j’
(1)

I
g(m) = ij—l = 0.
ji=1
If " under the constraint g has a local extremum at m’ and m’ is not on the boundary,
for example m; > 0 forall 1 < j </, then there is a A € R such that

Vf(m')=AVg(m'). 4-2)

To simplify the following expressions, denote

1
> —=a().
=i
Calculations yield that, for all j,

n n

(I+nm))2 — j(1 —i—nm})z’

which, substituting 7 and m;., gives mg in terms of ', that is,

A VS|
=M1 __1). 4-3)
v n(ﬁ

l
j=1

= (e

Inserting that expression for m; into g(m') =}_;_, m; —1 =0 yields
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Remark 4.5. For all 1 < j </, we have m/;, > 0 since a(/) <f1/x/_d1 =24/1.
Thus, we satisfy the condition that m’; iz 0.

To insure that, in the computation for m’, the Lagrange multipliers method
d1d in fact give us the m that maximized f(m) under the constraint m; > 0 and
Z j=1Mj = 1, we must check the boundary. We next provide a quick proof that
the maximum is not achieved at the boundary.

Consider the Lagrangian L(m) = f(m) — Ag(m) defined on (—1/n, c0)’,
where A is the constant in (4-2). Note that m’ is a critical point of L since m’
satisfies VL = V f —AVg = 0. It suffices to show that L is concave on (—1/n, 0o)!.

We first calculate the entries of the Lagrangian L:

9’L 2n? 1

— <
8mjg J (L+nmj)3
9*L

—F— =0 forj #k.

dm;omy 7

The Hessian of L is then negative definite and hence L is concave on (—1/n, oo)l.
Therefore, m’ as computed in (4-3) is a point where L achieves a global maximum
on the open neighborhood (—1/n, 00)!. In particular, L(m’) is the maximum of L
on the region defined by m; > 0 and Zﬁzlmj = 1, a subset of (—1/1,00)!. On
this region, g = 0, so L = f. Hence f, constrained to the aforementioned region,
achieves a global maximum at m’. O

We conclude the proof by calculating the value of
l
> A
i (I4+nmj)j

for m; as described in Lemma 4.4. Since this function evaluated at / = [n/2] isa
lower bound of |¢, (1, dn)|, as proved in Lemma 4.2, this final lemma concludes
the proof of the theorem.

Lemma 4.6. For the mj described in Lemma 4.4 in (4-3),

/
mjn 1
———— = —log/ +c,
;(l—knmj)] i

where c is uniformly bounded.
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Proof. We simply evaluate f from (4-1) at the m’ given by (4-3):

Lom(tnm) =1 Ly
=R :;]_H 70
L1 a@)?
T (14D
e
J_:l] n+l

Now Zj-:l 1/j differs from log/ by at most 1, and «(/)?/(n + [) is bounded in n
and / since

“n+! n+l n+l " n

2 2
O<a(l) - evh* 4l _4n _
Therefore, for the m’ given by (4-3), f(m’) =log! + d;, where d; is a constant
bounded uniformly in /. In light of Lemma 4.2, we have constructed a dn such that
|pn(1,dn)| = 1/ logn + ¢, where ¢ is a bounded constant, completing the proof
of Theorem 4.1. O

5. Investigating higher degree polynomials

In the previous sections, we described the magnitude of monic polynomials of
degree less than or equal to 7, where 7 is the number of discrete masses in the
measure, using Rahmanov’s formula in (1-4). However, we also want to describe
the higher degree monic polynomials, i.e., ¢,/ (z; dn), where n’ > n. Unfortunately,
we are not able to do this for all n’ > n, but we can partially describe ¢,/ (z; dn),
where n’ = kn, k € N.

Recall the definition of Verblunsky coefficients [Simon 2005]:

Pn+1(2) = 2¢n(2) — Any (2), (5-1
where
dn(z) =Puz"+---+Po., 0=j=<n, BjeC,

¢x(z) = Boz" + -+ Bu.

In the n’ = kn case, we are able to derive the corresponding Verblunsky coefficients,
and do so explicitly for a dp similar to that of Rahmanov’s in Section 2.
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Theorem 5.1. For a measure dn = d6/2x + Y_j_m;8(0 — 6;), with masses
located at &j = % and 0j =2nj/n+ 0y (cf. Lemma 2.1),

Puk (2. dn) = 2"* —£0F 3" Knk—1(2.8)).
j=1

M
1 +mjnk
and

n
_gnk N
k1 = EQF ) p—
j=1

where o, 1 is a Verblunsky coefficient. Furthermore, under Rahmanov’s scheme,
where 0j = 2mj/n and
9~ 8(0—-6))
- + —’
2
J =
the Verblunsky coefficients are

1

Onk—1 = m

Proof. Note that, since ¢, (z;dn) is a monic polynomial, 8, from the above
definition of the Verblunsky coefficients is 1, so

¢n(0:dn) =1,

which by (5-1) implies
Pn+1(0; dn) = —ain. (5-2)
Having set out these preliminaries, we can simply apply Rahmanov’s formula

[1979] from (1-4) to find a formula for ¢, (z; dn) under a measure d7 as described
in the statement of Theorem 5.1:

mj Gui (& d)
1+mjKpp—1(. &)

Guk(z:dn) = 2" ="

j=1

Knx—1(2,§) (5-3)

n

s

=Z”k—§6’k2ml<nk_1(z,$j)- (5-4)
j=1 J

Remark 5.2. The simplification of the numerator from (5-3) to (5-4) depends upon
the &; being roots of unity times a constant (as in Lemma 2.1). Such a simplification
is only possible in the ¢, case, which is why the description of other higher-degree
monic polynomials is considerably more complicated.
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Now consider z = 0 to find the Verblunsky coefficients:

n n
m; m;
O,d - _ nk J K., 0, Ny — nk J ,
Gk ( n) E() j§_1 1—|—mjnk nk—1( é§_j) 0 jE_l l—i-rnjnk

and, applying (5-2), we obtain

n
oy
— O 1 = 0,dn) = — nk —],
Tt = fuic (0, d) = & 2 -
. ’ (5-5)
—gnk N M
Cnk=1 = Z 1+mjnk
Jj=1
If we now take 6y = 0, as Rahmanov does, and
Ao - 8(0—6))
do = — - 7
P 2 + Z n
j=1
then (5-5) simplifies to
1
= 5-6
Onk—1 1+ k (5-6)
O

Remark 5.3. It is noteworthy that, as k grows, the o,;_; decay at the rate of
1/(1 + k). In light of the fact that Z;’ilaf < oo [Simon 2005], this suggests that
the «; are small for j € (n(k —1),nk), where k € N, and increase rapidly near
J = kn. However, as mentioned above, describing ¢;(z; dn) for j # kn is much
more complicated.

Appendix: Numerical appendix

In order to help visualize the results of this paper, the graphs of the magnitudes
of four orthogonal monic polynomials induced by four respective measures have
been included at the end of this section. Each measure has a continuous portion
of df/2m as well as masses placed at ; = w/n(2j — 1), where 1 < j <n/2 (cf.
Lemma 2.1). For simplicity, throughout this section, we will consider only even 7.
For the first two polynomials (displayed in Figure 1), masses of uniform size 2/n
are used as suggested by Rahmanov (see Section 2). For the second two (Figure 2),
the masses are given their weights according to (4-3).

These graphs have several key features in common, including the presence of
two peaks that grow in n: one at # = 0 and another at 8 = 7. Also, both have
much lower minimums in the range 0 < 6 < 7 than in —z < 6 < 0. Upon closer
inspection, it can be seen that the two peaks in Figure 1 are equal; in contrast, in
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Figure 1. Left: |¢19(0)| for 0; = {5(2j —1) and m; = 5, where
1 < j < 5. Right: [¢p190(8)] for ; = 155(2j — 1) and m] = %,
where 1 < j < 50.

Figure 2, the peak at 6 = 0 is larger than the peak at 6 = . Additionally, the peak
at @ = 0 in the latter case is higher than in the former, as predicted by Theorem 4.1.

To explain some of these features, first note that with the above choice of
placement of the masses, Rahmanov’s formula (1-4) [1979] reduces to

Re(¢n(e'®))
2 n/2 .
B 1 sin(0—6;)
—(1+cos(ne))(1+5§1 — j) 1—-Sln<”9)21+nm,1 —cos(0—6;)’
Im(¢n(e'?))
n/2 n/2 i
sin(6—6;)
_51n(n0)(1+ Z ) (1+COS(U9))Zl+nmjl —cos(f— 9)

150

1.01

0.5F

0.0

Figure 2. Left: [¢10(0)| for 6; = {5(2j — 1) and m; chosen
optimally, where 1 < j < 5. Right: |¢100(0)| for 8; = 155(2/ —1)
and m; chosen optimally, where 1 < j < 50.
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Analysis of the minima. Due to its prominent role in each term, let us evaluate
both the real and imaginary parts at the extrema of 1 + cos(n8), thatis, 6 = 6, =
(m/n)(2k—1) and 6 = 0, =27k /n. For 6 = 0y, sin(n6y ) and 1+cos(nby ) are each
zero. However, we must be careful, because for 1 <k <n/2, one of the terms in the
sum will have a denominator of zero. Thus, using L’ Hopital’s rule, we take the limits
. sin(n@) sin(6 — ;)

lim =

00, 1— COS(9 — Qk)
. (1 +cos(nf))sin(60 —6;)

lim
N 1 —cos(80 —6;)

—2n,

=0.

Substituting these values into our formulae, we then have that

|¢n(€i0k)|: l_nmk/(l+nmk) lflfkfn/2,
otherwise.

Thus, the minima will be lower in the region where the masses are placed than
outside that region. Also, we can now see the reason for the minima increasing
as 0 increases in the cases where the choice of m; is optimal, as in Figure 2.

Analysis of peaks at § = 0, x. Now, let us examine the values of the polynomials
at § = 6. In this case, sin(n)}") is still zero, but 1 4 cos(n);’) is instead 2, so we
need not worry about zero denominators. Immediately, we have that our previous
formulae reduce to

/2
Re(¢n (%)) —1+nZ
1+nm]
/2 (A-1)
. m; sin(6; — 0)

m el05)) = J .
(¢n (")) ; 1 +nmj 1—cos(6; —0)

The real part is constant in 9,2‘ and can be ignored. For k = 0, we have precisely
the sum that was analyzed in Section 4. For k = n/2, we obtain the sum

n/2

i9,/2)) — " sin(r — )
m(¢n(e ) ; 1 +nmj 1—cos(mw —6;)

n/2

_Z sin 0
_j=1 l14+nmj 1+cos6;

It can easily be seen that, if m; is constant, this sum will be identical to the sum
for k = 0, and so the result will be two peaks of equal amplitude as we observed
before in Figure 1. If m; decreases proportionally to 1/.//, however, this sum
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will be very different from the sum for k = 0, since the largest terms of the sum
will now be those 6; close to 7 rather than zero. The m; with corresponding 6;
close to st will all be of the order 1/#n, and so we would expect that the value of the
polynomial here will behave something more similarly to the peaks of the uniform
mass case than to those of the optimal m case.

Analysis of peaks away from @ = 0, x. However, we have not yet explained why
the peaks away from 6 = 0 and 6 = 7 are all smaller, so now we consider the case
where 6 = 0," for 0 < k <n/2. First, note that

6F —6; = "2k — ) + 1),

and consider the terms in the sum (A-1), where j = k and j = k + 1. These terms

will be .
mp sin 7

1 +nmy 1—cos?

and
s T
I’YIk+ 1 Sin n

_ —.,
l+nmygyq 1—cos

In the case that all the masses have equal weight, these terms will cancel out
completely, and, even in the case of the optimal choice of m;, they still mostly
cancel out since the difference of my 1 and my will be small. In general, for the
j=k—land j=k+/+1terms,aslongask—/>landk +/+1=<n/2 are
satisfied, similar cancellations will occur. Thus, the values at these peaks will be
less than those at # = 0 and 6 = .

Acknowledgements

Our research was done during the 2013 University of Wisconsin-Madison REU,
sponsored by NSF grants DMS-1056327 and DMS-1147523. We would like to
thank Serguei Denissov for introducing us to this problem and advising us as we
wrote this paper.

References

[Rahmanov 1979] E. A. Rahmanov, “Steklov’s conjecture in the theory of orthogonal polynomials”,
Mat. Sb. (N.S.) 108(150):4 (1979), 581-608. In Russian; translated in USSR-Sb 36:4 (1980), 549-575.
MR 81j:42042 Zbl 0452.33012

[Simon 2005] B. Simon, Orthogonal polynomials on the unit circle, I: Classical theory, Ameri-
can Mathematical Society Colloquium Publications 54, Amer. Math. Soc., Providence, RI, 2005.
MR 2006a:42002a Zbl 1082.42020

Received: 2014-01-22 Accepted: 2014-08-19


http://dx.doi.org/10.1070/SM1980v036n04ABEH001864
http://msp.org/idx/mr/81j:42042
http://msp.org/idx/zbl/0452.33012
http://msp.org/idx/mr/2006a:42002a
http://msp.org/idx/zbl/1082.42020

592 JOHN HOFFMAN, MCKINLEY MEYER, MARIYA SARDARLI AND ALEX SHERMAN

hoffman.locke@gmail.com University of Wisconsin-Madison, Madison, WI 53706,
United States

mtmeyer3Q@wisc.edu Department of Applied and Natural Sciences,
University of Wisconsin-Green Bay, 2420 Nicolet Drive,
Green Bay, WI 54311, United States

sardarli@princeton.edu Princeton University, Princeton, NJ 08544, United States

ajsherman2@wisc.edu University of Wisconsin-Madison, Madison, WI 53706,
United States

mathematical sciences publishers :'msp


mailto:hoffman.locke@gmail.com
mailto:mtmeyer3@wisc.edu
mailto:sardarli@princeton.edu
mailto:ajsherman2@wisc.edu
http://msp.org

INVOLVE 8:4 (2015)
dx.doi.org/10.2140/involve.2015.8.593

A type of multiple integral
with log-gamma function
Duokui Yan, Rongchang Liu and Geng-zhe Chang

(Communicated by Kenneth S. Berenhaut)

In this paper, we give a general formula for the multiple integral

1,1 1
I=/ / / fx14+ x4+ xp)dx;dx; ... dx,.
o Jo 0

As an application, the integral 7 with f(x) = log I'(x) is evaluated for all n € N.
The subsidiary computational challenges are interesting in their own right.

1. Introduction

A general idea, when faced with a multiple integral, is to lower its dimension. A
well-known example, (see [Chang and Shi 2003], for instance) is the n-dimensional
integral

// f(x14+x2+--+xp)dxydx;, ... dxy, (1-1)

X1+x2+-+x,=1
X1,X2,...,X1 >0

which can be simplified to a one-dimensional integral

1 ! :
(n—l)!/o "L f(@) dt.

However, to the best of our knowledge, a similar integral,

1,1 1
I=/ / / fx1+x2+--+xp)dxidx;y ... dxy, (1-2)
o Jo 0

has no such formula.

The aim of this paper is to find a formula for the above integral I and apply it to
the special case when f(x) =log I"(x). The main results are as follows. A general
formula of [ is obtained in Theorem 4.1.

MSC2010: 05A19, 54C30.
Keywords: multiple integral, log-gamma function.
The research of Duokui Yan is supported in part by NSFC (No. 11101221).
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Theorem 4.1. The integral I satisfies

1 pl 1
I=/ / / f(x1+x24+--+x5)dxidx, ... dxy
o Jo 0

1

n 1
=D Z/O Gm()f(t+m—1)dt, (1-3)
“m=1

where

Gnl0) = 3 (- a+m—i ().

i=1

When f(x) = logI'(x), the value of I is given in Theorem 5.1. The main
challenge of the proof is to find appropriate combinatorial identities to simplify /.

Theorem 5.1.

1 pl 1
I=I(n)=/ / / logT'(x1 + x4+ xp)dxydx, ... dxy
o Jo 0

n—1 +k+17n
_ 1 n—1 Z G k™ rn—1

k=2
where the last sum is missing whenn =2 and H, =Y ; _, 1/ k.

The paper is organized as follows. In Sections 2 and 3, we explain the main
ideas by using the cases n = 2 and 3. One can see from Figures 1 and 2 how we cut
the square and the cube so that the integral I over each subset becomes a simple
one-dimensional integral. In Section 4, a formula of [ is derived in Theorem 4.1,
and in Section 5, we evaluate I when f(x) =logI'(x).

2. Thecasen =2

When n = 2, the integral I becomes fol fol f(x 4+ »)dx dy, where the integral
domain is a unit square. Let f = x + y. The unit square can then be divided into
two domains, D; and D, as in Figure 1, where

Di={(x,y):0=x+y=<1,0=x=<1,0=<y=<1j}
Dy={(x,y): 1 <x4y<2,0=<x<1,0=<y=<1}.

The following lemma shows that té fol f(x + p)dx dy is the sum of two one-
dimensional integrals.
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Y

D,

Figure 1. Domains D and D,.

Lemma 2.1.

1 1f()H—y)dxdyz f(x+y)dxdy+ J(x+y)dxdy
/0 0 D, D>

1 1
=/ zf(z)dz+/ =0 f@+1)de. -1
0 0
Proof. 1t is clear that
1 pt
/0 /0 f(x—i—y)dxafy:/l)l f(x—i—y)dxdy—i—//l)zf(x+y)dxdy.

We first consider ffDl f(x + y)dxdy. Note that t = x + y, and consider the
transformation (x, y) +— (x,1). It is clear that the Jacobian is 1. Then

/D1 f(x+)/)dxdy=/01/Otf(t)dxdt=/01tf(t)dt. (2-2)

For the integral over domain D,, we set x; = 1 —x and y; = 1 — . Then
(x1,»1) € Dy and

|| revnaxar=[[ re-xn-yavan
D, D,
1
:/ tf(2—1t)dt. (2-3)
0
If one sets u = 1 —1, it follows that fol tfQ2—t)dt = fol (1—u) f(u+1)du. Then

1
/ f(x+y)dxdy=/ (1—=u)f(u+1)du. (2-4)
D> 0

Then, identity (2-1) follows by identities (2-2) and (2-4). O



596 DUOKUI YAN, RONGCHANG LIU AND GENG-ZHE CHANG

3. Thecasen =3

When n = 3, the integral domain of [ is a unit cube. The main idea is to cut the
unit cube into several simplexes so that we can apply the integral formula (1-1)
over each one.

Let E={(x,y,2): 0<x <1, 0<y <1, 0<z <1} be the unit cube. Set
Ei={(x,7,2):0x4+y4+z=<1,0=<x=<1,0<ypy=<1,0=<z=<1},
E,={(x,y,2): 1<x4+y+2z=<2,0<x=<1,0<y=<1,0=5z=<1},
Ey={(x,y,2):2<x4+y+z<3,0=x=<1,0<y=<1,0=<z=<1}.

Then £ = E; U E, U E5 and the integral [ satisfies

1,1 pl
I=/ / / f(x+y+z2)dxdyd:z
o Jo Jo

= f(x+y+z)dxdydz+ f(x+y+z2)dxdyd:z
E] E2

+/ f(x+y+z)dxdyd:.
Ej

Using formula (1-1), it follows that fEl f(x+y+z)dxdydz = % fol 12 f(t)dt.
The difficult parts are the integrals over E, and E3. The following lemma explains
how to simplify these two integrals to one-dimensional integrals.

Lemma 3.1.

1 1 1
/ / / f(x+y+z2)dxdydz =
0 0 0
1 1 1
%[;ﬂf@ﬁh+%A(—m1+m+nfu+4yn+%A(L4ﬁf@+mdp (3-1)

Proof. We introduce the transformation (x, y, z) — (x, y,t). By formula (1-1),

1

f(x+y+z)dxdydz=%/ 12 f(t)dt. (3-2)
Eq 0

Note that integral (3-2) can be applied to calculate the integral over E3. Let

x;1=1—x,y; =1—yand z; =1—z. The integral over E3 becomes

f(x+y+z)dxdydz= f(3—x1—y1—21)dx1dy1d21
Ej E,

1
:1/'ﬂf@—oda (3-3)
2 0
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Figure 2. Region E,( and its partition: E,, Ey1, Ezp, Er3.

If one sets u = 1 —¢, it implies that % fol 2 f(3—t)dt = %fol (1—u)? f(2+4u) du.
Hence,

1
[ f(x+y+z)dxdydz:l/ (1=10)f(t+2)dt. (3-4)
E; 2 Jo

By equalities (3-2) and (3-4), it is sufficient to show that

1
f(x+y+2)dxdydz = %/ (=22 42+ 1) f(t + Ddt.  (3-5)
E> 0

Consider the domain
Ey={(x,y,2): 1=x+y4+2z<2, 0=x=<2,0<y=<2, 0=<z=2}

Similar to Figure 1, we can cut Ej( into 4 different domains, E;, E1, E3»
and E;3, so that the integral over each domain can be handled easily. A picture of
this partition is shown in Figure 2.

E,={(x.9,2): 1<x+y+2z<2,0<x<1,0<y<1, 0=<z<1},
Eyvi={(x,y,2): 1 <x4+py+z=<2, 1 <x=<2,0=5ypy=1, 05z=1},
Epp={(x,y,2) 1 1=x4+y+2z52,0=x=<1, 1<y=<2, 0=<z=1},
Eys={(x,»,2) 1 1=x4+y4+2z52,0=x=<1,0=<y=1, 1<z=52},

where E20 = E2 U E21 U E22 U E23.
Again by using formula (1-1), the integral over E; is

/ f(x+y+z)dxdydz=f21z2f(z)dz=1/1(t+1)2f(t+1)dz. (3-6)
E»>o 1 2 2 0
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On the other hand, the integral over E, satisfies

f(x+y+z)dxdyd:z
E»o

=/ f(x—i—y—l—z)dxdydz—i—/ f(x+y+z)dxdyd:z
E3; Ez»
+/ f(x+y+z)dxdydz+/ f(x+y+z)dxdydz. (3-7)
E>3 E;
By the definitions of E,1, Ey; and Ej3, it is clear that
f(x+y+2)dxdydz= f(x+y+z)dxdydz= f(x+y+z)dxdyd:.

E> Ej>> E»s

So we only need to consider fE21 f(x+y+z)dxdydz. Let X = x —1; then by
equality (3-2),

/ f(x+y+z)dxdydz:/ f&+y+z+1)dxdyd:z
E> E,

1
= 1/ 22 f(@t+1)dt. (3-8)
2 Jo
Therefore, (3-6), (3-7) and (3-8) imply that
f(x+y+z)dxdyd:z
E>
=/ f(x+y+z)dxdydz—3/ f(x+y+z)dxdyd:z
E>g E>;
1! 3 (!
= —/ (t+1)2f(t+1)dt——/ 2 f(t+1)dt
2 Jo 2 Jo
1
:%/ (=202 420+ 1) [t + 1) dt,
0
which shows equality (3-5). O

4. The general case

In this section, we give a general formula for

1 pl 1
I:/ / [ f(x1+ x4+ -+ xp)dxidxy... dxy
o Jo 0

in Theorem 4.1. In order to prove it, we first find a recursive formula for 7
in Theorem 4.3. The proof of Theorem 4.1 then follows by Theorem 4.4 and
Theorem 4.3.
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Theorem 4.1. The integral I satisfies

1 pl 1
I=/ [ / f(x1+x24+--+x5)dx1dx, ... dxy
o Jo 0

1 S
ZWZ/O Gm(t) f(t+m—1)dt, 4-1)
" m=1

where

m
— i—1 n—1 n
Gm() =Y (=17t +m—i) (i—l)'
i=1
The idea is to divide the n-dimensional unit box into n different polyhedrons
and the integral I over each polyhedron can be simplified to a one-dimensional
integral by applying the ideas in the 2D or 3D cases. The n different polyhedrons

are defined as follows:

Ki={(x1,x2,....xp) : 0<x1+x2+---+x, =1,

0<x1=1,0=x=1, ..., 0=<x, =1},

0<x1=1,0=x,=1, ..., 0= x, =1},
Ky ={(x1,x2,...,xp):n—1<x14+Xx24+--+ x4 <n,

0<x;1<1,0=<x,<1, ..., 0<x, <1}

By formula (1-1), the integral over K satisfies the following proposition.

Proposition 4.2.

fx1+x2+--+xp)dx1dx, ... dx, =
K, (I’l—l)!

Let

/ 1 " f(@) dt.
0

1m=/ Jx1+x24+ -+ xp)dxydxy ... dxy,, m=1,2,...,n.
Kin

It is obvious that I = anzl I,. Then the integral I reduces to the calculation of
each I, (1 <m < n). Define

Js,m=/ fx14+-+xp+m—s)dxydx, ... dx,, 4-2)
K

where s is an integer and 1 < s < m. Note that Jy, ;, = I;. Forany 1 <s <m—1,
Js,m can be calculated by I;. The following theorem shows that [, satisfies a
recursive formula.
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Theorem 4.3.

1 1
Imz—/ C+m—D)"1ft+m—1)dt
(n—="1!Jo
—aJim—arJogm— = am1Im—1m,  4-3)
where

(m—l—n—i—l
a; =

o) =12 m

Proof. We consider the region

Kmo={(x1,x2,....xp) :m—1=x1+x2+--+x5, =m,
0<x1<m, 0<xp<m, ..., 0<x, <mj}.
By Proposition 4.2,
fx1+x24+--+x5)dx1dx, ... dxy
Ko
1 m 1
= " () dt
(n—1D)! /m—l

1 1
- m/o t+m—D""ft4+m—1)dt. (4-4)

We define the subset K, C K0 as follows:

i1iz...in

Kijig.in ={(X1, X2, ..., Xp) t m—1<x1 + X2+ + X, <,
I1—1=<x1 i1, h—1=<Xx3=ip, ..., in—1=<Xx,=<1in},
whereiy, iy, ...,in €[1, m]are positive integers. It is easily seen that the intersection

of any two subsets Kj,;,...;, only happens on their boundaries. We then classify all
possible Kj,i,...i, so that the integral over each one can be evaluated easily. Note
that by definition, Ky ;... 1 = K. To find the integral over K, we need to subtract

the integrals over all the other nonempty subsets K, j,...i,, (i1,12,...,1n €[1,m])
from meO f(x1+x2+ -+ xp)dxidx, ... dxy.
The first step is to determine when K; ;,.. i, (i1,12....,in €[1, m]) is nonempty.

For any set K;,;,...i,, let

Xp=x1—=(1—=1), Xpx=xa—(>2—1), ..., Xp=xp—(in—1). (4-5)
Then Kj;,,...;, becomes

Kijiy. iy ={(X1, X2, ..., %) im+n—a—1 < X +Xy++X, <m+n—a,

0<% =<1, 0<%=<1 ...,0=%,=1}.
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where ¢ =iy + iy +---+iy. Lets =m+n—oa. Itis clear that Kj,j,..i, =
12,~1,-2__,,-n = K. Sincem +n—s = Z};l ij = n, it follows thags < m. Note
that if s = m, by equality (4-2), Jym = Im. 15 = 0, Kiyiz..iy = Kiyiz..i = 10},
and if 5 <0, Kj j,..i, = K~i1i2...in = @. So we only need to consider the case
1 <s <m—1. For any given s € [1,m — 1], it follows that

[ f(X1+X2+"'+Xn)dX1dX2...dxn
i1i2~~-in

=/~ G+ 4 Xntir++in—n)dX; ... dXy,

Kijiy..in
:/ fx1+--+xp+m—s)dxy... dx,
K
= Js.m- (4-6)

It implies that the subsets Kj,;,...i, (i1.i2,....ip €[1,m], iy +ir+---+in #n)
with nonzero measure can be classified into m — 1 classes. In each class, every
element is identical to some subset K after a shifting transformation in (4-5):
(XI,XZ,...,)C”) = ()21,322,...,)%,,).
Next step is to fix m and s (1 <5 <m — 1), and find out how many subsets are

identical to K. Since s =m +n— (i; +iz +---+1i,), we have

m+n—s=iy+iy+---+1i,, whereiy,is,...,i, are positive integers. (4-7)
The number of positive integer solutions (i1, iz, . .., in) for (4-7) is (™" +n”__ls _1). It
follows that the total number of subsets identical to K (s € [1,m —1]) is

w=("00) @b

Therefore, by equalities (4-4), (4-6) and (4-8), I, satisfies
Im=/ fx1+x24+--+xp)dx;dxy... dxy
K
1 ! n—1
=— | t4+m=-1D)"""f@t+m—1)dt
(n—=D1!Jo
—aySiym—axlom— —am—1Im—1,m, (4-9)

where ag (s = 1,...,m — 1) is defined by (4-8). O

By using the cases n = 2 and 3, we can show by induction that

Im (n—1)!

/1 Gm(t) f(t +m —1)dt, (4-10)
0
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where G, (¢) is a polynomial. It follows that

Js,m =/ fx1+-+xn+m—s)dx;...dxy
K
1 1
=—/ Gs(t)f(t+m—1)dt, (4-11)
(n—1!Jo
where s is an integer and 1 < s < m. The integral I satisfies
1 p1 1 n
1:/ / / SO+ xa+ ot xg)dxydy .o dxg =Y Iy (4-12)
o Jo 0
m=1

In order to find a formula for 7, we only need to compute the polynomial G, (¢) in
equality (4-10) for all 1 <m <n. Form =1, 2 and 3, a direct calculation shows that

Gi(t)y=1""1,
(4-13)
G,(t)=(@+1)" 1= (7) "
By Theorem 4.3 and equality (4-11),

a0 (," )60

=@+2" " - (’17) ¢+ '+ (Z) L

G3(1) = (t +2)"! —(

Similarly,

Ga) = +3"" = (T) e+ + (§) e+ = (5)

It is reasonable to believe that G,,(¢) follows a pattern. The following theorem
actually proves this fact.

m

Theorem 4.4. Gm(t) = Z(—l)i_l(t +m—i)t! (z’ﬁl)' (4-14)
i=1

Proof. The proof is based on the recursive formula (4-3) in Theorem 4.3 and the
identity (4-11). By formula (4-3),

1
Ip=——
T (m=1)!

1 m—1
/ (t+m—1)”_1f(t+m—1)dt—ZaiJ,-,m
0

i=1

1
o 1)![0 Gm(t)f(t+m—1)dt,
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where

m—+n—i

m—1 .
Gm(t)z(t—i-m—l)"_l—ZaiGi(z), and a,-z( 1_1). (4-15)

i=1

We show this theorem by induction. It is clear that formula (4-14) of G,,(¢) holds
for m = 1. Assume that it holds for any 1 < m < k. We need to show that
formula (4-14) also holds for m = k + 1.

By (4-15) and the induction assumption, the polynomial Gy () satisfies

Gieq1 () = (¢t + )™ 1+Z(’““+” )Z( Da+i-p(;").

i=1
(4-16)
By formula (4-14), we can consider each G, (¢) (1 <m < k) as a polynomial of
(t+m— )1 (j=1,2,...,m) with coefficient (—1)/~! (jfl). Then identity

(4-16) implies that the coefficient of (£ 4+ p)"~! in Gy (¢) is

k
_ k+1+n—i—1 i—p n
LGy = Y ("7 T e (). @
i=p+1
where p € [0,k — 1] is an integer. Similarly, Gy (¢) satisfies
S kn—i—1\ o, n
ey =@ +k=0"" (T ) e e+ i- (L),
i=1 j=1
and the coefficient of (t + p)"~! (p €[0,k —2]) in Gi(¢) is
2 ki n
_ iep ]
Z ( n—1 >( D (l—p—l)' (4-18)
i=p+1

Note that Gy (1) = Z?:l (=)t +k—i)"~ (;",)- It follows that

2—: (k+::f_l)(_1)i_p(i—2—1)=(—1)k_”‘1(k_';_1). (4-19)
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If p#0,let g = p— 1. By identity (4-19), the coefficient of (1 + p)"*~! in (4-17)

satisfies

LGy = Y (FFUT Y Cyir (1)

1 n—I1 i—p—1

(k+1+_nl—z'—1)(_1),-_q_1(. n )

M~ 10

i=q+2 " l_q_z
U kn—i—1 i—a{ 1
=i=%-:|-1( n—1 )(_1) q(l'—q—l)
SO ) ) e

Identity (4-20) holds for all integers p € [1, k — 1]. It remains to consider the case
when p = 0.
If p =0, by (4-17), the coefficient of ! in G (¢) is

k

Lo =3 ("t (1) @

n—1
i=1

Next, we show that Lo (G4 (1)) = (—1)¥(}). Note that by the binomial theorem,
the coefficient of the term x*¥+1 in (1 4+ x)™"(1 + x)" is

k .
S ()

(_1)i<n:iIl)(k’ii)

[l
Ik M x~
o

k+1
_ k+1+n—J—1 k+1_j n . .
= 1( ) (j—l) U=k+1-1)
j:
n
= (D (Lo(Grpr ) + DF () (4-22)
On the other hand, for a nonnegative integer &, the coefficient of the term xk+1 in

(14+x)™"(1 +x)" =1 is always 0. Hence, (4-22) implies that

Lo(Grar () = (=1 (3))- (4-23)
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Therefore, by identities (4-20) and (4-23), it follows that

k—1
Grp1 () = (+ K™+ 3 =Dk (

p=0

k—p)(t + P)n_l

k+1
=YD ark 1=

i=1

This concludes the proof.

5. Application to log-gamma function

In this section, we consider the integral of log-gamma function

1,1 1
I=/ / / logT'(x1 + X34+ xp)dx; dx; ... dxy.
o Jo 0

605

(4-24)

(5-1)

The integral of log-gamma function has its own importance in many parts of
mathematics [Amdeberhan et al. 2011; Choi and Srivastava 2005]. Actually, the
case when n = 2 is a problem proposed by Ovidiu Furdui [2010] in the Problems
and Solutions section of The College Mathematics Journal, and one of its solutions
is proposed by Geng-zhe Chang [2011]. When it comes to general dimension #, it

is quite a challenge to evaluate it.

After the preparation of Theorem 4.1 in Section 4, we can evaluate the inte-

gral (5-1). A nice formula is given in Theorem 5.1.

Theorem 5.1.

1 pl 1
I=I(n)=[ [ / logl(x1+x2+---+xp)dx1dx; ... dxy
o Jo 0

n—1 n—1 -1 n+k—|—1kn 1
= %log(2n) — H, + L(H

k=2

n!

where the last sum is missing whenn =2 and H, = ; _; 1/ k.

P ) logk, (5-2)

The proof of this theorem is based on Theorem 4.1 and several combinatorial

identities in Jihuai Shi’s book [2009].
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Note that T'(t 4+ 1) = (T'(1) and G (£) = Y 12y (=)' "1t +m—i)"~1(, ). By
Theorem 4.1, the integral I becomes

1
= oD /O mZZI Gm(t)log ['(t) dt

(n—l)'/ Z Z Gm(t)log(t +k—2)dt. (5-3)

=k

Several combinatorial identities are introduced to simplify (5-3).

Lemma 5.2.
n k—1 n—1
> Gy === 3 (T D e m -1y
m=k m=1

and whenk =1,% » 1 Gp(t) = (n— 1)\

Proof. Note that G, (1) = Y 7., D)"Yt +m—i)y" ! (ifl). It follows that

i D a+m-it ()

k
> Gml®)
m=1

;\\N
§>—-

M= i~

(—l)i(’;)(t+m—1)”_1.

=0

3
]
1i

By the combinatorial identity Y 7, (—1)" (}) = (=1)™ (”;11) (m < n), we have

k

Xk: f ( )([er D" = Z(k m)( DA+ m - 1)

m=1

Hence,

k k
Y Gm)=) (::};)(—1)"—'"0 +m—1)""1
m=1
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In the case when k = n, the combinatorial identity > _, (=D (Z) (x+n—k)*=n!
implies

> Gy = 32 (17, )0 m = !
m=1

m=1

n—1

_ Z(”;l)(_l)k(z 1k
k=0

— (-1

Therefore,

n n k—1
Y Gu)=) Gm()= Y Gm()
m=k m=1 m=1

k—1
=(n—1)— Z(kf;ql_l)(_l)k—m—l(l_*_m_l)n—l‘ -
m=1
Let
-l Gy
Te= §(k—m>(_1)k_m(f+m—1)"_l = X_:O( o JED ™ ae—m=1y"1,
Then

Y Gm() = (= D!=Tpy.

m=k
By applying Lemma 5.2, (5-3) becomes

1n=2 1 n—1

1 1
1:/ logl"(t)dt—i—/ Zlog(t+k)dt——/ > Ty log(t+k—1) dt
0 (N (n=D'Jo ‘=

1 1 n—1
_ 1
= 510g(27r)+(n—1)log(n—l)—n—i-l—m/0 l; Ty log(t+k—1) dt.

(5-4)
Then, the calculation of I reduces to the calculation of

1 n—1
/ Z Ty log(t +k—1)dt.

0 k=1
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Note that 7y = t"~! and

1
/ Ty log(t +k—1)dt
0
k—1

— i(nrzl)(_l)m/q(t_i_k_m—l)n_llog(t+k_1)dl
0

=0

3

When k > 1,

1
[ (t+k—m—1)""log(t +k —1)dt
0

_(k=m)"logk — (k —m—1)"log(k —1) Via+k—m—1)"
- n Jo nG+k—1)
_Gemmy =y k—m 1) = )
= og p

B k’—(k—l)’(n

n r r
r=1

dt

)(=my

Let S;(1) =0,

S1(k) =
k—1

Z (nél)(—l)m ((k —m)”n— (—=m)" logk— (k—m— 1’3” — (—m)" log(k—l)),

m=0

and
k—1

Sy (k) = % > (n;)(—nm Xn: kr_(rﬂ(’:)(_m)”".

m=0 r=1

It follows that

1 n—1 n—1 n—1
/ D Tilog(t +k—1ydi =) Si(k)— Y _ Sy(k). (5-5)
k=1 k=1

O k=1
The next lemma calculates 22;11 S1(k).

Lemma 5.3.

n—2

n—1 _ 1 1
3 Sik) = % Z(”k 1)(—1)k(—k)” log k + %(m(n— =@ —1)").
k=1 k=2



A TYPE OF MULTIPLE INTEGRAL WITH LOG-GAMMA FUNCTION 609

Proof. Note that S{(1) = 0.

n—1k

>

k=1

n—2
_ % 3 (”;1)(_1)k(—k)”1ogk

k=2

1

=0

3

n—2
+% > (n;l)(—l)m((n—m—l)”—(—m)”)log(n—l).
m=0

Using the combinatorial identity Y % _, (,’:) (—Drf(x k)"t =(x—n/2)(n+1)!,
we have

n-2 n—1
B M A
and

(" em
m=0

n—1

= > (") e ey = ) =y = -1y =2
m=0
Hence,
S 1= n—1 k log(n —1)
Yosi =3 (" ) DF ) ogk + =S (nln— 1) = (n = 1)").
k=1 k=2

O

The following lemma calculates Zz;ll S5 (k). Here we only give the result. For
reader’s convenience, the proof of it is given in the Appendix.

Lemma 5.4.

n—

1

n—1
Y Sk)y=@m-D!n-1)-
k=1

where Hy, =Y 31—, 1/k.

Using Lemma 5.3 and Lemma 5.4, we can prove Theorem 5.1 below.
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Proof of Theorem 5.1. Let H, = >y _, 1/k. By identity (5-5), Lemma 5.3 and
Lemma 5.4, we have that

1 h—1

/ > Ty log(t +k — 1) dt
0

k=1
n—1 n—1

=D Sik)= ) S$2(k)
k=1 k=1

12 0 log(n — 1
= (nk1)(—1)k(—k)”logk+%(ﬂ!(h—l)—(n—l)”)
k=2

—(n—l)!(n—l)—l—%Hn(n—l)!. (5-6)

By identities (5-4) and (5-6), it follows that

1 1 n—1
I= %10g(271)—|—(n—1)log(n—l)—n—l—l—m/ > Ty log(t+k—1) dt
n—1): Jo
k=1

n—1

_1 _n—l 1 n=1\ — ktn+in

= 5 log(27) 3 Hn—l—n!;( k )( 1) k" logk. O
=2

When n = 2, 3 and 4, the values of the integral I are

1(2) = —3 + 3 log(27),
1(3) = %log(Zﬂ) + glogz— %,
1(4) = L log(27r) —2log2 + 2 log3 — 2.

Appendix.

For reader’s convenience, the proof of Lemma 5.4 is given here.

Lemma 5.4.

n—1
> S0 = =Dl =) =" L Hyn— 1)1,
k=1

where Hy, =Y 1_, 1/k.
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Proof. Note that

:é Sa(k) = %g(g(n;)(—l)m ; ""(Vﬂ(f)(_m)n_,)
R
* %;(";1)<—1)mé (—m)"—:m Wy
Let
f BSOS
and
Ry= LT (o ey yn ET 0y
Then " =
3" S5(k) = Ry + Ra. s

By applying the combinatorial identities

S (k- = (=Dt e Y E (1),
k=1

the sum R; can be simplified to

R LS enrerr ()

k=1 r=1

_ ((n —1)"— ; ln!). (A-4)

To simplify R;, we apply the combinatorial identity

( 1)k+1 n k

(-0 X

k=1
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and it follows that

i (=m)"" (n=1)" n "

y (r):_(_m)nZﬂ(n)(l_m—n-‘rl)r
r=1

r r m

- (L (5 R )

r
r=1 r=1

— Z %(m—n—i—l)rm"_r (=1)"—(—=m)" H,.
r=1

Recalling the formula of R, in (A-2), we have

n—2 n n—2
NRy= X_:O(I’Zn—/ll)(_l)m—i-nkzzl %(m_n_i_l)kmn—k_Hn Z(nn—/ll )(_1)m(_m)n

m=0

(A-5)
By the combinatorial identity Yz _q ()) (=Df(x=k)" = (x—n/2)(n+1)!, we
see that

n—

> (e em =@y

3
o

n!. (A-6)

We then simplify an;zo (";11)(—1)”’"'” i %(m —n+ 1)km"*_ Note that

(”;1)(—1)"’” Xn: %(m —n+ Dk m"k
k=1

nsn- k
- kX=:1 (_kl) ( i (n,;l)(—l)m Z(l;)m”_k“(n_ 1)k—i(_1)k—i)_ (A7)

m=0 i=0

k

P(Wl) — Z(l;)mn—k-i—i(n _ l)k_i(—l)k_i.

i=0
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We apply the combinatorial identity ZZ=O(—1)k (Z)P(k) = 0 for any polynomial
P(k) with deg P(k) < n, and it follows that

—(n-l ok n—k-+i k—i(_qyk—i
& (e £

i=0

7
[\S)

(") ey

3 3
Lo
(=)

(") e — (1" PG 1)

Il
Ny

3 3
L]

(”};1 )(—l)m(—k(n “Dm™ T emh).  (A-8)

3
II
o

By the combinatorial identity Zz=0(—1)k (Z) (x +n—k)" =n!, we have
n—1 n—1
—kn=1) ( - )(—1)mm"—1 — k(i —1)(=1)"(n—1)!.
m=0

By the combinatorial identity > _ (7)(—D*(x — k)" = (x —n/2)(n + 1)!, we
see that

n—1
P Cymn = 1yt L
m 2

m=0

Then equality (A-7) becomes

n—2 n
Z <l’l’;1>(_1)m+n Z l(m—n + l)kmn—k
m=0 k=1 k

= kg (_,i)n (k(n (1) (=) 4 (=1 %n!)

n—1

=nl(n—1)— n!' Hy, (A-9)

where H, =Y 3, 1/k.
Hence, by equalities (A-9) and (A-6), nR, in (A-5) can be simplified to

nRy=n!(n—1)—(n—1)"H,. (A-10)
That is,
Hy
Ry=(n=D!(n—1)=—(n—1)" (A-11)
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Therefore, by equalities (A-3), (A-4) and (A-11), it follows that

—1
> Sa(k)=Ri+ R,
k=1

=ﬂ((n—l)”—n_l”’)+(n—1)!(n—1)—ﬂ(”—1)”
2 n

n

~1
= (n—l)!(n—l)——nz Ha(n— 1),
where H, = > j_, 1/i. O
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Knight’s tours on boards with odd dimensions

Baoyue Bi, Steve Butler, Stephanie DeGraaf and Elizabeth Doebel

(Communicated by Kenneth S. Berenhaut)

A closed knight’s tour of a board consists of a sequence of knight moves, where
each square is visited exactly once and the sequence begins and ends with the
same square. For boards of size m x n where m and n are odd, a tour is impossible
because there are unequal numbers of white and black squares. By deleting a
square, we can fix this disparity, and we determine which square to remove to
allow for a closed knight’s tour.

1. Introduction

One popular form of recreational mathematics deals with chess problems [Elkies
and Stanley 2003]. While these problems can take many different forms (e.g.,
placing nonattacking queens or solving endgames), one of the most well-known
variations is the knight’s tour. In chess, a knight can move in a very restricted way.
Namely, it must move one unit in one direction and two units in the perpendicular
direction (see Figure 1).

A knight’s tour is a sequence of legal knight moves where each square on the
board is visited once; further, a closed knight’s tour has the additional condition
that it begins and ends with the same square. The problem of determining when a
board has a closed knight’s tour dates back several hundred years (see for example
the work of Euler [1759]), and a full solution using a simple inductive argument
was given by Schwenk.

Theorem 1 [Schwenk 1991]. For m < n, an m x n rectangular board has a closed
knight’s tour unless one of the three following conditions hold:

(1) mn is odd.
2) me{l,2,4}.
(3) m=3andn € {4, 6, 8}.

MSC2010: primary 05C45; secondary 00AQ9.
Keywords: knight’s tour, expanders, chess boards.
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o \¥/ P
P / \ ~

Figure 1. Legal knight moves.

Variations of this result have been studied including looking at closed knight’s
tours on a torus [Watkins and Hoenigman 1997], cylinders [Watkins 2000], spheres
[Cairns 2002], and other boards [Lam et al. 1999].

When a knight moves on an m X n board, it will alternate between squares which
are white and black. When we add in the requirement that we must start and stop
at the same square this means that we must take an even number of steps in a
closed tour (i.e., to return to our original colored square). However there are mn
steps needed to cover the m x n board, and this establishes the first condition of
Theorem 1. However, by deleting one square it is possible to leave an equal number
of white and black squares on the board opening up the possibility of having a
closed knight’s tour. This leads to the following pair of questions:

Question. Let m, n be odd withm, n > 3. Given an m x n board, when is it possible
to delete one square so that the remaining board has a closed knight’s tour? When
it is possible to delete a square, which square(s) can we delete?

An answer to the first question was given by DeMaio and Hippchen [2009] who
showed that it is always possible except for the 3 x 5 board. The purpose of this
paper is to give an answer to the second question, namely which squares can be
deleted when it is possible, which we summarize in the theorem below.

For convention, we will label the squares of the board (i, j) as we would a matrix,
i.e., 1 <i <m indicates the row going from top to bottom while 1 < j < indicates
the column going from left to right. With this labeling we note that a knight move
will go from (i, j) to (k, £), where i 4+ j and k + ¢ have different parity. Since there
is one more square with i + j even than there is with i 4 j odd, in order for a knight’s
tour to exist, a necessary condition is that we must delete a square with i + j even.

Theorem 2. Let m, n be odd with 3 < m < n. Then we can delete the square (i, j)
from the m x n board and have a closed knight’s tour in the remaining board for
the following situations:

(1) Forthe 3 x 3 board, (i, j) = (2, 2).
(2) For the 3 x 5 board, there is no single square which can be deleted.
(3) Forthe 3 x 7 board, (i, j) € {(2,2), (2,6)}.
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(4) Forthe 3 x9 board, (i, j) € {(1, 1), (1,5), (1,9), (3, 1), (3,5), (3,9)}.
(5) Forthe 3 x n board withn > 11,i+ jisevenand j ¢ {3,4,n —3,n —2}.
(6) Forthe 5 x5 board, (i, j) € {(1, 1), (1,5), (5, 1), (5, 5)}.

(7) Form>5andn >17,i+ j is even.

The problem of which squares can be deleted from a 3 x n board and having
a knight’s tour on the remaining board was independently done by Miller and
Farnsworth [2013]. We include those results here for completeness and also because
the proof of Miller and Farnsworth overlooked the case of removing the (2, 8) square
from the 3 x 15 board.

The rest of this paper is organized as follows. In Section 2 we introduce a method
that allows us to expand a closed knight’s tour from a smaller board to a larger
board. In Sections 3, 4, and 5 we handle the cases of 3 x(odd), 5x(odd), and finally,
the remaining cases. Lastly, in Section 6, we give some concluding remarks.

In the remainder of the paper we will make extensive use of symmetry, i.e., if we
rotate a board by 90° or take a mirror image, we will still have a closed knight’s tour.

2. Gluing on expanders

Our general approach mirrors that which was given in [Schwenk 1991]. Namely, we
will form a large collection of base cases and show how to expand these base cases
to get the remaining results. Our base cases have been relegated to the appendices,
while in this section, we will show how we can expand a board.

Our tool of choice will be m x p expanders which correspond to open knight’s
tours of the m x p board that start at (2, 1) and end at (3, 1). This type of board
can be easily connected to corners (since the moves at corners are forced). The
following shows how to take a closed knight’s tour that uses all or part of a board
(i.e., a sub-board) and extend the board in one direction.

Lemma 3. Given a closed knight’s tour on a sub-board of the m x n board which
visits the square (1, n) and an m x p expander, we can find a closed knight’s tour
on the m x (n + p) board which, when restricted to the first n columns, covers the
same sub-board as the original m x n board.

Proof. By assumption, our tour visits the (1, n) square. Therefore, we know that one
move on the knight’s tour is from (1, n) to (3, n — 1). Deleting this move will result
in an open knight’s tour that starts at (1, n) and ends at (3, n — 1). Now sequentially
place the two boards, first placing the m x n board and then the m x p expander. Note
that the expander is now an open tour that starts at (2, n + 1) and ends at (3, n+1).
Finally, we combine these two open tours to form one single closed tour that visits
every square by adding the moves (1,n) to 3,n+1)and (3,n—1) to (2,n+1).
By construction this will cover the same sub-board as the original m x n board. [J
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Figure 2. An illustration of Lemma 3 for a 3 x 4 expander.
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Figure 3. The three building blocks to form expanders.

An illustration of Lemma 3 which has a 3 x 4 expander is shown in Figure 2.
Note by symmetry that we can also use other corners to glue. Since we will only
be deleting one square from the board, we will always have at least one corner on a
side available to use. We note that DeMaio and Hippchen [2009] used a similar
gluing in their approach.

Following Schwenk, we want to be able to add four rows or columns to boards,
which means we want to show that n x 4 expanders exist. Unfortunately, they do
not exist for all n. However, we will show that they exist when n > 7 and is odd.
This will be done by appropriately combining the three pieces shown in Figure 3
(where for convenience we have rotated by 90°).

Proposition 4. A n x 4 expander exists for odd values n > 7.

Proof. We will use the pieces given above along with induction to show how to do
this. First note that these pieces are designed to overlap in a column, so if we take
the start and end together we get the 7 x 4 expander shown in Figure 4.

To finish the proof it suffices to show how we can take an expander and increase
its width by 2; i.e., given that we have n x 4, we can construct (n +2) x 4. To do
this we move the end piece over by two spots and in the gap insert a middle. For
example, for n =9 and n = 11, we now get the expanders shown in Figure 5.

A Yo

AN
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FYPIN

A
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\ )
g s

Figure 4. A 4 x 7 expander.
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Figure 5. 4 x 9 and 4 x 11 expanders.

Because of the format of the pieces, as we glue these pieces together, we will
have degree two at each vertex except for the two special vertices coming from
the start piece. To show that this is a valid expander, we only need to make sure
that we have an open knight’s tour (i.e., we visit every square once and we begin
and end in different squares). The key to see why this holds is to note that for the
middle piece we have the relationship shown in Figure 6

This indicates that the relative ordering of the four “tracks” is the same. In
particular, the addition of the middle piece will not effect whether or not we have an
open knight’s tour outside of that piece. But by induction, since we started with an
open knight’s tour, we still have an open knight’s tour, and hence this construction
gives a valid expander. O

3. Closed tours on 3 x (odd) boards

In this section we will work through the cases of 3 x n for n odd. We will first
look at what happens when n < 9 where there are extra constraints on what can be
deleted, and then we will establish the general case for n > 11.

When n = 3, we note that there is no legal knight move from (2, 2) to another
square. Thus, it cannot be involved in a tour, so it is the only square which can
be deleted. Further, there is a closed knight’s tour with this square deleted (in
Appendix A), establishing the result.

When n =5, each corner would have a move to (2, 3) and since we only delete
one square, we would have to visit the center square multiple times, which is
impossible for a closed knight’s tour.

When n =7, if we keep both (2, 2) and (2, 6), then the moves shown in Figure 7
(among others) would be forced to occur. This is impossible to extend to a closed
knight’s tour of the 3 x 7 board as we already have a cycle just among these four

A
)
¥
V

NSRS
A
QUL oS

Figure 6. The relationship of the central pieces.
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Figure 7. Forced moves for 3 x 7.

vertices. Therefore, we must delete either (2, 2) or (2, 6) (which up to symmetry
are equivalent). Starting with the 3 x 3 closed knight’s tour in Appendix A and
gluing on the 3 x 4 expander as in Lemma 3 to the left (or right) will give a 3 x 7
closed knight’s tour with (2, 6) (or (2, 2)) deleted.

Before moving on to analyze the 3 x 9 case, we will establish a general restriction
about which square can be deleted.

Lemma 5. It is not possible to construct a closed knight’s tour on a 3 X n board, n
odd, with a deleted square in column 3,4, n — 3, orn — 2.

Proof. By symmetry it suffices to show that we cannot delete a square in columns 3
or 4. Further note that by parity, we only need to show that (1, 3), (3, 3) and (2, 4)
cannot be deleted.

Note that to make a complete tour, each square must have an ingoing and outgoing
move. This restriction forces the moves of several squares including (1, 1), (2, 1)
and (3, 1), as shown in Figure 8 (assuming they have not been deleted).

In particular, since (2, 1) cannot be deleted, both (1, 3) and (3, 3) need to be
present to be able to connect to (2, 1). Thus, we cannot delete a square in column 3.

If we delete (2, 4), then the squares (1, 2) and (3, 2) must connect to (3, 3) and
(1, 3) respectively. This then forces a small cycle (as shown in Figure 8) which we
cannot then extend to a closed knight’s tour. Therefore, we cannot delete (2, 4). [J

Applying Lemma 5, we see that for the 3 x 9 board, we cannot delete a square
in columns 3, 4, 6, or 7. In Appendix A, we give closed knight’s tours for the cases
when we delete (1, 9) and (1, 5) (which, by symmetry, give tours for when (1, 1),
(3, 1), (3,9) or (3, 5) are deleted). It remains to show that we cannot delete (2, 2).
This is done by examining forced moves. The process is illustrated in Figure 9.
First we add in all moves which are forced (near the ends). After this is done,
we note that each of the squares (1, 5) and (3, 5) only have two possible moves
available to them, so their moves are also forced. Finally, this leaves (2, 4) with

BpA

(¢
% N

2

NSA7

Figure 8. The forced moves from the left-hand column of a 3 x n board.
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Figure 9. Forced moves for the 3 x 9 board.

only two available moves and so those moves are also forced. But we are now left
with a closed cycle that does not cover the entire board and so we cannot extend
this to a closed knight’s tour.

We are now ready to establish a general result for larger 3 x n boards.

Theorem 6. Suppose we have a 3 x n board with n > 11 and odd. Then a closed
knight’s tour is possible on the board after removing the square (i, j) if and only if
i+ jisevenand j ¢ {3,4,n—3,n—2}.

Proof. By Lemma 5, we cannot delete a square in column 3,4, n —3 or n — 2.

It remains to show that the deletion of every other square results in a board
containing a closed knight’s tour. For n = 11, we show in Appendix A closed
knight’s tours with squares (1, 1) and (1, 5) deleted (which by symmetry also gives
(1,11, (3, 1), (3, 11), (1,7), (3,5) and (3, 7)). In addition, we can take the 3 x 3
board and using Lemma 3, glue on a 3 x 4 expander either twice to the left, twice to
the right, or once on each side, giving a closed knight’s tours with squares (2, 10),
(2,2), or (2, 6), respectively, deleted.

For n = 13, we can use the known solutions for the 3 x 9 board and use Lemma 3
with the 3 x 4 expander to get solutions for the 3 x 13 board with a deleted square.
Doing this we get everything except (up to symmetry) boards with squares (1, 7),
(2, 6) or (2, 2) deleted. These boards are given in Appendix A, establishing this case.

Now assume the result holds true for 3 x n. Then by taking the collection of
closed knight’s tours and applying Lemma 3 with a 3 x 4 expander on the left,
we will get every closed knight’s tour for the 3 x (n + 4) board which does not
have a deleted square in column 1, 2,3,4,7,8,n+ 1, or n 4+ 2. Similarly, if we
apply Lemma 3 with a 3 x 4 expander on the right, we will get every closed
knight’s tour for the 3 x (n + 4) board which does not have a deleted square in
column3,4,n—3,n—2,n+1,n+2, n+3, or n+4. The intersection of these sets of
columns will contain the mutually common columns 3, 4, n+ 1, and n + 2. It might
also contain additional term(s) if {7, 8} N{n —3, n —2} is nonempty. Because n > 11
by assumption, this can only occur when n = 11 and the common column is 8, giving
that for n > 13, the intersectionis {3,4,n+1,n+2} and {3, 4, 8,12, 13} if n = 11.

Therefore, we can get all solutions by building off of the base cases, except
for the case when we have a 3 x 15 board and we delete the square (2, 8). In
Appendix A we show a closed knight’s tour for such a board, and therefore we can
construct all such boards. O
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Figure 10. Knight’s tour on the 5 x 5 board.

4. Closed tours on 5x(odd) boards

In this section we will work through the cases of 5 xn. We first handle the exceptional
case of 5 x 5 by noting that if we do not delete one of the corner squares and then
we draw in the forced moves, we get the board shown on the left in Figure 10. This
board has a closed cycle, so we will not be able to form a closed knight’s tour.
Therefore, we must delete a corner, and by symmetry, we can delete any corner.
On the right in Figure 10 we have given a closed knight’s tour with (1, 1) deleted.

The remaining cases are handled in the following theorem which makes use of
the 5 x 6 expander given in Figure 11.

Theorem 7. Given any 5 x n board where n > 7 is odd, a closed knight’s tour exists
after deleting (i, j) if and only if i + j is even.

Proof. In Appendix B we have given a knight’s tour for any appropriate deleted
square (up to symmetry) for the 5 x 7, 5 x 9 and 5 x 11 boards.

Now suppose we have a 5 x n board with n > 13 and a square (i, j) with i +
even. Then we show how to form a closed knight’s tour for this board. First we note
that on either the left or the right of the deleted square, there are six full columns in
the board. So we repeatedly pull off sets of six columns from one side or the other of
the deleted square until we have a5 x 7,5 x 9 or 5 x 11 board with a deleted square
(which by construction will be at (i’, j') with i’ + j’ even). We now take the closed
knight’s tour for this board (which we have already found) and we repeatedly add
back in the sets of six columns that we deleted by use of Lemma 3 and the expander
shown in Figure 11. The end result will be our desired closed knight’s tour.  [J

%E % p
DVLA O
2/ 3

Figure 11. A 5 x 6 expander.
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The proof we have just given works by showing how to start with a large board
and then showing how to reduce down to a base case which we know is true. An
alternative proof approach would be to start with the base cases and then use the
expanders in all possible ways to construct a collection of boards and then show
that all of the desired boards are in our collection. The latter approach can work
but we have opted for the first approach as it gives a simple constructive approach
to building the boards. Namely take the board, reduce down to a base case which
we know and then reverse the steps to build the desired board. Using the second
approach, it is not obvious a priori which board to build off of or how to build up
to a larger board; this is especially true for the final result in the next section.

5. Closed tours on larger boards

In this section we finish establishing the main result.

Theorem 8. Given an m xn board withm <n, m >5 and n >"7 and any square (i, j)
with i + j even, there is a closed knight’s tour of the m x n board with (i, j) deleted.

Proof. We will make use of the n x 4 expanders from Proposition 4, for odd n > 7,
to mimic the proof of the last theorem. By the previous theorem, we know the
result holds if m = 5, so we can assume that m > 7. Further, in Appendix C we
give (up to symmetry) closed knight’s tours for the 7 x 7 board. So we know the
result also holds form =n =7.

Now, for any (i, j), there are either four columns to the left or four columns to
the right. We can pull off those four columns and consider the resulting smaller
board. By Lemma 3, it follows that if we have a closed knight’s tour for this smaller
board, we can use the expander to recover a closed knight’s tour of our original
board. (Note that we might possibly interchange the dimensions by rotating after
pulling off these extra columns to maintain that m < n.)

In particular, after finitely many iterations (at most (m + n)/4 since we can
only repeat this at most m /4 times for rows and at most n/4 for columns) we will
have shrunk the board down to either a 5 x n or a 7 x 7, in which case we have
a solution. We now take this solution and work backwards to recover the desired
original knight’s tour. (]

6. Conclusion

In this paper we have determined which squares can be deleted in a board with odd
dimensions to allow the existence of a closed knight’s tour. Reexamining Schwenk’s
result [1991], we note that there are no closed knight’s tours of the 4 x n board for
any n. DeMaio and Hippchen [2009] were able to show that there are closed tours
that exist after deleting two squares (as long as n > 3). In light of our discussion
this raises the following natural question:
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Question. For the 4 x n board with n > 3, which pairs of squares can be deleted
that result in the existence of a closed knight’s tour on the remaining board?

We note that there is the obvious restriction that there must be one square of
each parity. There is also a more subtle constraint.

Proposition 9. If two squares in the 4 x n board are deleted and a closed knight’s
tour exists for the remaining board, then neither square could come from the middle
Wo rows.

Proof. In the 4 x n board, if we have a closed knight’s tour, then any move from the
first or fourth row must go into the middle two rows. By orienting the tour, we can
then create a one-to-one pairing between squares in the first and fourth rows with a
subset of the squares in the middle two rows (i.e., by what square follows after in
the order given by the tour). Therefore, we can not have deleted both squares from
the middle two rows.

Similarly, if we have one square deleted from the middle two rows, then we
deleted one square from the first or fourth rows. Therefore, in the closed knight’s
tour, squares alternate between being in the middle or not. But we also know that
squares alternate between different parities, which would imply that the squares in
the middle two rows are all the same parity. But this is impossible. U

This shows that we must delete our two squares from the first and fourth row. Yet,
when 7 is small, this is not sufficient. However, computational evidence suggests
the following.

Conjecture. Consider the 4 x n board with n > 7. For any pair of squares, with
one of each parity and neither coming from the middle two rows, there is a closed
knight’s tour on the board that avoids only these two squares.

We look forward to seeing the next move in this area.

Appendix A: Base cases for 3x (odd)

The following is the closed knight’s tour of the 3 x 3 board:

#

The following are closed knight’s tours of the 3 x 9 boards with (1, 9) and (1, 5),
respectively, deleted:

VLA AR VASAL [paiar
LT AN\ SR ASXANEXR
PESINARRAN ARSI
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The following are closed knight’s tours of the 3 x 11 boards with (1, 1) and
(1, 5), respectively, deleted:

AR [Nt
PR #’ch%\ J@QC%* \a%«

The following are closed knight’s tours of the 3 x 13 boards with (1, 7), (2, 6)
and (2, 2), respectively, deleted:

YA | | SSERONLSN
1«*9%3*77\\« Q%qw I*’P%V Vi &‘TC%*
VA : A7 | HDEASRAS
%p\a TS
Y VP | VN PEN

The following is a closed knight’s tour of the 3 x 15 board with (2, 8) deleted:

VALA XAZ NAAAASSAL
b Y2 IFE S
ARSIV [ ANVERN

Appendix B: Base cases for 5x (odd)

The following cover the cases (up to symmetry) for the 5 x 7 board:

/N
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The following cover the

~ )/
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>

Appendix C: Cases for 7 x 7

The following cover the cases (up to symmetry) for the 7 x 7 board:
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Differentiation with respect to parameters of
solutions of nonlocal boundary value problems
for difference equations

Johnny Henderson and Xuewei Jiang

(Communicated by Kenneth S. Berenhaut)

For the n-th order difference equation, A"u = f (¢, u, Au, ..., A"y, A, the
solution of the boundary value problem satisfying Ayt =A;,1<i<n—1,
and ”(tl)_27:1 aju(tj)=A,,wherety, 71, ..., Ty, 1 €Z,tg<---<fy+n—1<
<<ty <t,anday,...,ay, A, ..., A, €R, is differentiated with respect
to the parameter A.

1. Introduction
With differences defined by Au(t) = u(t + 1) — u(t) and Alu(t) = AA" u(t))
for i > 1, we will be concerned with solutions of the n-th order difference equation,
Au= f(t,u, Au, ..., A" "u, 1), (1-1)

satisfying Dirichlet conditions

A7) =A;, 1<i<n-—1, (1-2)
and nonlocal boundary conditions
u(t) =Y aju(t)) = Ay, (1-3)
j=1
where 19, 71, ..., Tn €2, tp+n—1<ty<--- <1, <t;,A;€R,i=1,...,n,and

ajeR, j=1,...,m.

Let Z, R, and N denote, respectively, the integers, the real numbers and the
natural numbers. Given & # S C R, let Sz := SN Z. We assume throughout the
paper that for (1-1):

MSC2010: primary 39A10, 34B08; secondary 34B10.

Keywords: difference equation, boundary value problem, nonlocal, differentiation with respect to
parameters.
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(A) f(t,s1,...,8, ) :Z xR = Ris continuous.
B) (Of/0si)(t, 1, ..., 8, A) : Z X R*t! — R is continuous fori =1, ..., n.
(C) (Of/Or)(t, 1,8y M) L X R"+! — R is continuous.

Given a solution u(¢) of (1-1), two linear equations playing fundamental roles for
our results are the variational equation along u(t) given by
n af
Az = — (. ut), ..., A" u@), HAT g, 1-4
,; g5, (1) (0. 1) (1-4)
and the corresponding nonhomogeneous equation along u(t) given by
f

%(r, u@), ..., A" u@), 1.

— of -1 1

n_ __ n i
A z_;:a—si(z,u(z),...,A u(t), VA Tz +
(1-5)
Our primary motivation arises from results by Henderson, Horn and Howard
[Henderson et al. 1994] dealing with differentiation with respect to parameters for
solutions of difference equations satisfying multipoint boundary conditions. Study
of the relationship between a solution to a differential or difference equation and the
associated variational equation can trace its origin to a result that Hartman [1982]
attributed to Peano concerning differentiation of solutions of a differential equation
with respect to initial conditions. Since then, these results have been extended
and refined in various ways including boundary value problems for differential
equations and difference equations [Datta 1998; Ehme and Henderson 1992; Hen-
derson and Lee 1991; Spencer 1975]. Datta and Henderson [1992] did research
on differentiation of solutions of difference equations with respect to boundary
conditions. Benchohra et al. [2007] extended these results to nonlocal boundary
value problems for second order difference equations. Also, interest in multipoint
and nonlocal boundary value problems has grown significantly [Ashyralyev et al.
2004; Benchohra et al. 2007; Henderson et al. 2008; Lyons 2011]. Hopkins et al.
[2009] proved a theorem about boundary data smoothness for solutions of nonlocal
boundary value problems for second order difference equations. Then, Lyons [2014]

generalized those results to n-th order difference equations.

Lyons [2014] has obtained extensive results for solutions of (1-1)—(1-3) when f
is independent of A. Our main results concern differentiation of solutions of (1-1)—
(1-3) with respect to the parameter A. Section 2 is devoted to results for initial value
problems. We state theorems concerning solutions of initial value problems for (1-1)
and their continuity and differentiability properties with respect to initial values and
parameters. Then, in Section 3, we present two uniqueness assumptions and state
theorems concerning continuous dependence with respect to both boundary values
and parameters. Finally, in Section 4, we provide our result dealing with solutions
of (1-1)—(1-3) and their differentiability properties with respect to the parameter A.
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2. Initial value problems

The n-th order difference equation (1-1) along with the conditions
A (o) =¢;, 1<izn, (2-1)

where og € Z, ¢; € R, 1 <i <n, is called an initial value problem. For notational
purposes, we let v(¢) =v(t, oy, c1, . . ., Cn, A) denote the solution of the initial value
problem (1-1), (2-1) on [0y, +00)7. Results stated in this section concerning con-
tinuous dependence and differentiability of v with respect to initial conditions and
parameters can be found in [Datta and Henderson 1992; Henderson and Lee 1991].

Theorem 2.1 (continuous dependence with respect to initial values). Assume that
condition (A) is satisfied. Let oy € Z, c1, ...,cn € R, and Ag € R be given. Then,
for each ¢ > 0 and k € N, there exists a §(¢, 0y, k, c1, ..., cn, Ao) > 0 such that if
lc; —d;i| < 8,1 <i<n,and|ly— po| <6, then

A (t, 00, ¢1, ..oy e ho) — AT N0(E, 00, dl - .., dyy po)| < €
onlog, klz fori =1,...,n.

Theorem 2.2 (discrete Peano). Assume that conditions (A), (B) and (C) are satisfied.

LetogeZ,cy,...,ch € R, and let A € R be given. Then, for each 1 < j <n, given
ry,...,.rp € Rand Lo € R,
av .
aj(t) = g(t, 00,F1s...,Tn,Ag), 1=<i<n,
J
exists, is the solution of the variational equation (1-4) along v(t, g, 11, ..., ¥n, A0)

and satisfies the initial conditions
- _
A" aj(og) =6, 1=<i=<n.
Moreover,

v
B() = 8_A(t’ 00, s -+ F'ns A0)

exists, is the solution of the nonhomogeneous equation (1-5) along v(t, o9, r1, . . .,
rn, Ao), and satisfies the initial conditions

A'B(o0) =0, 1<i<n.

3. Boundary value problems

In order to establish a relation between the work in the last section and boundary
value problems, we need two uniqueness assumptions.
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D) GivenreR, 1y, 11, ..., T, hH €, thp+n—1<t1<--- <1, <h,and A; €R,
1 <i<n,ifui(t) and u,(t) are solutions of (1-1)—(1-3), then u;(t) = u,(t)
on [fg, +00)7.

(E) Foreach A eRand 1, 1y, ..., T,, 1] € Z, and for each solution u(¢) of (1-1), the
only solution p(¢) of the boundary value problem for the variational equation
(1-4) along u(t) and satisfying

AVp(t) =0, 1<i<n-—1,
and
m
p(t1) =Y ajp(t;)) =0,
j=1
where fo+n—1<t<--- <71 <I],I18
p() =0 on [fy, +00)z.

Theorem 3.1 (continuous dependence with respect to boundary values and parame-
ters). Assume conditions (A) and (D) are satisfied. Let y(t) be a solution of (1-1)
for some A € Ron [a,+00)z. Letty <---<top+n—1l<11<---<Tp <t in
[a, +00)7 be given. Then, there exists € > 0 such that if |A""1y(t) — A;| < &,
1<i<n-—1,and|y(t;) — Z'}-’:l ajy(tj) — Ayl < e, and if |\ — | < ¢, then the
boundary value problem for (1-1) with respect to the parameter | satisfying

A h) = A, 1<i<n-—1,

and
m
h(t) =Y _ajh(z)) = A,
j=1
has a unique solution, h(t, ty, t1, T1, ..., Tm, AL, ..., An, 1), on [ty, +00)z, and
moreover,

h(l‘, o, 11, T1s -5 Ty Al, ...,An,/,L) — y(t),

as e — 0, on [ty, +00)7.

4. Main result

Now, we provide our main result concerning differentiation of solutions of (1-1)—
(1-3) with respect to the parameter A.

Theorem 4.1. Assume conditions (A)—(E) are satisfied. Forty <--- <to+n—1<
T < - < Ty <l ind, let u(t,to,t1,71,...,Tm, A1, ..., Ay, A) denote the
solution of (1-1)—(1-3) on [tg, +00)z. Then, du/oX\ exists on [ty, +00)z, and
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w(t) := (Ju/9r)(t) is the solution of the nonhomogeneous linear equation (1-5)
along u(t) and satisfies
A w() =0, 1<i<n-—1,
and
m
w(ty) — Zajw(rj) =0.
j=1

Proof. Let ¢ > 0 be given. For 0 < || < &, we consider the difference quotient

wh(t) := %(u(t’ tO’ tl’ Tl’ ...,Tn,Al, AR An’)\’+h)

_M(t7 tO? tls Tls ---5Tn7Ala ---,An,)\))-

We show that limy,_, o wy, (¢) exists on [fy, +00)z. For h # 0, we first observe that,
forl<i<n-—1,

ANy () = %(Ai*lu(lo, 10,1, Tty ooy Ty Aty ooy Ay A+ )

—A"*lu(to, lo, tl,tl,...,l'm,Ala---vA"’)‘))
1
= (4= A) =0,
and
m 1
wh(fl)_zajwh(fj)z E(M(tl,to,ll,fl,---,Tm,Al,---,An,)»‘f‘h)
j=1 m
_Zaju(fjvt()’ 1, tlv---9tva1""’An’}\'+h)
j=1
—u(ti, 10,11, Tts - -, Ty Aty oo, Apy A)

m
+Zaju(rj7t07 tl?"’-l? ...,Tm,Al, “"An’}\’))
j=1

1

Next, we set
D:= A" uty, to, 11, Tty - . Ty AL, .., Any X)
and
en = eo(h) = A" ulty, 1o, 11, Tis - -, Ty AL, -, Ans A+ h) — D.

By Theorem 3.1, &, — 0 as h — 0. With v(z, to, ¢y, . .., ¢y, A) being our notation
for solutions of initial value problems (1-1), (2-1) corresponding to A in (1-1), we
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have, by using a telescoping sum,

1

wy(t) = (v, 10, A1, .., Ayt D, A+h)—v(t, 10, At ..., Apt, D, 1))

S| = S

(U(t, tO? Ala cec Al’l—la D+85 )"+h)_v(ta t()v A]? ] An—l’ Dv )\+h)
+v(t’ t07 Ala R A}’l—lv Da )"+h)_v(t7 t()a Alv crc An—l, D’ )\'))

By Theorem 2.2, o, = dv/dc, and B = dv/dA both exist. So, by the mean value
theorem,

wi(0) = 3 (e (1, 000, 10, Ao, Ayt D8 A+ R)(D 4 = D)

+B(t, v(t, to, A, ..., Auet, DA+ R)Y (A +h — 1))

— %an(t, o(t, to, ALy .. Ay 1, D4+3, A+ h))

+ﬁ(t7U(I’IO’AI’"'7An—17D5)\‘+}_l))’
where

ov
o, (t,v(t, 1o, Ay, ..., An_1, D+e, A+h))= 3

(t, 19, Ay, ..., Au_1, D+e, A+h),

Cn

- ov -
ﬂ(t’ v(t9 tO? Al, LR ] An—la D’)\’+h)) = a_)\'(t’ t()?Al’ Al’l—lv Ds)"+h)7

% is between 0 and ¢, and / is between 0 and h.

To show that limj,_,.o wy(¢) exists, it suffices to show that lim,_.o&/h exists.
We have the n—1 conditions, A’ 1wy, (to)) =0,i=1,...,n—1, and the condition
wy () — Z'};l ajwy(tj) =0. So, from the last condition,

e v _ v _
- (tlat()aAlv’An+17D+85)"+h)+ (t17t09A1""7An—15Dv)"—i_h)
dc, oA

m
e ov _
" Zajg(tly to, A1, ..., Auy1, D+E, A+h)
=t "

m
d -
=Y (it Av s Ay, D deth) =0,
j=1

Hence, we have

1 _
— = —B(t,v(t, tg, Ay, ..., A1, D, A+ h
; Mh’g( B(t1. v(t. 10, Ay w1, D, A+ 1))

m
+ @B v 10, A Ay, DA ),
j=1
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where

M/’l,é ::an(tlv U(t, fO, Als ] Anfly D+éa)\'+h))

m

=D ajon(tj vt to, Ar, ... Agor, D+E A+ ).
j=1
Now, A" Lo, (ty, v(t, to, A1, ..., Ay_1, D, X)) =1, s0
Oln(l‘, v(t, to, Ay, ..., Au_1, D, )\) 7‘é 0.

By uniqueness assumption (E),

m
o (11, 0(8, 10, A1, Aty D))= D ajon (T, v(t, 00, A, .., Ayt D) #0.

j=1

By Theorem 3.1, for & sufficiently small, M, ; # 0. So, lim;,_,¢ &/ h exists, and

—1
lim & = lim

ti,v(t, to, Aty ..., Apt, DA+
Jim = Jim 27— (P01, vt A Ant, D3+ )

m
=Y @B, v 10, Ar, o Ay, D)) )= .
j=1

Hence, limj,_, ¢ wy, (¢) exists, or in particular, (du/d)1)(t) = limy,_.o wy,(t) exists on
[z0, +00)z, and

w(t) := %1_1)1}) wp (1)

ou
:ﬁ(t)
=J -on(t,v(t, 10, AL, ..., Ap—1, D, X)) + B(t, v(t, to, Aty ..., Ap—t, D, 1))
=J o, (t,ut, to, 1, T, .oy Ty AL, oo ., Ap, A))

+ Bt ut, to, t1, Tty e ooy Tty ALy ooy Ay A)),

which is a solution of (1-5) along u(¢), and from above satisfies the boundary
conditions,

A () = %irr%) A7 wp(t9) =0, 1<i<n-—1,

and

win) = Y ajw(ry) = lim (i) — Y ajwn(z))) =0. o

j=1 j=1
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Outer billiards and tilings of the hyperbolic plane

Filiz Dogru, Emily M. Fischer and Cristian Mihai Munteanu

(Communicated by Kenneth S. Berenhaut)

We present new results regarding the periodicity of outer billiards in the hyper-
bolic plane around polygonal tables which are tiles in regular two-piece tilings of
the hyperbolic plane.

1. Introduction

Outer billiards is a simple dynamical system introduced by B. H. Neumann [1959].
J. Moser [1973; 1978] popularized outer billiards as a toy model for planetary motion
as a means of finding possible unbounded orbits. Since then, many mathematicians
have asked and answered questions about outer billiards systems in various geome-
tries. For example, C. Culter proved in 2004 the existence of periodic orbits for
polygonal tables in the Euclidean plane (the proof is presented by S. Tabachnikov
[2007]). R. Schwartz [2007; 2009] answered, in the affirmative, Moser’s question
about the existence of unbounded orbits for certain polygons.

The main motivation for this paper is a result of Vivaldi and Shaidenko [1987]
that in the Euclidean case, outer billiards associated to quasirational polygons
have all orbits bounded; see also [Kotodziej 1989; Gutkin and Simanyi 1992].
As a consequence, all orbits about a lattice polygon in the Euclidean plane are
periodic. We continue the work of Dogru and Tabachnikov [2003], who studied the
relationship between one-tile regular tilings of the hyperbolic plane and the outer
billiards system.

For a detailed account of hyperbolic geometry and the hyperbolic plane, we direct
the reader to [Greenberg 1980], and for a survey of outer billiards, see [Tabachnikov
and Dogru 2005; Tabachnikov 2005].

2. Definitions

The outer billiard map associated to a convex polygonal table P in the hyperbolic
plane is defined as follows. For a point x € H? \ P, there are two lines that pass

MSC2010: 37E1S.
Keywords: hyperbolic billiards, outer billiards, polygonal billiards, symbolic dynamics, tiling,
rotation number, crochet.
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clockwise
continuation
of a side

Figure 1. Outer billiards map in the Klein model.

through x and are tangent to the table P. By convention, we consider the tangent
line for which P is on the left, from the point of view of x. Then we reflect x about
the tangency (support) point to get 7(x) (see Figure 1). The map is well-defined
whenever the tangency point is unique and so we are able to define the map 7" on
the entire hyperbolic plane except for the clockwise continuations of the sides of P
(see Figure 1) and their preimages under 7. An immediate consequence of the
definition is that T is a piecewise isometry.

Likewise, the inverse map 7! is not defined on the counterclockwise continua-
tions of the sides of P. We define the web associated to P to be the union of all
preimages under 7' of the clockwise continuation of the sides and of all preimages
under 7! of the counterclockwise continuation of the sides. For each connected
component of the complement of the web, the restriction of the map 7" to that
component is defined by a single isometry of the hyperbolic plane for every n € Z.
That means that each connected component of the complement of the web maps as
a whole under the iterations of 7.

Another feature of the billiards map 7' is that it extends continuously to a
continuous circle map # : S' — S! at infinity. The map ¢ is defined using the
same reflecting procedure. In this case, the uniqueness of the support point is not
needed since the distance between our initial point and the support point is infinite
no matter the choice, and hence the map ¢ is well-defined for every point at infinity.
Since ¢ is a circle map, it has a well-defined Poincaré rotation number p(z), and
we will prove in Section 3 that p(¢) encodes information about the combinatorial
dynamics of the outer billiards.
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3. Outer billiards on tilings

We are studying the hyperbolic outer billiards map associated with a polygonal
table that is part of a two-piece regular tiling of the hyperbolic plane. These tilings
use two polygonal pieces, a regular M -gon and a regular N-gon that meet four
in each vertex (see Figure 2). We describe the combinatorial dynamics for outer
billiards around one of the M -gons. We note that the web associated to such a map
will fall exactly on the grid lines of the tiling. This is because the reflection around
a vertex of the table tile is just a rotation by 180° around vertices in the tiling. Tt
follows that each tile maps as a whole under iterations of 7.

3.1. Previous results. Previous results describing outer billiards of tiles in the
hyperbolic plane are obtained in [Dogru and Tabachnikov 2003]. In this paper, the
authors have proved that every orbit of the outer billiard map around a right-angled
regular n-gon, for n > 35, is periodic. Any right-angled regular n-gon generates a
tiling of the hyperbolic plane entirely consisting of 7-gons. The theorems proven in
the next sections have the same flavor as Theorem 4 in the above mentioned paper.

Define the rank of a tile as the minimum number of sides that one has to cross,
when starting inside the table, to get to the given tile. This means that tiles that
have one common side with the table have rank 1, and tiles that have a common
side with a tile of rank 1 have rank 2, and so on.

Figure 2. Example of (M, N)-tiling for (M, N) = (6, 7).
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Theorem 1 [Dogru and Tabachnikov 2003]. For a tiling of regular n-gons meeting
in four, n > 5, the dual billiard map T preserves the rank of a tile, and every orbit
of T is periodic. The set of rank k tiles consists of
k k
—n A=A
A=Az

qk

elements, where
n—24nn—4)
2

are the roots of the equation A* — (n —2)A + 1 = 0. The action of T on the set of
rank k tiles is a transitive cyclic permutation i «— i + py, where

k—1 k—1 k k
pk:)‘l _)‘2 _l_)‘l_)‘z
Al—A2 A=Ay’
The rotation number of the dual billiard map at infinity is given by the formula

. Pk _n—ynn—4)
ot)= lim — = ————=,
k—oo qf 2n

A=

The proof of this theorem uses geometric arguments for the periodicity of orbits
and recurrence formulas for computing the number of tiles in each rank and the
rotation number of ¢ (see [Dogru and Tabachnikov 2003] for details). The authors
make an important remark that the representation of A (and so the rotation number
of the map at infinity) as a continued fraction encodes the dynamics of the tiles
under the billiard map 7". We will deduce similar results for two-piece tilings.

3.2. New results. Our results extend Theorem 1 to two-piece regular tilings of the
hyperbolic plane. We will denote a tiling of regular M -gons and regular N -gons
as an (M, N)-tiling, and we will always consider the table to be an M -gon. Such
an (M, N)-tiling exists if ﬁ + % < % As mentioned earlier, these tilings have

four shapes meeting at each vertex, two M -gons and two N -gons.

3.2.1. Triangles and N-gons. Most of the geometric arguments used here are
analogous to those used by Dogru and Tabachnikov. Our counting arguments are
different, although they are also based on recurrence relations.

Let us introduce a more general notation for rank in order to avoid cumbersome
indexing. Observe that the layer of tiles of rank k& includes tiles of the same type
(all M -gons or all N-gons) and as rank changes by one, that shape changes. So
triangles always have even rank and N -gons always have odd rank. We will say
that a rank 2k — 1 tile is a rank & N -gon and a rank 2k tile is a rank k triangle. The
rest of this section is dedicated to describing the dynamics of the billiard map 7 in
the (3, N)-tilings through the proof of the following theorem:
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Theorem 2. For a (3, N)-tiling, N > 7, the outer billiard map T preserves the
rank of a tile and every orbit of T is periodic. The set of rank k N -gons consists of

1
qdk = —F7—
VN -6

elements and the set of rank k triangles consists of

N -4 _ _ _ _
lk= (q)%k 3+q)§k 3)+(N_3)(q>%k 2+(I)§k 2)

JN =6

elements, where

(q)%k—_% 4+ q)gk—?,) + q)%k—Z + CI)%k_z

VN —-6++N=2
2

D, =

are the two roots of the equation
P>~ /N —-60—1=0.

The action of T on the set of rank k N -gons is a cyclic permutation i — i + py,
where

2k—4 2k—4 2k—3 2k—3
qk o7 — @5 1 — @5

=yt N o =D N—2

and the action of T on the set of rank k triangles is also a cyclic permutation
i =i+ ji,where

I 2k—4 _ gk—4 2k—3 _ ¢§k—3
=% (N - PNy 2
R N T T R

The rotation number of the outer billiard map at infinity is given by the formula

) = tim 2% = i Je 1 n 1 1 N 1
=lm —=1lm “~~=-4+——=—-4———.
Pt kbl T 37 30107 3 3N 29,

Theorem 2 contains many independent results and for reasons of clarity we will
prove them one by one as claims.

Claim 3. Every orbit of T is periodic.

Proof. The proof of this result is written in much detail in [Dogru and Tabachnikov
2003]. We will present here a sketch of it and will refer the reader to the above
work for detailed explanations. The statement of the claim is a consequence of the
following lemma:

Lemma 4. The rank of a tile is preserved under T .

Proof of lemma. The proof is by induction on the rank, based on geometrical observa-
tions. Observe that rank 1 tiles are preserved by 7" and notice that every rank k tile is
adjacent to a rank k—1 tile, where these two tiles map together under a single appli-
cation of 7'. These two facts complete the base case and the step of the induction. [
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Py \A’ / \ /)
B’ Py 02\/01 B / \4
Tile 1

T (Tile 2)

Figure 3. Special case for Lemma 6.

From Lemma 4, since there are finitely many tiles of rank k, every tile must
eventually map back to itself after m iterations, for some natural number 7. Hence
the m-th iteration of 7" maps the entire tile to itself. This implies that 7°™ (the
composition of T with itself m times) is a rotation by either 27t j /N (for N-gons)
or 27 /3 (for triangles) around some point inside the tile. Hence T°NV™ restricted
to that tile is the identity if the tile is an N-gon and 7°3" restricted to that tile is
the identity if the tile is a triangle. We conclude that every orbit of T is periodic.

|

Claim 5. For every k > 1, T permutes the rank k tiles cyclically.
Proof. This claim is an immediate corollary to the following lemma:

Lemma 6. Any two consecutive rank k tiles are mapped to two consecutive rank k
tiles.

Proof of lemma. We know by Lemma 4 that the rank of two tiles is preserved
under 7. If the two consecutive tiles are not separated by a clockwise continuation
of one of the sides of the table then their common point is mapped, together with the
two tiles, through the same vertex. Thus the tiles are mapped to two consecutive tiles.

If the two tiles are separated by such a continuation of one side of the table then
the argument is more involved. A similar argument is presented in [Dogru and
Tabachnikov 2003]. Figure 3 gives a pictorial representation of the situation. The
first tile is reflected in Oy, while the second one is reflected in O,. What remains
to prove is that A’=B’ so that the images of the two tiles still touch in one point.
The following sequence of equalities completes the proof:

A/Oz = A/OI—OI 0, =BO;+AB—010,=B0O1+010,=B0O, = B/Oz‘ O

In order to compute the formulas for ¢y, pr, ji,lr, we first explain why the
tiling we are working with has an intrinsic self-similar geometric structure. We will
refer from now on to this self-similar structure as the crochet pattern. To describe
the crochet pattern, we consider NV -gons to be of two types, X -type and Y -type (see
Figure 4). Type X N -gons have two parents in the sense that they touch two N -
gons of the previous rank, while type Y N -gons touch only one parent. The rank 1
N -gons are of neither of the types, having zero parents, so we call them type 0
N -gons. (This is why our counting argument begins with counting rank 2 N-gons.)
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The following claim gives an intuitive explanation of why we call this self-similar
structure of the tiling a crochet pattern.

Claim 7. When passing from the k-th layer of N-gons to the (k+1)-th layer of
N -gons, we apply the replacement rules

X > xyN-e,
Y - XyN-3,

i.e., when incrementing rank of the layer by 1, every X gets replaced by an X
followed by N—6 Y's, and every Y gets replaced by an X followed by N—5Ys.

Proof. The methods used to prove this claim have been developed by Poincaré, and
we will not dwell on the details here. The reader can find extensive explanation in
The Symmetry of Things [Conway et al. 2008].

Instead, we will illustrate the methods used to prove the claim in the case of
N =7 in order to give the geometrical intuition behind the proof. Figure 4 illustrates
the local and global behavior of a (3, 7)-tiling.

In the local picture, the difference between a type X 7-gon and a type Y 7-gon
is encoded in the different types of degenerate heptagons we associate to them. We
associate to the Y -type heptagon a rectangle with three additional points on the upper
side, while to the X -type heptagon we associate a rectangle with two additional
points on the upper side and one on the lower side since it has two parents. Now by
reducing the triangles in the global picture to points, we notice that the heptagons
must meet three in each vertex. This results in the crochet pattern shown in Figure 4.
This crochet pattern immediately implies the claimed replacement rules. O

Figure 4. The (3, 7)-tiling.
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We can now use this crochet pattern to start our counting argument in order to
get the exact numbers in Theorem 2.

Claim 8. The formulas for qi, pk. jk.lx hold as stated in Theorem 2.

Proof. Denote the number of X -type and Y -type N -gons of rank k by x; and yg
and use Claim 7 to obtain the system of linear difference equations

()= (2w 5s) i)
Yk N—-6N=5)\yi—1)

The initial configuration is (;z) = (3( N3— 4)) because there must be three rank 2
N -gons with two parents, and the rest of the vertices of the rank 1 N-gons must

serve as an anchor for a different Y -type rank 2 N-gon. Solving this recurrence
gives the general term formula

o o
(xk) —3 (\/ﬁ(@% P+ 03 3)) ’

Vi q)%k—Z + q)%k—Z

where

VN —-2++/N—-6 —+/N -2+ +/N -6
= and &, = .

2 2

From here the formula for g5 = x; + yj follows immediately.

To count the triangles of rank k, we observe that the triangles of rank k are the
next layer after the /V-gons of rank &, and each X -type N -gon is replaced by N —4
triangles and each Y -type is replaced by N —3 triangles. Hence the formula for
Iy = (N —4)xj + (N — 3)y; can be computed.

In order to count how many rank & N-gons T jumps, i.e., p, we need to define
Sk as the number of rank & N -gons in a small cone, as can be seen in Figure 4. A
small cone is opposite one of the triangle’s vertices and doesn’t contain any side of
the triangle. In the same way, a big cone (see Figure 4) is opposite one of the sides
of a triangle and contains the table. The number of rank & N -gons in a big cone is
just gi /3 — si because of the 3-fold symmetry of the tiling.

As above, we need to introduce xj and y;, the number of X -type and Y -type
rank k& N-gons in a small cone. With this, sx = x3 + y;. The billiard map 7" makes
any tile jump over two small cones and one big cone so in total it will jump

@,

Pk =2Sk+<q?k—sk) =q?k+sk.

By studying the structure of the small cone, we observe the crochet pattern once
again. One notices that the cone that starts at the last X -type N-gon of the rank k
(k = 2) layer looks exactly the same as the initial small cone. That is why s is
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equal to the total number of N-gons obtained by starting with an X -type N-gon
and using the replacement rules in Claim 7. We express this as a sum,

(=20l ws) ()

which, after some computation, becomes
2k—4 2k—4
P W
(x,i) _ V(N —6)(N —2)
s ] 2k—3 2k—3
Yk O — @3
N -2

The formula for px = qx /3 + x;, + y;, follows immediately, and ji is computed
in the same manner as /; was computed. As we have already said, every X type

14

N-gon is replaced by N —4 triangles and every Y type N-gon is replaced by N —3
triangles on the next level, and this procedure leaves uncounted only one rank k
triangle in the small cone, so jx = (N —4)x; + (N —=3)y; + 1. d

Claim 9. The rotation number p(t) equals

1 1 1 1

=t
331+93) 3 3JN-29,

Proof. The k-th layer of N-gons gives a discrete approximation of the circle map
at infinity and so py /qy is an approximation of p(¢) as k goes to co. By taking the
limit we obtained the desired formula for the rotation number p(¢). O

This last claim completes the proof of all the statements in Theorem 2.

Remark 10. (1) One might expect the formulas in Theorem 2 to also work for
N =6, i.e., a (3, 6)-tiling of the Euclidean plane. That is not the case even
though the crochet pattern works exactly the same also in the (3, 6)-tiling. The
difference that appears when computing the formulas in the (3, 6)-tiling is that
the matrix of the difference system is not diagonalizable and so its powers
look completely different.

(2) Note that the determinant of all the matrices given by the crochet pattern is 1.
We believe this is true because the crochet pattern replacement can also be re-
versed, i.e., starting with the rank k layer, we can construct the rank k—1 layer.

(3) According to Theorem 2, one can express the eigenvalues ©; and ®, = 1/ P,
via the rotation number p(¢). Therefore this rotation number determines the
numbers ¢, [k, Pk, Ji, and hence the whole dynamics of the map 7.
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3.2.2. General (M, N)-tilings. Next we consider the case of a general (M, N)-
tiling. The theorem and subsequent proof are analogous to those in the (3, NV') case in
the previous subsection, but we must consider the cases separately due to a difference
in the counting method. In the previous section, /N -gons were classified into types
X and Y, having two parents and one parent, respectively. However, due to the
difference in geometry of triangles versus generic M -gons, the tilings in the M > 4
case never produce N -gons with two parents. In this case, V-gons either have one
parent or no parent, which we denote as types Y and Z. This alternate counting
method will be explained in detail in the proof, but first we state the theorem:

Theorem 11. For an (M, N)-tiling with M, N > 4 and
1 . 1 1
—_— —_ < -,
M N 2
the outer billiard map T preserves the rank of a tile and every orbit of T is periodic.
The set of rank k N -gons consists of

Gk = bM_ (b + 1)(a2k -2 k -2y _ (o 2k—4 a%k_“))
elements, and the set of rank k M -gons consists of
I = M([j\zf:j) (b(@2*~2 — a2k=2) — (24 _ o 2k—4))
elements, where b = (M —2)(N —2)—2 and
Vb—2+Vb+2
2

are the two roots of the equation > — /b —2a — 1 = 0. The action of T on the set
of rank k N -gons is a cyclic permutation i +— i + py, where

‘Ik M -2 2k—3 _ k 3 2k—5 _ 2k—5
=— — (e o) —o ,
and the action of T on the set of rank k M -gons is also a cyclic permutation
i =i+ jg,where
I 1
e —
M= (b—2)«/b+2'(

The rotation number of the outer billiard map at infinity is given by the formula

Q12 =

2)(0{2k 3—0[2k 3) b(Olzk 5 a%k—5))‘

M-2 (b-1Daj—-1
M~Nb—=2a; (b+Dea?—1

Remark 12. If N = M, the statement of Theorem 11 reduces to that of Theorem 1.

p0) =2+
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Figure 5. A (4, 5)-tiling, with rank 1 and rank 2 pentagons labeled
either as type Y (one parent) or as type Z (no parents).

The proof of Theorem 11 also consists of several steps.
Claim 13. Every orbit of T is periodic.

Proof. The proof of this claim is analogous to the proof in the previous section.
Because the rank of each tile is preserved under the billiard map, and because there
are finitely many tiles of a given rank, every tile must map back to itself after some
finite number of iterations m. When the tile maps back to itself, it has rotated by
27j /M if it is an M-gon or by 2¢j /N if it is an N-gon. Then T°"M is the
identity if the tile is an M -gon and 7°™¥ is the identity if the tile is an N-gon. [I

Claim 14. For every k > 1, T permutes the rank k tiles cyclically.
Proof. Proof is similar to that for Claim 5. O

Recall that type Y tiles have one parent and type Z tiles have zero parents (see
Figure 5). We now give a crochet pattern for general (M, N)-tilings, M > 4.

Claim 15. The following replacement rules hold for (M, N)-tilings:
Y —» (YZM=3)N=dy zM—=4 (1
Z —> (YZM N3y zM—4, )

Proof. In a similar manner to the (3, N) case, we represent type Y and Z tiles
as degenerate polygons, with additional vertices. See Figure 6 for illustrations of
the (4, 5) case. Type Y tiles are represented as quadrilaterals with N vertices, and
type Z tiles are represented as triangles with N vertices. Because a Y tile has
N —3 sides available to connect with a tile of higher rank, a rank £ Y tile produces
N =3 Y tiles of rank k + 1. Then, since tiles must meet M to a vertex, there must
be M —3 Z tiles between every pair of Y tiles, and there must be M —4 type Z
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Y->YZY Z—->YZYZY

Figure 6. Tiling of pentagons meeting in fours. Can be extended
to a (4, 5)-tiling.

tiles following the last Y. Similarly, a Z tile has N — 2 edges free to connect to a
tile of higher rank, so a rank k& Z tile produces N —2 Y tiles of rank k+1, again
with Z tiles appropriately interspersed.

This crochet pattern tiles the hyperbolic plane with M N -gons meeting at every
vertex. From this tiling, we obtain the (M, N )-tiling by considering the points in
the tiling becoming M -gons, as in Figure 7 (compare with [Conway et al. 2008]).
The described crochet pattern translates to the replacement rules given above. [l

We can now compute the formulas for the number of M- and N-gons of any
rank, as well as for the cyclic permutation of M - and N -gons of any rank.

Claim 16. The formulas for qi., pi., ji, lx hold as stated in Theorem 11.

Proof. Denoting the number of Y -type and Z-type N -gons of rank k by y; and zg,

Figure 7. Left: Tiling of the plane by hexagons meeting in fives.
Right: by replacing the vertices in the previous picture with pen-
tagons, we achieve a (5, 6)-tiling. Here two hexagons and two
pentagons meet at each single vertex.
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we obtain the recursion formula

(J’k) —4 (yk—l) 3)
Zk Zk—1)’

where the matrix A4 is obtained from the rules given in (1) and (2), and

N -3 N-2
A:((M—3)(N—3)—1 (M—3)(N—2)—1)' “)

As mentioned above, the initial conditions are (7 1‘) = ( ]81)

Solving the recurrence, we find the general formula

M(N =2)(a3F2—a3k"2)

Y\ _ Vb2—4
Zk M((M_3)(N_2)—1)(0112k_2—a§k_2)+M(agk—4_(x%k—4 >
b2—4
where
Vb—2+Vb+2 b—2—+b+2
b=(M—-2)(N—-2)—2, a= ; 2 =Y 2«/ +2

Then q; = yx + zg, S0

M
Qi = ——b2 = 4((b + 1)((%%"_2 —a%k_z) + a%k_4 —a%k_4).

Now that we have counted the N-gons, we count the M -gons of rank k by
noticing a pattern in the tiling. We see that a type ¥ N -gon of rank k produces
N —3 M -gons of rank k, and a type Z N -gon produces N —2 M -gons. Thus the
number of M -gons of rank k is given by /;, = (N —3)yi + (N —2)z. The formula
for I;, given in Theorem 11 follows.

Next we determine p; by counting how many tiles a rank & N-gon jumps
when T is applied. As in the previous section, we define sz as the number of rank
k N-gons in a small cone. We call y; and z; the number of rank k& Y's and Zs in
the small cone. Also, as before, applying 7' to any tile causes the tile to jump over
two small cones and one big cone. In total, the jump is given by py = s; +qr /M.

We observe that
k—2
AN i 2
(3) =2 (2a) ®

i=0

where A is given in (4).
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This becomes

l—oefk_z 2 1 oe%k_z 5
—N+3
(yi) BN
S = _y2k=2 o 2k=2 ’
k 1 1—a; ) 1—a; ) )
B—a(M —4))+ —2_(-B M—4
b2—4( —a? (B —a;( ) + —a? (=B +aj( )
where B = (M —3)(b —2) + (M —4). Then, since s; = y; + z;, we have

. M -2 (

k= b_2vht2
This allows us to calculate py, and we can compute j; by noticing again that every
Y-type N-gon will be replaced by N —3 M -gons and every Z-type (N —2)-gon
will be replaced by N —3 M -gons on the next level. This procedure will leave again
only one M -gon out, so jx = (N —3)y; + (N —2)z; + 1. |

(b= 1@ +a3* ) + 03" —aft ).

Claim 17. The rotation number is given by
M—-2 (b—Daj—1
M~b—=2a; (b+1Da?—1

Proof. This results from taking the limit of py /gy as k — oo. O

pO) =2+
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Sophie Germain primes and involutions of Z;,

Karenna Genzlinger and Keir Lockridge

(Communicated by Kenneth S. Berenhaut)

In the paper “What is special about the divisors of 247", Sunil Chebolu proved
an interesting result about the multiplication tables of Z,, from several different
number theoretic points of view: all of the 1s in the multiplication table for Z,,
are located on the main diagonal if and only if 7 is a divisor of 24. Put another
way, this theorem characterizes the positive integers n with the property that the
proportion of 1s on the diagonal is precisely 1. The present work is concerned
with finding the positive integers n for which there is a given fixed proportion of
1s on the diagonal. For example, when p is prime, we prove that there exists a
positive integer n such that 1/ p of the 1s lie on the diagonal of the multiplication
table for Z, if and only if p is a Sophie Germain prime.

1. Introduction 653
2. The ratio of diagonal units 655
3. Sophie Germain factorizations 656
4. Examples 659
5. The multiplication cube for Z, 662
References 663

1. Introduction

Let R be aring and let R* denote its group of units. Call a unit # in R a diagonal
unit if the multiplicative order of u is at most 2. Such units are more commonly
referred to as involutions; our motivation for calling them diagonal units is as
follows. The units of R are in one-to-one correspondence with 1s appearing in its
multiplication table, and the diagonal units are in one-to-one correspondence with
the 1s appearing on the diagonal. When the order of R* is finite, we will write
du(R) for the number of diagonal units and

du(R)

du(R) =
pdu(R) R

MSC2010: primary 11A41; secondary 16U60.
Keywords: Sophie Germain primes, group of units, Gauss—Wantzel theorem.
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for the proportion of diagonal units in R*. We will only consider commutative rings,
in which case R is an abelian group. This means that the units of order at most 2
form a subgroup of R*. Hence, du(R) divides | R*| by Lagrange’s theorem, so
pdu(R) is always the reciprocal of an integer. We therefore find it more convenient
to work with the ratio of diagonal units,

|RX| 1
du(R) pdu(R)’
For brevity, we will write du(n), pdu(n) and rdu(n) for the quantities du(Z,),
pdu(Z,), and rdu(Z,).

A ring R is said to satisfy the diagonal property if every unit of R is a diagonal
unit; that is, R satisfies the diagonal property if and only if pdu(R) = rdu(R) = 1.
Chebolu [2012] proved that Z,, satisfies the diagonal property if and only if # is a
divisor of 24. This leads naturally to a more general study of the equation

rdu(n) = 6, (1)

rdu(R) =

where 6 > 1. For which values of 6 does (1) have a solution? If (1) has a solution,
can we find the entire solution set? We will answer both of these questions in
several cases in Section 4. For example, we will prove the following theorem,
which answers both questions when 6 is prime.

Theorem 1.1. Let p be a prime. There exists a positive integer n such that the
proportion of diagonal units in Z,, is 1/ p if and only if p is a Sophie Germain prime.
For a Sophie Germain prime p, the set of solutions to rdu(n) = p is

2p + 1) -{divisors of 24} if p > 3,
(2p + 1) - {divisors of 24} U p? - {divisors of 8} if p =3,
2p + 1) -{divisors of 24} U p4 -{divisors of 3} if p =2.

A Sophie Germain prime is a prime p such that 2 p4-1 is also prime, in which case
2p + 1 is called a safe prime. Such primes arose in Marie-Sophie Germain’s con-
siderable work on Fermat’s last theorem (see [Laubenbacher and Pengelley 1999]).

The remainder of this paper is organized as follows. Section 2 includes back-
ground information and a formula for the ratio of diagonal units. We then prove
in Section 3 that the equation rdu(n) = 6 has a solution if and only if 6 admits a
special type of factorization, and we provide a principle for organizing solutions to
this equation given a list of these factorizations. Section 4 is devoted to examples,
including proofs of Chebolu’s 24 theorem and Theorem 1.1. We also explore a
surprising connection between the proportion of diagonal units and the Gauss—
Wantzel theorem on the constructibility of regular polygons (Theorem 4.2). In the
last section, we consider a generalization of the current situation and examine 1s
on the diagonal of the multiplication cube for Z,,.
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2. The ratio of diagonal units

A common concept in number theory is the notion of a multiplicative function. A
function f :Z% — 77 is multiplicative if f(st) = f(s) f(t) whenever s and ¢ are
relatively prime. Euler’s totient function is an example of a multiplicative function
par excellence (see [Burton 1989, §7]); it counts the positive integers k < n that
are relatively prime to n. The relevant properties of ¢ (n) are summarized in the
next theorem.

Theorem 2.1 (Euler’s totient function). Let ¢ (n) denote the number of positive
integers less than n and relatively prime to n.

(A) The order of Z,; is precisely ¢ (n).

(B) The function ¢ (n) is multiplicative.

(C) For any prime p and positive integer k., we have ¢ (p*) = p*=1(p —1).

We now prove that the functions defined in Section 1 are multiplicative.
Proposition 2.2. The functions du(n), pdu(n), and rdu(n) are multiplicative.
Proof. Certainly, rdu(n) is multiplicative if and only if pdu(n) is multiplicative.
Since rdu(n) = |Z;;|/ du(n) = ¢(n)/ du(n) and ¢ is multiplicative by the previous
theorem, it suffices to prove that du(n) is multiplicative.

Let s and ¢ be relatively prime positive integers. By the Chinese remainder
theorem, Zg; = Z5 x Z;. Since the order of (x, y) € Zy x Z; is the least common

multiple of the orders of x and y, the pair (x, y) is a diagonal unit if and only if x
and y are diagonal units. Thus, du(sz) = du(s) du(z). O
Our next goal is to give a formula for rdu(n). To do so, we need one more

ingredient.

Theorem 2.3 (isomorphism class of Z;). For any integer k > 1 and odd prime p,

>< ~ —_—
Zpk = ZLy(pky = Lpk—1(p—1)

and
{13 if k=1,
Z;k ~ 7, if k=2,
Ly X Lor— if k> 3.
The odd primary case is a consequence of the primitive root theorem; see [Cohen
2007, 2.1.24] for a short, fairly self-contained proof.
The next proposition provides a formula for the ratio of diagonal units in Z,.

Proposition 2.4. Let n be a positive integer.

(A) For any odd prime p and integer k > 1,

rdu(p¥) = ¢ (p¥)/2= P (p—1)/2.
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(B) For any integer k > 0,
1 if k=0,1,2,0r3
1‘d 2k — s Ly & s
u@" {2k-3 if k> 3.

(C) Letn = 2930’ where a,b > 0 and (n’,6) = 1. Let r denote the number of
distinct primes dividing n’. Then,

¢(n")/2" ifa<3,b<l,
29 3¢m)/2" ifa>3,b<1,
rdu(m) =3 3614 ) /27 ifa<3 b>1,

2033019y /2" ifa >3, b> 1.
Proof. By Theorem 2.1(A), rdu(n) = ¢ (n)/ du(n). Next observe that du(2) =1,
du(4) = 2, du(2X) = 4 for k > 3, and du(p¥) = 2 for any odd prime p by
Theorem 2.3 (for the last case, note that the group of units is cyclic of even order,
so it has a unique subgroup of order 2). Combining these facts with the formula for
o ( pk ) given in Theorem 2.1(C), one obtains parts (A) and (B). Part (C) follows
from the previous two parts and the fact that rdu(n) is multiplicative. O

Though it is likely no surprise that the prime 2 is isolated in Proposition 2.4(C),
our reason for isolating the prime 3 may be unclear. For now, we hope the reader
is content with the observation that 2 and 3 are the only prime divisors of 24. In
slightly more detail, the issue has to do with the fact that if p > 3 is prime, then
rdu(p¥) = p is impossible, but rdu(32) = 3 and rdu(2*) = 2. Note further that
rdu(p¥) in Proposition 2.4(A) factors as 6(26 + 1)k, where 20 + 1 is prime. This
hints at the relevance of Sophie Germain primes, which appeared in Theorem 1.1,
and leads to the study of positive integers that admit the special type of factorization
discussed in the following section.

3. Sophie Germain factorizations

Given a positive integer 6, a Sophie Germain factorization of 0 is a triple
F=(s.t.{(01.81).....(0r. Br)}).

where

(A) 6 =|F|=23T]i_, 6:(26; + D1,

(B) s=0and ¢ > 0;

(C) fori =1,...,r, ;i >0and 6; > 1; and

(D) the integers 26y + 1,...,26, + 1 are distinct primes.

When r = 0, the set in the third coordinate of F' is empty and the indexed product
in (A) is 1. The ordered triple gives the data for the factorization, but the definition
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of | F| gives a far more readable interpretation of what the data represent. We will
therefore abuse notation and use the expression defining | F| in place of F itself.
There is some ambiguity, however, since 6; can be 2 or 3; consequently, we will
always include the exponents s and ¢ unsimplified, even when s = 1 or ¢t = 1, unless
either is equal to zero, in which case we will omit the corresponding factor entirely.
We will not omit zero exponents in the indexed product, and the empty product will
appear as 1. For clarification, here are several examples:

0,0, 2)| =1,
1(0,0,{(3,0)})| = 3-7°,
|(0’ 1,@)' = 31 - 17

1(5.1,{(3,0),(5.2), (9, 4)})| =2°-31.3.70.5.11%2.9. 194,

The main difficulty of our current undertaking is to find all possible such factor-
izations of a given positive integer. However, given a list of the Sophie Germain
factorizations of rdu(#n), we will see at the end of this section that it is easy to find
all solutions to (1).

Let S denote the set of all Sophie Germain factorizations of positive integers.
We next define two functions,

F:7T>8
and

N:S—7T.

The function F(n) will select a canonical Sophie Germain factorization of 7, and
the function NV (F) will select a positive integer whose canonical Sophie Germain
factorization is F. Let

[T ((pi=1)/2)- p3i™! ifa<3, b<1, (1)
f(2a3bli[pq,-)= 2073 TT=y ((pi = 1)/2) - pii ™! ifa>3,b<1, (2
i 31 [T ((pi = 1)/2) - p& ! ifa<3, b>1, (3)
203301 T (i = D)/2)- i~ ifa>3.b>1. (4)

and let
[Ti=, 26; + DBit1 ifs=0,7=0,

d +3. 7717 . Bi+1 : .

N(2s3’~l_[6,-(29,-+1)ﬂ")= 27 im0+ D if s >0,1=0,
i=1 LTI, 26 + DAit! ifs=0,71>0,

2SEIHL_ 26 + DAFY ifs>0,1>0,

The indexed product in the definition of F is of course just ¢(n’)/2", where
n' =n/(293%). In the definition of F, we have labeled the cases 1—4. Every Sophie
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Germain factorization falls into precisely one of these four cases, so we will use
these numbers to refer to the type of a Sophie Germain factorization. If we were to
only consider integers relatively prime to 6, the above formulas would each have a
single case and these functions would be inverses; interference from the divisors of
24 causes a bit of trouble. We summarize the relevant properties of 7 and A in the
following theorem.

Proposition 3.1. Let F: ZT — Sand N : S — Z* be the functions defined above.
(A) For any positive integer n, rdu(n) = | F(n)|.
(B) For any Sophie Germain factorization F,
FW(F))=F.
In particular, F is surjective.

Proof. The verification of each statement entails a straightforward computation
using the definitions of F and N combined with Proposition 2.4(C). O

We now have the following general result.

Theorem 3.2. Fix a positive integer 6. The equation
rdu(n) =0 2

has a solution if and only if 0 admits a Sophie Germain factorization.
Proof. 1f (2) has a solution, then 6 = |F(n)|, so 6 admits a Sophie Germain
factorization. Conversely, if | F| = 6, then take n = N (F). Now,

rdu(n) = |[FN(F))| = |F| = 0. |

It may feel at this point that we have saddled the reader with a great deal of
notation without having accomplished much, given that the true difficulty is finding
all possible Sophie Germain factorizations. However, given the set of factorizations,
the following proposition provides a nice principle for organizing the solutions
to (2). It measures the failure of F to be injective, and it is the main reason we
have defined F and N. The proof amounts to a reflection upon the meaning of the
conditions used to divide the definition of F into four cases.

Proposition 3.3. Let F; be a Sophie Germain factorization of type i. Then,
FY(Fy) = N(Fy) - {divisors of 24},
F~YF,)) = N(F,) - {divisors of 3},
FY(F3) = N(F3) - {divisors of 8},
FU(F) = N(Fa) - {1},

We will use the above proposition in the next section.



SOPHIE GERMAIN PRIMES AND INVOLUTIONS OF 7 659

4. Examples

Thankfully, it is now time to more concretely investigate the possible proportions
of diagonal units using the tools developed above. We begin with Chebolu’s
theorem [2012].

4A. Chebolu’s 24 theorem. We include this example for completeness; certainly,
the proofs given in [Chebolu 2012] are either more direct or more interesting, or both.

Theorem 4.1 (Chebolu). The ring Z, satisfies the diagonal property if and only if
n is a divisor of 24.

Proof. We seek all possible solutions to rdu(n) = 1. Since the integer 1 has the
unique (type 1) Sophie Germain factorization 1, the solution set is

N (1) - {divisors of 24} = 1 - {divisors of 24}
= {divisors of 24}.
by Proposition 3.3. U

4B. Proof of Theorem 1.1. 1t is straightforward to check that when p is a Sophie
Germain prime, the listed sets provide solutions to rdu(n) = p. We therefore turn
our attention to the converse.

Let p > 3 be prime and suppose rdu(n) = p has a solution, in which case p
admits a Sophie Germain factorization. Any such factorization F of p must have
s =t =0and r =1 since p cannot have more than one distinct prime factor. Hence,
|F| = 6(26 + 1)P. Further, since #(20 + 1) = p and 6 > 1, we must have 6 = p
and f = 0. Thus,

p-2p+1)°

is the only possible Sophie Germain factorization of p. This forces 2p + 1 to be
prime, so p is a Sophie Germain prime and the set of solutions to rdu(n) = p is

N(p-@2p+1)°)-{divisors of 24} = (2p + 1) - {divisors of 24}

by Proposition 3.3.

For p = 2, the only Sophie Germain factorizations of 2 are 2-5° and 2! - 1. The
first factorization has type 1, and the second has type 2. Note that A'(2-5%) =5
and N (2! - 1) = 16. Hence, the set of solutions to rdu(n) = 2 is

5-{divisors of 24} U 16 - {divisors of 3}.

Finally, for p = 3, we have the type 1 factorization 3 -7° with A" = 7 and the
type 3 factorization 3! - 1 with A/ = 9. Hence, the set of solutions to rdu(n) = 3 is

7 - {divisors of 24} U 9 - {divisors of 8}.

This completes the proof of Theorem 1.1.
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4C. Prime power ratios. We now consider the more general case rdu(n) = p¥ for
k > 1. First, assume p > 3 is prime.

Any Sophie Germain factorization of p* must have the property that s =7 =0 and
each 6; is a positive power of p. Since p cannot divide both 6; and 26; + 1, we must
have B; = 0 for all i. Thus, every Sophie Germain factorization must have the form

r
[ "% +1)°
i=1
where the integers 2p%1 +1,...,2p% + 1 are distinct primes and Y ki=kisa
partition of k into distinct odd parts (each k; is odd because 2 p¥ + 1 is divisible
by 3 whenever v is even). Each such factorization contributes

,
[ [@p® +1)-{divisors of 24}
i=1
to the set of solutions to rdu(n) = pk . Here are several examples of what may be
gleaned from this discussion:

(A) There is no solution to rdu(n) = p¥ when p =1 (mod 3) (since this implies
that 2 p¥ + 1 is always divisible by 3).

(B) There is no solution to rdu(n) = p? since there is no partition of 2 into distinct
odd parts.

(C) There is a solution to rdu(n) = p* if and only if 2p+1 and 2p3+1 are
both prime.

(D) There is a solution to rdu(n) = p’ if and only if 2p” 4 1 is prime.

(E) There is a solution to rdu(n) = p® if and only if either {2p + 1,2p7 + 1} or
{2p3 +1,2p> + 1} is a set of primes.

The prime p = 5 illustrates (C). The prime p = 677, which is not a Sophie
Germain prime, illustrates (D). For (E), p = 29 is a prime where both of the
indicated sets are sets of primes; p = 149 is a prime where the second set is a set
of primes and neither element of the first set is prime; p = 179 is a prime where
the first set is a set of primes and neither element of the second set is prime.

The situations for the primes 2 and 3 are similar, so will only discuss the case
p =2. A Sophie Germain factorization of 2X must be of type 1 or 2. For type 1
factorizations, one obtains solutions as above: & must admit a partition into distinct
positive integers such that 22K 4 1 = 2%i+1 4 1 is prime. Such primes are called
Fermat primes, and k; 4 1 is forced to be a power of 2, so again each k; must be
odd. It is unknown whether there are infinitely many Fermat primes, therefore it
is unknown whether there are infinitely many powers of 2 such that rdu(n) = 2k
admits a type 1 solution. A type 2 factorization must take the form 2% -6, where 0 is
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a type 1 Sophie Germain factorization of 25 Since 3 is a Fermat prime, and the
set of all solutions is obtained by multiplying the relevant A-values by divisors of
3 or 24, we obtain that rdu(n) is a power of 2 if and only if n = 2% p; - - - p;, where
s >0and pyq,..., psis a (possibly empty) list of distinct Fermat primes.

This provides an interesting connection between the ratio of diagonal units and a
classical result of Gauss and Wantzel (see [Pollack 2009]): it is possible to construct
a regular n-sided polygon in the plane with straightedge and compass if and only
if n takes the form given at the end of the previous paragraph. Gauss proved that
the condition on 7 is necessary, and Wantzel proved that it is sufficient. Gauss’
decision to devote his life to mathematics was in part due to his discovery at age 18
of the constructibility of the regular 17-gon. We summarize our observation in the
next theorem.

Theorem 4.2. Let n be a positive integer. The following statements are equivalent.
(A) The ratio of diagonal units in Z,, is a power of 2.

(B) The integer n has the form 2°py--- p;, where s > 0 and py,...,p; is a
(possibly empty) list of distinct Fermat primes.

(C) It is possible to construct a regular n-gon in the plane with straightedge and
compass.

The authors wish to thank Sunil Chebolu for noticing this connection to the
Gauss—Wantzel theorem.

4D. Pairs of distinct primes. Call a positive integer n a Sophie Germain number if
2n+1 is prime. In all of the cases thus far considered, the integer 6 is a product of So-
phie Germain numbers whenever rdu(z) = 6 has a solution. We include this section
mainly to give a family of simple examples where this is not necessarily the case.
Let 3 < p < g be distinct primes. The possible Sophie Germain factorizations
of pq are p(2p + 1)°¢(2¢ + 1)° (if p and ¢ are each Sophie Germain primes),
(pq)(2pg + 1)° (if pq is a Sophie Germain number), and p - ¢° (if p is a Sophie
Germain prime with safe prime ¢ = 2p 4 1). Each of these factorizations is
type 1, so the solution sets (provided they exist) are (2p + 1) - {divisors of 24},
(2p + 1)(2q + 1) - {divisors of 24}, and (2p + 1)? - {divisors of 24}, respectively.
The integer 1081 = 2347 is not expressible as a product of Sophie Germain
numbers since, though 2 -23 4+ 1 = 47 is prime, neither 2 -47 + 1 = 95 nor
2-23-474 1= 2163 is prime. However, rdu(n) = 1081 has solution set

472 - {divisors of 24}.

4E. Further questions. We conclude this section with a few questions to ponder.

¢ The set of primes such that rdu(z) = p has a solution is precisely the set of
Sophie Germain primes. From (B) in Section 4C we see that the set of primes
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such that rdu(n) = p? has a solution is the set {2, 3} (since rdu(2’) = 22 and
rdu(3%) = 3?). For k > 2, what can we say about the set of primes such that
rdu(n) = p¥ has a solution? Is it always nonempty? When is it finite?

e If p =2 (mod 3), must rdu(n) = pk have a solution for some k?

e The number of partitions of k into distinct odd parts is the same as s(k), the
number of self-conjugate partitions of k. The maximum number of solutions
to rdu(n) = p¥ (for p > 3 prime) is 8 - s(k). For each k, how many primes
actually achieve this maximum value?

e Let k be a positive integer. Call a prime p a k-Sophie Germain prime (k-SGP)
if & admits a partition into distinct odd parts and 2 pkr1, . 2pk 4 1isa
list of prime numbers for every partition k = k{ + - -- + k, of k into distinct
odd parts. The value k = 1 corresponds to an ordinary Sophie Germain prime,
and there are no 2-SGPs. A prime p is a 3-SGP if and only if 2 p3 + 1 is prime;
a prime p is an 8-SGP if and only if 2p 4+ 1,2p7 +1,2p3 + 1, and 2p> + 1
are prime. Does a k-SGP exist for each k > 2?

5. The multiplication cube for 7,

One could also analyze the multiplication cube for Z,,. We know 1s lie exclusively
on the diagonal if and only if n = 1 or 2 since otherwise (—1)-(—1)-1 gives a 1
off the diagonal. Since this question seems uninteresting, we might require that
every 1 in the multiplication table that is not in a coordinate plane (where one entry
in the product is equal to 1) lies on the diagonal. The number of 1s appearing in
the multiplication cube for Z, is ¢(n)?. (The first and second coordinates may
be completely arbitrary units, but then the third coordinate is determined.) The
number of 1s off all coordinate planes is ¢ ()% — 3¢ (n) + 3 — 1 (by the principle
of inclusion/exclusion), and we wish to find values of n where this quantity is
equal to the number of elements of multiplicative order precisely 3 (since the entry
for 1-1-1 has been omitted). Put another way, we wish to find values of n such
that ¢ (n)? — 3¢(n) + 3 is equal to the number of elements of order dividing 3.
In Z;k there is one element of order dividing 3 if p = 2 (3); three such elements
if p = 1(3); one such element if p = 3 and k = 1; and three such elements if
p =3 and k > 2. Hence, the number of elements of Z,; whose order divides 3
is 3”T€, where r is the number of prime divisors congruent to 1 modulo 3 and
€ = 11if 9 divides n and € = 0 otherwise. We must now consider the equation
¢ (n)* —3¢(n) + 3 = 3" T€. If 3 divides the right-hand side, then 3 divides ¢ (n)?,
so in fact 9 divides ¢ (1)? — 3¢ (n). This means 9 cannot divide the right-hand side,
so we need only consider ¢ (1)? —3¢(n) +3 = 1 or 3. This in turn forces ¢ (n) = 1
or 2 (¢ (n) cannot equal 3). The only values of n satisfying either of these equalities
aren = 1,2, 3,4, and 6. Conversely, it is easy to check that forn =1,2,3,4 or 6,
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all 1s in the multiplication cube lie on the diagonal or the coordinate planes. This
proves the following theorem.

Theorem 5.1. All 1s in the multiplication cube for 7, lie exclusively on the diagonal
or the coordinate planes (where one of the three coordinates is 1) if and only if n is
a divisor of 4 or 6.
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On symplectic capacities of toric domains

Michael Landry, Matthew McMillan and Emmanuel Tsukerman
(Communicated by Michael Dorff)

A toric domain is a subset of (C", wyq) Which is invariant under the standard rota-
tion action of T on C". For a toric domain U from a certain large class for which
this action is not free, we find a corresponding toric domain V where the standard
action is free and for which ¢(U) = ¢(V) for any symplectic capacity c. Michael
Hutchings gives a combinatorial formula for calculating his embedded contact
homology symplectic capacities for certain toric four-manifolds on which the T2-
action is free. Our theorem allows one to extend this formula to a class of toric do-
mains where the action is not free. We apply our theorem to compute ECH capac-
ities for certain intersections of ellipsoids and find that these capacities give sharp
obstructions to symplectically embedding these ellipsoid intersections into balls.

1. Introduction

Symplectic capacities, introduced by Gromov and Hofer, are symplectic invariants
that assign a nonnegative real number to a subset U C (C", wsq) and have the
following properties:

(C1) Monotonicity: c(U) <c(V)if U — V.
(C2) Conformality: c(AU) = 22¢(U) for 1 € R.
(C3) Nontriviality: 0 < c¢(B**(1)) < 0.

Note that combining all three requires a finite capacity for any bounded U.
Sometimes additional nontriviality and normalization axioms are also assumed, but
we do not use them here. Many useful symplectic capacities have been defined;
some are listed in [Cieliebak et al. 2007].

Define the moment map u : C" — R”" of the symplectic manifold (C", wgq) by

2 2
//L(Zl,,Zn)z(jT|Z]| ,,7T|Zn| )9

where wgq is the standard symplectic form wgq = Y ;_, dx; A dy; on C", and
call 4 (C") the moment space. We call U C (C", wgq) a toric domain when it can

MSC2010: 53D05, 53D20, 53D35.
Keywords: symplectic capacities, toric domain, moment space axes.
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(a) (b) (©)

Figure 1. Appropriate moment regions; (a) and (b) satisfy the
conditions of Criterion 1.1, but (c) does not.

be written U = .~ ' (A) for some moment region A C RZ, in the moment space, or
equivalently when it is invariant under the rotation action of T” on C". Note that this
is a special case of the more general moment map associated with a Hamiltonian
action of a Lie group.

Since these toric domains are uniquely represented by their moment regions, we
will refer to a symplectic capacity c(A) of a moment region A, and by this mean
c(n~1(A)). A simple calculation shows that (C2) is equivalent to c(AA) = Ac(A).

Our main theorem is that for a duly qualified toric domain U whose moment
region satisfies Criterion 1.1 given below, any symplectic capacity of U is the same
as the capacity of a toric domain with a free action, one whose moment region
is w(U) translated off the coordinate planes in the moment space.

Criterion 1.1. Let A C R”,. If A intersects a coordinate plane

Pl:{(p1=~7pn)€Rn|pl:0},
then any line normal to P; has connected intersection with AU P;.

The necessary further qualifications are given in the theorem statement below.
Figure 1 illustrates this condition for n =2. In this case, Criterion 1.1 ensures that the
toric domain is a disk bundle over its projection to the first complex plane of C?; more
generally, for A satisfying the other conditions below, Criterion 1.1 requires ! (A)
to be a (generalized) disk bundle over its projection to any coordinate plane P;
which it touches. Disks in the fiber space degenerate to points where A touches a
coordinate plane.

Theorem 1.2. Let A C R, be a moment region which is compact with star-shaped
interior and whose boundary intersects transversely the rays from the star-center.
Assume that A satisfies Criterion 1.1. Then c(A) =c(A+ (1,1, ..., 1)) for any
symplectic capacity c.

The theorem is proved by establishing equal lower and upper bounds on c(A) in
terms of c(A+ (1,1, ..., 1)). The lower bound follows readily from properties of
toric domains and the axioms (C1)—(C3), but for the upper bound we must combine
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the axioms with a nontrivial symplectic embedding. Since the proof assumes only
the general axioms for capacities, this result holds for all symplectic capacities.
Note that the action on a given toric domain U = ~!(A) is free if and only if U
does not intersect the origin in any C factor; that is, its moment region does not
touch any coordinate plane P; = {(p1, ..., pn) € R" | p; = 0} in the moment space.
The embedded contact homology (ECH) developed by Michael Hutchings pro-
vides a natural way to define certain symplectic capacities called ECH capacities.
They are defined for any subset of a symplectic 4-manifold. Hutchings [2011]
gives a combinatorial method to compute these capacities for toric domains over
convex moment regions that do not touch the axes of the moment space R2>0 (that
is, the torus action is free). This method is presented in Section 3. In [Hufchings
2014, Remark 4.15] and [Choi et al. 2014, §1.2], it was conjectured that Hutchings’
formula should remain true in most, and probably all, cases where 1 (U) does touch
one or both axes. Theorem 1.2 shows that this is true for the ECH capacities of a
large class of toric domains by showing that it is true for all symplectic capacities.
Given a, b € R, define the ellipsoid

E(a,b):z{(Z1,Zz)€(C2 7T|21|2+7T|22|2 51}, (1)
the ball
B(a):=E(a,a),
and the polydisk
P(a,b):={(z1,22) € C* | |21 |* < a,, w|z2|* < b}, 2)

where each inherits the standard symplectic form from C2.

In Section 3, we use Theorem 1.2 to compute ECH capacities of a class of
intersections of ellipsoids. We also study symplectic embeddings of domains from
this class, proving the following proposition:

Proposition 1.3. Let a > b and ¢ > d. Let R be the radius of the smallest ball
containing E(a,b) N E(c,d), and let p = inf{r | E(a,b) N E(c,d) — B(r)}. If
2a,2d > R, then p = R.

It is known that ECH capacities provide sharp obstructions to symplectically
embedding ellipsoids into ellipsoids (proved by McDuff [2011]) and ellipsoids
into polydisks [Frenkel and Miiller 2012]. Recall that by Gromov’s nonsqueezing
theorem [1985], a ball symplectically embeds into a cylinder in R*" if and only if the
radius of the cylinder exceeds that of the ball. This is an illustration of symplectic
rigidity and is easily recovered from the ECH capacities on these domains. The
computation of ECH capacities of the ellipsoid intersections above shows that they
give sharp obstructions to symplectically embedding those ellipsoid intersections
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into balls. Since the balls have much larger volume than the ellipsoid intersections,
Proposition 1.3 is another example of symplectic rigidity.

In Proposition 1.3, the ECH capacities give a sharp obstruction. Recent work
of Hind and Lisi [2014] shows that neither ECH capacities nor Ekeland—Hofer
capacities give sharp obstructions to symplectic embeddings of arbitrary toric
domains; in particular the ECH and Ekeland—Hofer obstructions to symplectically
embedding a product of polydisks into a ball are not always sharp. The torus action
on polydisks and balls is not free, so we might ask whether the situation is any
different if we consider only toric domains for which the action is free. However,
the case of free torus action is not different in this way, as the following corollary
of Theorem 1.2 shows:

Corollary 1.4. Let P*(1,2) = n~'(w(P(1,2)) + (1, 1)) be a toric domain, let
a < 3 and let B*(a) = n~'(n(B*(a)) + (1, 1)). There is no symplectic embedding
P*(1,2) = B*(a).

This shows that neither ECH nor Ekeland—Hofer capacities are sharp even when
we consider only toric domains with a free action because the obstruction given
by both of these sequences of capacities is a > 2 (see [Hind and Lisi 2014]). This
corollary is proved in Section 3B.

2. Proof of main theorem

In this section, we prove Theorem 1.2 by constructing symplectomorphisms as
the products of area preserving maps. It will be convenient to have the follow-
ing standard lemma, which shows that translations in the moment space induce
symplectomorphisms on toric domains whose moment regions do not touch any
coordinate plane.

Lemma 2.1. Suppose U C (R, wyq) is a toric domain with free torus action such

that w(U) = A, and B is any translate of A such that the torus action on =" is

also free. Then U and V = =" (B) are symplectomorphic. In particular, they have
the same symplectic capacity for any capacity.

Proof. We can parametrize U by g : A x T" — U defined by

g(Pl,---,pn,eigl,...,eig")=<\/ Pleion, ..., /&e’ﬂ").
T b4

Then we can pull back the standard symplectic form to A x T". A simple calculation
shows that for the first term,

x _ 1
g dxi ndy) = = dpi ANdby,
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and thus

n
g wsta = % dei ANdb;.
i=1

Clearly translation in moment space does not affect this last form, so conjugating
a translation by this parametrization yields the desired symplectomorphism.  [J

Another important fact that can be seen from the proof of Lemma 2.1 is that
for a toric domain U with free torus action and moment region A, the symplectic
volume of U is equal to the volume of A:

L BV £
vol(U, wsua) = — | @wgqq=— (8" wsta)
n! U n: Jaxin

1
Q)

= / dpi N -+ - ANdp, = vol(A).
A

/ doi A---ANdp, NdOL A -+ - ANdB,
AxTn

So a symplectic embedding of toric domains U < V may be possible only if

vol(u(U)) < vol(u(V)).
We will also use the following version of the “Traynor trick” (cf. Proposition 5.2

of [Traynor 1995]):

Lemma 2.2. Given ¢ > 0, there exists an area preserving diffeomorphism
W:BX(1)—> SD*(1+¢)=B*(14+¢€)—{x+iy | y=0,x >0}
from the disk to the slit-disk such that
§< V@I <lzP+e

for some § > 0.

Proof. The left inequality follows from continuity (given such a map). For existence
and the right inequality, define a family of loops which avoid the slit as in Figure 2,
and apply Schlenk [2005, Lemma 3.1]. (Il

With these tools we can prove Theorem 1.2.

Proof of Theorem 1.2.

Our technique is to find upper and lower bounds on ¢(A) by producing symplectic
embeddings and applying (C1) and (C2). We show that these bounds agree with
each other and with c(A+ (1,1, ..., 1)).

For what follows, we define the scaling of R” by A > 0 from p € R" to be the map
q+— A(g—p)+p. Since A(q — p)+ p =rg+ (1 —A)p, any scaling by A from p is
equivalent to a scaling from the origin by A followed by translation by (1 — ) p. So
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Figure 2. A family of loops defining a symplectomorphism
B*(1) > SD(1 +¢).

with Lemma 2.1 we may apply conformality of capacities, axiom (C2), on moment
regions scaled from points other than the origin. The reason for the requirement
that rays from the star-center be transverse to the boundary will become clear in
Step 2 with the scaling argument.

Step 1. The lower bound may be computed as follows. Let p be a star-center
of int A, which means that any other point in int A may be connected to p by a
line contained in int A. Given any A < 1, let A, be the image of A under the
scaling of the moment space towards p by A. Since p is away from the coordinate
planes, A, is bounded away from the coordinate planes and contained in A. By
Lemma 2.1 and conformality, c(A;) =Ac(A+(1, 1, ..., 1)). Then by monotonicity,
rc(A+(1,1,...,1)) <c(A), and since A < 1 was arbitrary,

c(A+(1,1,..., 1) <c(A).

Step 2. For the upper bound, we embed A into an expanded version of A, and
apply an area-preserving map in each dimension in which A touches a coordinate
plane P;. We will assume that A is compact, star-shaped, and that the rays from a
star-center p intersect each 0A; transversely.

Assume without loss of generality that A touches the first £ coordinate planes

and does not touch the others. Let p = (py, ..., p,) be the star-center in A noted
above. The projection p; = (0, pa, ..., pn) is also a star-center: Choose any other
point ¢ = (x1, ..., x,) € A. The line from p; to ¢q is entirely below that from p

to g in the p; coordinate. By Criterion 1.1, any perpendicular dropped from a point
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in A to P; remains in A. Hence the line from p; to ¢ is also in A, so p; is a star-
center. Repeating in the first k coordinates, we find that p = (0, ..., Og+1, ..., On)
is a star-center; call this point p. A simple geometric argument making use of
Criterion 1.1 shows that the rays from p must also be transverse to each dA;; we
omit that here.

The next step will be to expand A to A, by a finite factor of A. In order to pre-
vent A, from colliding with coordinate planes, first translate A away from the coordi-
nate planes Py through P, by some large amount. Note that this is possible because
by assumption p; > 0 for i > k, and furthermore translation in the moment spaces
induces a symplectomorphism. So we shall instead compute the capacity of this
translate, and relabel it A. Now let A, be the scaling of A from p by a small A > 1.

We show that A C int A;. Consider any point g = (x1,...,x,) € A. If g €int A
then g € int A, so suppose g € dA. Write g, for the point mapped to ¢ under
the scaling; g1/, will be between p and ¢g. Now since the ray from p to g is
transverse to d A, it follows that g /; must be in int A, so we can find an open ball U
around ¢ ;.. That ball maps under the scaling to U, which is an open ball around ¢
in A,. Thus g €int A;, and A C int A,.

Let ext A, denote the exterior of A; in RZ,. Both A and A, are compact, so
there is some d sothat 0 <d < d;, = %dist(A , ext A;). Now A is bounded, so let a
be the maximum of the p; coordinate of A, and choose ¢ > 0 so that & < d. Then
by Lemma 2.2, there exists ¥, : B>(a) — SD?(a + ¢) such that

8 < W, () < |z)*+e 3)

for6 >0. Let F, =¥, xid x --- x id.
Set B = po Fo(u"'(A)). Then we claim B C intA,. Consider a point
(Z1s ..., 2n) € w 1(A), and let

(P15 s pn) = (21, ..., 20) €A,

By the inequality above, po F.((z1,...,21)) = (01, ..., Pu), Where p; < p; +¢
and p; = p; for i > 1. Thus every point in ;' (A) is carried by F, to a point
less than d away from A, so B C int A,; moreover, dist(B, ext A,) > d,. Then let
§= % min{$, d, } and y = Ad (using A < 2). Set A; =A,+(,0,...,0). The lower
bound on the left of equation (3), together with the distance from B to outside Aj,
show that in fact B C A}. So by Lemma 2.1, ¢(B) < c(A}) =Ac(A+(,0,...,0)).
Now A > 1 was arbitrary, so ¢(B) < c(A+ (5,0,...,0)). Since A and B are
symplectomorphic,
c(A) <c(A+(5,0,...,0)).

Repeating the same process in the dimensions up to k and translating up by 4§
in the other coordinates shows that for some § > 0, c(A) <c(A+ (5,6, ...,9)).
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A A

_______

Figure 3. Illustration of the conformality argument for the lower
bound (left) and the upper bound (right).

Combining with the lower bound, and using Lemma 2.1,
c(A)=c(A+(,1,...,1)). O

Remark 2.3. It is worth noting that we may like to consider regions A for which 0 A
is not completely smooth. The ellipsoid intersections below are one example.
The notion of transversality must then be generalized slightly with the goal that
A CintA,. If A is the gluing of multiple hypersurfaces, it is sufficient that the
rays from the star-center be transverse to each of the hypersurfaces at the points
where they are glued together.

3. Applications

3A. ECH capacities. The remainder of this paper focuses on 4-dimensional toric
domains, with accompanying planar moment regions. Using Michael Hutchings’
theory of embedded contact homology (ECH), one can associate real numbers

O0=co(M) <c1(M) <c2(M) <---

called ECH capacities to any 4-dimensional Liouville domain M, such that each ¢;
is a symplectic capacity for 4-manifolds. For precise definitions of ECH capacities
and Liouville domains, see [Hutchings 2011].

We briefly describe the computation of ECH capacities, as given by Theorem 4.14
of [Hutchings 2014]. Given a convex body A in the moment space which does not
touch any coordinate plane, we can define a norm £ 4, not necessarily symmetric, as
follows. Choose an origin in A from which to draw position vectors to d A. Let v;
be some vector, and ¢g; one of the position vectors on dA such that the outward
normal to dA at g; is parallel to v;. If v; has angle between the normals to 0 A
at two incident edges of dA, let g; be the corner where the edges meet. Then set
£4(v;) = v; - g;. It is not hard to check that this yields a well-defined norm; see
[Hutchings 2014] for details.
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A

(0, R)

0, d)

(abcfacd bcdfabd)
bc—ad ° bc—ad

(a,0) (R,0)

Figure 4. The image of E(a, b) N E(c, d) under p with suitable
a, b, c,d, and the smallest ball into which it symplectically embeds.

We compute the ECH capacities according to [Hutchings 2011] as follows:
for each k, cx(A) is the shortest perimeter length of an oriented lattice-polygon
enclosing k + 1 lattice points, where perimeter length is measured in the norm £ 4
on the edge vectors of the oriented polygon.

3A1. Embedding ellipsoid intersections into balls. We now use Theorem 1.2 to
compute the second ECH capacity of a family of ellipsoid intersections. This
capacity is in turn used to prove Proposition 1.3. Throughout this section, let
a,b,c,d>0,a <b,c>d,and put
R— abc +bcd —acd — abd
N bc —ad
(see Figure 4). We show that for 2a, 2d > R, we have c;(E(a,b) N E(c,d)) = R.
A simple consequence is that E(a, b) N E(c, d) symplectically embeds into a ball

if and only if it embeds by inclusion (that is, Proposition 1.3). While in principle
that result only requires the easier lower bound of Theorem 1.2, we illustrate the

use of Theorem 1.2 to produce the actual ECH capacity, which is sufficient to prove
the proposition.

A short computation, or consideration of Figure 4, shows that B(R) is indeed
the smallest ball into which E(a, b) N E(c, d) embeds by inclusion. We first prove
the following lemma:

Lemma 3.1. [f2a, 2d > R, then c2(E(a, b) N E(c,d)) = R.

Assuming Lemma 3.1, observe that Proposition 1.3 is immediate:
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Figure 5. Calculation of £ 4/-length by region.

Proof of Proposition 1.3. By [Hutchings 2011, Corollary 1.3], c2(B(r)) =r, so we
have p > R by Lemma 3.1. Since E(a, b) N E(c,d) C B(R), p < R and the result
follows. O

Proof of Lemma 3.1. Let A be the moment region of E(a, b) N E(c,d). Since A
satisfies Criterion 1.1, we know that c;(A) = c(A") for A’ = A+ (1, 1).

First, we observe that the oriented lattice-polygonal path shown in Figure 6 has
£ 4-length R when oriented clockwise, so ¢2(A) < R.

Let I" be an oriented lattice path containing three lattice points with edge vectors
(o, B), (v, 6), (¢, ¢) (Gif I" has only two edge vectors, i.e., is just a line segment, the
forthcoming argument applies mutatis mutandis). Suppose for a contradiction that
L A/(F) < R.

We first claim that 8, §, ¢ < 1 and that at most one is positive. Suppose without
loss of generality that 8 > 2. Depending on the region in which («, B) lies (or its
slope /a, Figure 5), the £ 4--length is determined by cases:

(o, B)-(0,d) ifa<0 or > 5 (regions 1, 2),
La((a, B)) =1 (o, B) - (“lb’g 2‘2‘1, %) if § < g <4 b (region 3),
(o, B) - (a, 0) if 0 < g < % (region 4).

We treat each case separately. In region 1, we have («, 8)- (0, d) = 8d >2d > R,
a contradiction. In region 2,

abc—acd bcd—abc>

ta(@ p) = (@, ’8)'( bc—ad ° bc—ad

and o > 1. Hence,

abc—acd bed—abc abc—acd bced—abc
(oz,,B)-( bc—ad ° bc—ad > (4, - ( bc—ad ° bc—ad ) k.
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Figure 6. The minimal path for ¢;(A) in Lemma 3.1.

Lastly, in region 3, £/ ((a, B)) = (o, B) - (a,0) and @ > B, so L4 ((e, B)) = a >
2a > R. Thus B,48,¢ < 1.

To show that at most one of 8, §, y is positive, assume without loss of gener-
ality that 8, § > 1. Another calculation as above shows that both £ 4/((«, 8)) and
£4/((y, §)) are greater than or equal to min{a, d}, so £4(I") > 2min{a,d} > R, a
contradiction.

A symmetric argument but with regions 2, 3, 4, and 5 shows that «, y, € <1 and
that at most one is positive. These facts imply that the maximum displacement in
either coordinate is 1; that is, " lies in [0, 1]? up to translation. We check that the
shortest lattice path containing three lattice points in [0, 1]*> has £ 4-length R, so I"
cannot exist. U

3B. Toric domains with free action. The proof of Corollary 1.4 simply combines
the embeddings involved in the proof of Theorem 1.2 with the result that a symplectic
embedding P(1,2) < B*(a) is possible if and only if ¢ > 3 [Hind and Lisi 2014,
Theorem 1.1].

Proof of Corollary 1.4. Suppose to the contrary that a < 3 is given for which we can
find an embedding f : P*(1,2) < B*(a). Let A > 1 be close to 1 such that A%a < 3.
Let Py (1,2) = = ' (u(P (X, 20) + (1, 1)) and B} (a) = ' (u(B*(1a)) + (1, 1)).
After scaling by A, we can find an embedding f; : P;(1,2) < Bj(a). This is
combined with the embeddings from the proof of Theorem 1.2 as follows:

First, we can find a symplectic embedding F : P(1,2) < P; (1, 2) by the same
technique illustrated in that theorem since P;"(1, 2) is just the translated expansion
of P(1,2). We also have the inclusion embedding ¢ : B} (a) < B(M\*a) because of
the translation law (Lemma 2.1) above. Combining these we get

Lo foF:P(1,2) — B(}%a).
Since A%a < 3, this violates [Hind and Lisi 2014, Theorem 1.1]. Thus no such
embedding f : P*(1, 2) < B*(a) exists. O

By Theorem 1.2, the ECH and Ekeland-Hofer capacities of P*(1, 2) and B*(a)
are the same as those of P (1, 2) and B(a), so neither of these capacities give sharp
obstructions to embedding P*(1, 2) into B*(a).
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When the catenary degree agrees with
the tame degree in numerical semigroups
of embedding dimension three

Pedro A. Garcia-Sanchez and Caterina Viola

(Communicated by Scott T. Chapman)

We characterize numerical semigroups of embedding dimension three having the
same catenary and tame degrees.

1. Introduction

Let S be a numerical semigroup minimally generated by {ny,...,n,}. A factoriza-
tion of s € § is an element x = (x1, ..., x,) € N? such that xyn| +---+xpn, =5
(N denotes the set of nonnegative integers). The length of x is given by |x| =
X1+ -+ -+ x,. Given another factorization y = (y1, ..., y,), the distance between
x and y is d(x, y) = max{|x — gcd(x, y)|, |y — ged(x, y)|}, where gcd(x, y) =
(min{xy, y1}, ..., min{x,, y,}).

The catenary degree of S is the minimum nonnegative integer N such that for
every s € § and any two factorizations x and y of s, there exists a sequence of
factorizations xi, ..., x; of s such that

(D xi=x,x =y,
(2) foralli e {l,...,t—1},d(x;, xi+1) < N.

The tame degree of S is defined also in terms of distances, and it is the minimum N
such that for any s € § and any factorization x of s, if n —n; € S for some
i €{1,..., p}, then there exists another factorization x" of s such that d(x, x’) < N
and the i-th coordinate of x’ is nonzero (n; “occurs” in this factorization).

It is well known that the catenary degree of S is less than or equal to the tame
degree of § (in greater generality; see [Geroldinger and Halter-Koch 2006]). It
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is also known that in some cases both coincide (for instance for monoids with a
generic presentation [Blanco et al. 2011]). In this paper, we want to characterize
when this is the case if p (the embedding dimension of S) is three. This description
is given in terms of the connectedness of some graphs associated to the elements
of S.

Given s € S, we define the graph V; as the graph with vertices given by the
factorizations of s, and edges given by the pairs of factorizations x and y with
x -y # 0 (here - is the dot product; that is, x and y have common support). We
say that s is a Betti element of S if V; is not connected. It is well known (see for
instance [Rosales and Garcia-Sanchez 2009], where the connected components of
V, are called R-classes of s) that the number of Betti elements of S = (n;, ny, n3)
is at most three. We characterize when t(S) = c(S) in terms of the Betti elements
of S; this is done in Theorem 25.

2. Preliminaries

A numerical semigroup is a submonoid of (N, +) with finite complement in N. Every
submonoid M of (N, +) is isomorphic to the numerical semigroup M /gcd(M). The
least positive integer in a numerical semigroup S is known as its multiplicity, m(S).
Every numerical semigroup S is minimally generated by $*\ ($*+5*), and as every
two minimal generators are incongruent modulo the multiplicity, this set has finitely
many elements. Its cardinality is known as the embedding dimension of S, denoted
by e(S). Thus, every numerical semigroup admits a unique (and finite) minimal
generating system. Its elements are known as minimal generators of the semigroup.
The largest integer not belonging to S is the Frobenius number of S, F(S).
For a given nonempty subset A of N, set

(A> ={)\’1a1++)\’ﬂaﬂ |n EN’ala --'san GA},
which is the submonoid of (N, +) generated by A.

2.1. Catenary and tame degrees. Let S be minimally generated by {ny, ... ,n,}.
We recall some key notions from the theory of nonunique factorizations. Consider
the monoid epimorphism

o: N =S gla,...,ap) =aini+---+ayn,

known as the factorization morphism of S. The monoid § is isomorphic to N? /o,
where o = {(a, b) e N? | p(a) = ¢(b)} is the kernel congruence of ¢. As usual, we
write ac b if (a, b) € o. The set of factorizations of an element n € S is

Zn)=¢ '(n) = {(ai,...,ap) eNP |an +---+apn, =n}.

Leta=(ay,...,ap) € Z(n). The length of the factorization a is |a| =a; +- - - +a,.
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Forz = (z1,...,2p), 2 = (2}, ..., 2,,) € NP, write
ged(z, 2') = (min{zy, 21}, ..., min{z,, 2),}).

Set d(z, z') = max{|z — gcd(z, 2')|, |z — gcd(z, Z')|} to be the distance between
zand 7. Given x € N? and Y C NP, we define d(x, Y) = min{d(x, y) | y € Y}
(which exists by Dickson’s lemma). The support of z € N? is defined, as usual, by
Supp(z) ={i € {1, ..., p} |z #0}. Let n € S be such that n —n; € S. Then the
set Zi(n) ={z € Z(n) | i € Supp(z)} is not empty.

Given n € S and z, 7/ € Z(n), an N-chain of factorizations from z to 7’ is a
sequence zo, . .., zx € Z(n) such that zo = z, zx =z’ and d(z;, z;+1) < N for all i.
The catenary degree of n, c(n), is the minimal N € NU {oco} such that for any two
factorizations z, 7’ € Z(n), there is an N-chain from z to z’. The catenary degree
of S, c(9), is defined by

c(S) = supf{c(n) | n € S}.

The tame degree ts(S’, X) of S’ C S and X C N? is the minimum of all N €
N U {oo} such that for all s € ', z € Z(s) and x € X with s — ¢(x) € S, there
exists 7' € Z(s) satisfying x < z’ and d(z,z’) < N. We simply write t(S’, X)
when § is understood. We also simply write t(s) for t({s}, {n,...,n,}), and
t(S) =t(S, {n1, ..., np}), which equals max{t(s) | s € S}.

A presentation for S is a subset t of o such that o is the least congruence (with
respect to set inclusion) containing t, or in other words, a system of generators
of 0. A minimal presentation is a presentation that is minimal with respect to set
inclusion (and it can be shown that in this setting it is also minimal with respect to
cardinality, see [Rosales and Garcia-Sanchez 2009, Chapter 7]; in monoids these
two concepts do not have to be equivalent). We say that S is uniquely presented
if for every two minimal presentations t and t’ of § and every (a, b) € 7, either
(a,b) € T’ or (b, a) € t’ (see [Garcia-Sdnchez and Ojeda 2010]).

Two elements z and 7 of N? are R-related if there exists a chain z = z1, 22,

.., zx = 7’ such that Supp(z;) N Supp(z;+1) is not empty for alli € {1, ...,k —1}.
The number of factorizations of an element in a numerical semigroup is finite, and
so is the number of R-classes in this set. These classes are crucial, since from
them a minimal presentation of S can be constructed. Moreover, let n € S and
let RY, ..., RZn be the different R-classes of Z(n). Set u(n) = max{r{, ..., r,?n},
where ' = min{|x| | x € R}}. Define

wu(S) = max{u(n) |n €S, k, > 2}.

Theorem 1 [Chapman et al. 2009, Theorem 1]. Let S be numerical semigroup.
Then c(S) = n(S).
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Let S be a numerical semigroup. An element s € § is said to be a Betti element if
Z(S) has more than one R-class. Observe that there are finitely many Betti elements
in S if it is finitely presented. The set of Betti elements of S is denoted by Betti(S).
As a consequence of the above theorem, we deduce that

c(S) = max{c(b) | b € Betti(S)}.

For the computation of the tame degree of the numerical semigroup S, a minimal
presentation is not, in general, enough as shown in [Chapman et al. 2006]. Let Z(S5)
be the set of minimal nonnegative nonzero solutions of the equation

nxy+---npx,—nyy;—---—npy, =0.
Let (x,y) =(x1,...,Xp, Y1,.-.,Yp) € N2”. Then (x, y) is a nonzero solution of
the above equation if and only if (xy,...,x,) and (y;, ..., y,) are elements in
Z(mw(x1,...,xp)). Forn € §, we write
(S ={(x1, .. .o xp, Y1y oo o5 Yp) €Z(S) | w(xy, ..., Xp) =1}
We have the following.

Theorem 2 [Chapman et al. 2009, Theorem 2]. Let S be a numerical semigroup
minimally generated by {ny, ...,n,}. Then

t(S, {n;}) = max{d(a, Z (7 (a))) la eN?, w(a) —n; €S, Ly (S) # I}

And clearly, t(S) = max{t(S, {n;}) | i € {1, ..., p}}.

Let § be a numerical semigroup minimally generated by {ni,...,n,}, with
p>1. LetneS. Assume that n —n; € § for some i € {1, ..., p}. We define
t;(n) = max{d(z, Z' (n))|z € Z(n)}. Hence t(n) = max{t;(n) |n—n; € S, 1 <i < p},
and we have that t(S) = max{t(n) | n € S}.

Define

Prim(S) = {n € S | there are a, b € Z(n) with (a, b) € Z(S) and a # b},

which we call the set of primitive elements of S (note that the condition a # b
means (a, b) # (e;, e;) for all i). As we observed above, the catenary degree of S is
attained in one of its Betti elements. The tame degree, in light of the above theorem,
is reached in a primitive element.

Given n € §, define G, as the graph with vertices given by the minimal gen-
erators n; such that n —n; € §, and edges given by n;n; if n — (n; +n;) € §. It
can be shown that the number of R-classes (connected components of V) equals
the number of connected components of G, (see for instance [Rosales and Garcia-
Sanchez 2009, Chapter 7]). From [Blanco et al. 2011, Lemma 5.4], it can be deduced
that if n is minimal in S with t(S) = t(n), then the graph G, is not complete, as
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proved by Alfredo Sanchez-R. Navarro in a forthcoming Ph.D. dissertation. Denote
by NC(S) the set

NC(S) = {n € S | G, is not complete}.
Then
t(S) = max{t(s) | s € Prim(S) NNC(S)}.

2.2. Symmetric numerical semigroups. In this subsection we follow the notation
used in [Rosales and Garcia-Sanchez 2009, Chapter 3].

A numerical semigroup is irreducible if it cannot be expressed as the intersection
of two numerical semigroups properly containing it.

A numerical semigroup S is symmetric if it is irreducible and F(S) is odd.

The following characterization is sometimes used as the definition of a symmetric
numerical semigroup.

Proposition 3. Let S be a numerical semigroup. Then, S is symmetric if and only if
forallx € Z,x ¢ S implies F(S) —x € §.

2.3. Gluing of numerical semigroups. There is an easy way to obtain symmetric
numerical semigroups from other symmetric numerical semigroups (this also applies
to complete intersections, but for complete intersections this construction fully
characterizes them). The proofs of the results in this paragraph can be found in
[Rosales and Garcia-Sdnchez 2009, Chapters 7 and 8].

Theorem 4. Let S be a numerical semigroup. Then the cardinality of a minimal
presentation for S is greater than or equal to e(S) — 1.

A numerical semigroup is a complete intersection if the cardinality of any of its
minimal presentations equals its embedding dimension minus one.

Let S and S, be two numerical semigroups minimally generated by {n, ..., n,}
and {n,41, ..., n.}, respectively. Let . € Si\{n1, ..., n,}and p € SK\{n;41, ..., ne}
be such that ged(X, ©) = 1. We say that

S={(uny, ..., uny, AMpgq, ..., M)

is a gluing of S| and S,.
The following characterization of complete intersections was first given by
Delorme [1976] (though with different notation).

Theorem 5. A numerical semigroup other than N is a complete intersection if and
only if it is a gluing of two complete intersection numerical semigroups.

Also the symmetric property is preserved under gluings. As a consequence of
this, every complete intersection numerical semigroup is symmetric.

Proposition 6. A gluing of symmetric numerical semigroups is symmetric.
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Corollary 7. Every complete intersection numerical semigroup is symmetric.
Corollary 8. Every numerical semigroup of embedding dimension two is symmetric.

If in the process of gluing S; and > we always take S, to be a copy of N, we
obtain a special class of complete intersections. A numerical semigroup S is free if
it is either N or the gluing of a free numerical semigroup with N.

2.4. Numerical semigroups of embedding dimension three.

Theorem 9 [Herzog 1970]. Let S be a numerical semigroup with embedding di-
mension three. Then, S is a complete intersection if and only if it is symmetric.

Symmetric numerical semigroups with embedding dimension three are free since
they are a gluing of a numerical semigroup of embedding dimension two and N.
This can be used to give an explicit description of the minimal generators of a
semigroup of this kind.

Theorem 10 [Rosales and Garcia-Sanchez 2009, Theorem 10.6]. Let m| and m,
be two relatively prime integers greater than one. Let a, b and ¢ be nonnegative
integers witha > 2, b+ c > 2 and gcd(a, bmy 4+ cmy) = 1.

Then S = (amy, amy, bm| + cmy) is a symmetric numerical semigroup with
embedding dimension three. Moreover, every symmetric numerical semigroup of
embedding dimension three is of this form.

Let S = (n| < ny < n3) be a numerical semigroup of embedding dimension three.
Define
c; =min{k € N\ {0} | kn; € (n, m), {i, j, k} = (1,2, 3}}.

Then, for all {i, j, k} = {1, 2, 3}, there exists some r;;, iy € N such that
Cinj =Tijnj + righg.
From Example 8.23 and Theorem 8.17 in [loc. cit.], we know that
Betti(S) = {c1n1, cony, c3ns}.

Hence 1 < #Betti(S) < 3. Herzog [1970] proved that S is symmetric if and only if
rij =0 for some i, j € {1, 2, 3}, or equivalently, # Betti(S) € {1, 2}. Therefore, S is
nonsymmetric if and only if # Betti(S) = 3.

3. Catenary and tame degrees in embedding dimension three

Let S be a numerical semigroup of embedding dimension three minimally gen-
erated by {n, ny, n3} with n; < np < n3. Corollary 5.8 in [Blanco et al. 2011]
states that c(S) = t(S) for S a nonsymmetric numerical semigroup of embedding
dimension three. It also gives an explicit formula for c(S) (and consequently t(.5)).
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For this reason, we focus henceforth on the case when § is symmetric, and thus
#Betti(S) € {1, 2}.

Notice that if n € Betti(S), then G, is not connected, and so it cannot be complete.
Hence Betti(S) € NC(S). Also the minimality of ¢; forces ¢;n; € Prim(S). Thus,

Betti(S) € Prim(S) NNC(S).

(This is true not only for embedding dimension three, but in this case the inclusion
is straightforward.)

Numerical experiments were performed using the GAP package numericalsgps
[GAP; Delgado et al. 2013].

3.1. When S has two Betti elements. We first give several technical lemmas that
will be used in the following subcases.
Let ¢; be as above. Denote by ¢; the i-th row of the 3 x 3 identity matrix.

Lemma 11. Assume that c;n; = cjnj # cxny for some {i, j, k} = {1, 2, 3}. Then
(1) Z(cini) = {ciei, cje;},
(2) the set Z(cgny) has two R-classes: {crer} and Z(cxny) \ {crex},

(3) S is uniquely presented if and only if Z(cyny) \ {ckex} = {rie; +rijej} for some
ki Ty € N\ {0}, with O < r; < c; and 0 <ryj < c;j.

Proof. (1) Assume that there exists a;e; +aje; + arer € Z(cin;) \ {cie;, cje;}.
Then a; < ¢; since otherwise (a; — ¢;)n; + a;jn; + axni = 0, which leads to
a; = ¢, aj =0 and g, = 0, contradicting that a;e; +aje; + are; # c;e;. Hence
ajnj+ang = (¢; —a;)n;. The minimality of ¢; forces a; = 0. Arguing analo-
gously, we obtain that a; < ¢;. But then (c; —a;)n; = ayny, and the minimality
of ¢; yields a; = 0. Thus c;n; = cjnj = ayni. This implies that a; > ¢ (the
equality cannot hold since we are assuming that ¢;n; = c;n; # cini). Thus,
cini =cjn; = (ay — cp)ng +rijn; +riin; for some ry;, ri; € N with ry; +ry; # 0.
Assume without loss of generality that r;; # 0. Then the minimality of ¢; forces
cj <rxj, and consequently (ay —ci)ni+(rij —c;)nj+rin; =0, which is impossible
since a; — ¢ # 0.
(2) We already know that cxny € Betti(S), and so Z(cxng) contains at least two R-
classes. Denote by R; the one containing cey. If there exists another element in Ry,
then there are some a;, a;, ar €N, a; #0, such that cxny =a;n;+a;n j+aini. From
the minimality of ¢, we deduce that ¢ < ax, whence a;n; +ajn; + (ax — c)ng =0.
But this implies that a; = a; = 0 and a; = ¢y, contradicting that a;e; +aje; + ae
was a factorization of ciny different from cyey.

Now take any other element in Z(ciny) \ {crex}, say a;e; +aje; + arey. By the
same argument used in the preceding paragraph, we deduce that a; = 0. Assume
that ¢; = 0. Then a;n; = cxny, and the minimality of ¢; implies that a; > ¢;
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(the equality cannot hold since c;n; # cyni). Hence (a; —cj)nj + cinj = cyny,
and aje; R (aj —cj)ej+ cie;. The same holds if a; = 0, and we deduce that all
factorizations different from cye; are R-related.

(3) If S is uniquely presented, then Z(cxny) has exactly two elements, say ciex
and ry;e; +rijej, each in a different R-class [Garcia-Sanchez and Ojeda 2010].
Observe that if either ry; = 0 or r; = 0, arguing as above, we deduce that cxny has
at least three factorizations, which is impossible. Also ri; > ¢; or ry; > ¢y yields a
new factorization.

For the converse, assume that cyng = ryin; + rjnj with 0 < r; < ¢; and
0 <ryj <cj. If (akex+aiei+aje;) € Z(cans) \ {crex, riiei +rijej}, as Z(cgny) has
two R-classes and one of them is {ciey}, we have that a; = 0. Hence a;n; +ajn; =
Frili+rgin ;. If (a;, aj) > (ri, rkj), we obtain (a; —r; )n; +(aj —rkj)nj =0, which
yields a; =ry; and a; = ry;, which is impossible (here < denotes the usual partial or-
der on N?; that is, (a, b) < (¢, d) if (c—a, d—b) e N?, and analogously for >). Also
(aj, a;) < (ryi, rij) leads to the same contradiction. So, either a; > ri; and a; < ry;
(and not equality in both), or a; < ry; and ax > ry;. By symmetry, and without loss
of generality, assume that the first possibility holds. Then (a; —ri;)n; = (ri; —aj)n;.
But this implies that ry; —a; > c;, whence ry; > c¢;, contradicting the hypothesis. []

Since we are assuming n| <n, < ns3, the following two lemmas are easy to prove.
Lemma 12. The inequality c3<r31+r3p holds for any r3 e +riex € Z(csns)\{czes}.

Proof. Since n| < ny < n3, we have cynz = r3in| + rny < r3n3 + ryns, and
hence c3 < r3| +ras. |

Lemma 13. Forall ripes +ri3ez € Z(ciny) \ {c1e1}, we have rip +ri3 < cy.

Proof. We have ciny = ripny 4+ rizns > ripny +rizng = (r12 + ri3)n, and thus
rip+riz <cy. U

The case cin| = cyny # c3nz. Recall that we want to compute w(b) for b a Betti
element (Theorem 1). So we must see what factorizations in every R-class have
minimum length.

In our setting c1n; = cpny implies ¢ < ¢; because n; < nj.

Proposition 14. Let S = (ny, ny, n3) with n; < ny < n3 and cijn) = cyny # c3ns.
Then c(S) < t(S).

Proof. By Lemma 11, Z(c3n3) has two R-classes: {c3zes} and Z(c3n3) \ {(c3e3}.
Denote {c3e3} by R; and its complement in Z(c3e3) by R,. Lemma 12 implies that
c(can3) =min{r +s | (r, s, 0) € Ry}, and as c(cin1) =c(cany) =cy (¢ > ¢2), from
Theorem 1, we deduce that

c(S) = max{cl, min{r +s | (r,5,0) € Rz}}.
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We distinguish two cases, depending on whether or not S is uniquely presented.
Assume first that S is not uniquely presented. Let (u, v, 0) € Z(c3n3) be such that
u+v=max{r+s| (r,s,0) € Ry}. As S is not uniquely presented, either u > ¢
orv>cy Ifv>cy, then (u+ci,v—c3,0) € Z(cznz), and u + ¢y +v —cp =
u+v+(cy —c2) > u+ v, in contradiction with the maximality of u + v. Hence
v<cyandu > cy. If u =cy, then v # 0 since c¢iny # c3nz. Sou+v > c¢q. Then
t(S) > d((u, v, 0), (0,0, c3)), which by Lemma 12 equals u + v. Observe that
u+v>min{r +s | (r, s, 0) € Ry}. Therefore

t(S) > max{min{r +s | (r,5,0) € Ro}, c1} = ().

Now assume that S is uniquely presented. By Lemma 11, there exists one and
only one (r31,r32) € N? such that c3n3 = r3ing + rpns with 0 < r3; < ¢; and
0 < r3» < ¢, and consequently 3> < cj.

Take

n = (cy — r3)ny +c3n3 =r3ng +cng = (¢ +r3)ny.

Observe that n has just the three factorizations (0, ¢c; — 32, ¢3), (731, ¢z, 0) and
(c1 4+ 131, 0,0). To see this, assume to the contrary that there exists aj, az, a3 € N
such that n = ayn| + ayny + azns and

(a1, a2, a3) € {(0, c2 —r32, ¢3), (131, €2, 0), (r31 +¢1, 0, 0)}.

Since ayn| +azny +aszns = (c; +r3p)n;, we easily deduce that a; < ¢y +r31. Thus
arny +asnsy = (r3; + ¢y —ay)ny, so ¢y +r3; —aj > ¢y, and hence a; < r3; < cj.

o If ¢y —r3p < ap, from ayn| + axny + aznz = (¢y — r3p)ny + c3n3, we obtain
(c3—az)nzy=ain;+ (ay —cr+r3)ny > 0. Hence ¢3 —a3z > c3, or equivalently,
az <0, which forces az = 0. This implies c3n3 = ajn + (ay — ¢y +r3p)ns. As
Z(c3n3) = {c3es, r31e1 + ryez}, we get a, = ¢, which is impossible.

o If, instead, ay < ¢y — r3p, from ajn| + axny + azny = ryn; + cony, we
obtain asny = (r3; — aj)ny + (co — ax)ny and then az > c¢3. Then, from
ainy + axny + azny =(cor — r3p)ny + c3ns, it follows that (c; —r3p —ax)ny =
ain1+(az—c3)n3, whence cp—r3p—ay > ¢p; thatis, r3p+a, <0, a contradiction.

Hence we have Z(n) = {(0, ¢ —r32, ¢3), (31, ¢2, 0), (c1 + 131, 0, 0)}. Observe
that

t(n) > d((c1 4731, 0,0), (0, c2 —r32, €3)) = max{cy —r3p +¢3, 31 +c1} =r31+¢1

(because (r31+c1)ny = (c2—r3)nz2+c3n3 > (ca—r3)ni+c3ny = (¢ —rz+c3)ny,
which yields 31 + ¢ > ¢ —r32 + ¢3). Then t(n) > max{cy, r31 + 3.}, and hence
t(S) > t(n) > c(9). O
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Example 15. As an illustration, we offer a numerical semigroup of embedding
dimension three (n, ny, n3) that is a gluing of (ny, ny)/gcd(ny, ny) and N.

We make use of the GAP package numericalsgps to perform the calculations.
We try it with S = (4, 6, 7). Actually, we first started with S; = (2, 3) and S, =N,
and glued them together as S = (2 x 2,2 x 3,7 x 1); that is, A =2 and p =7 with
the notations of Section 2.3. The choices of A =2 and p = 7 are restricted by the
following facts: they must belong to S> and Sj, respectively, and cannot be minimal
generators; we also need n; < ny < ns.

gap> s:=NumericalSemigroup(4,6,7);
<Numerical semigroup with 3 generators>
gap> AsGluingOfNumericalSemigroups(s);
(ClC4,61, 07111

Now we compute a minimal presentation of § and the Betti elements of S.

gap> MinimalPresentationOfNumericalSemigroup(s);
ttcft2,1,01,[0,0,211, [03,0,01,[00,2,011]
gap> BettiElementsOfNumericalSemigroup(s) ;

[ 12, 14 ]

Finally, we see that c(S) < t(S).

gap> CatenaryDegreeOfNumericalSemigroup(s) ;
3

gap> TameDegreeOfNumericalSemigroup(s) ;

5

The case ciny # cany = c3ns. Observe that cony = c3ns forces ¢3 < ¢;.
Lemma 16. If cin| # cyny = c3ns, then c(S) = max{cy, c2}.

Proof. By Theorem 1, the catenary degree is reached in one of the two Betti
elements: Betti(S) = {cin1, cony = c3n3}. From Lemma 11, we have c(cony) =
max{c;, c3} = ¢3, and from Lemma 13, c(c;) = c;. So ¢(§) = max{cy, ¢2}. U

Proposition 17. Let S = (n, ny, n3) withny < ny < n3 and cijn| # cyny = c3ns.
If conp teiny, then t(S) > c(S).

Proof. From Lemma 16, we know that ¢(S) =max{cy, c;}. As before, we distinguish
two cases, depending on whether or not § is uniquely presented.

Assume first that S is uniquely presented. In light of Lemma 11, there exists
r12, r13 € N\ {0} such that Z(ciny) = {cie1, rines +rize3}, ri2 < cz and ry3 < ¢3
(thus r13 < ¢2). Set

n =ciny + (ca —rip)ny = cany +riznz = (c3 +ri3)n3.
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As in the proof of Proposition 14, we can see that
Z(n) ={(c1, c2—r12,0), (0, 2, 713), (0,0, c3 +r13)}.

Then t(n) > d((cl, c—r12,0), (0,0, c3 +F13)) =c1+cp—rp (since ¢y > rip+ri3
and ¢p > c¢3 imply ¢; 4+ ¢ — ry2 > c3 +r13). By observing that ¢; > rj, we get
c1—r12 >0, and then ¢y 4¢3 —r1p > ¢p. Also ry; < ¢ implies ¢; +c¢; —r12 > ¢1. So
t(n) > c1 4+cr —r1p > max{ci, 2} = ¢(S), and we conclude that t(S) > t(n) > c(S).
Now suppose S is not uniquely presented. From Lemma 11, we deduce that
there exists an expression cjn| = riany + ri3ns, and we have either rjp > ¢ or
r13 > c3. Without loss of generality suppose that ;3 > c¢3. If rjp > ¢y, we derive
ciny = (rip — ¢c2)ny + (r13 + ¢3)nsz. So we can assume, in addition, that ri; < c¢j.

Case 1: If r15 # 0, take n = (c3 + r13)n3. We prove that the only factorization with
nonzero first coordinate of n is (c1, co —r12, 0). Assume to the contrary that

(c3 +r13)n3 =cray + (c2 —rip)ny = ayny +axny +azns,

with ai, az,a3 € N, a; #0 and (ay, az, a3) # (c1,c3 —r12,0). Thenasz < c3+ry3
since otherwise ajn + axny + (a3 — ¢3 — ri3)n3 = 0, and this forces a; = 0, a
contradiction. Hence (c3 +r13 — az)nz = ajn; +an,, and thus ¢3 +ri3 —az > c3,
or equivalently, ;3 > a3. Thus c3n3 + (r;3 — asz)ns = ajn + apny, which leads
to cony + (ri3 — as)ns = ayng + apny. Since rjp # 0, we derive a; < ¢ because
otherwise (cp —ri2)ny = (a; — cy)ny + axny + asns, and this either leads to a; = ¢y,
ap = ¢y —r12 and az = 0, which is impossible, or contradicts the minimality of c;.
As cyny + (ri3 — az)ns = ajn; + axny and a; < ¢, we have a; > ¢,. Hence
(r13 —asz)n3 = ain + (ap — c2)ny. This again leads to rj» — a3z > c3. We can repeat
the process and obtain (ry3 —az —kc3)nz = an; + (ax — (k+1)co)n;y for all k e N,
which leads also to a contradiction.
Now, we have that

t(n) >d((0, 0, c34r13), (c1, c2—r12,0)) =max{c3+ri3, ci+c2—rip} =c1+c2—rin

because (c3+r13)n3 =ciny +(c2 —ri2)nz < cinz+(c2 —rip)nz = (¢ +c2 —ri2)n;3.
Thus this distance is greater than both ¢ and c,. In fact, ¢; + ¢y —r1» > c; follows
easily from ¢y > ry2, and ¢y +c» — 12 > ¢; follows from ¢ > rj» +r;3 (Lemma 16).

Case 2: If r;p = 0, then c;n; = ri3n3, so we get the inequalities ¢3 < r13 < cj.
Take h = min{m € N | mc3 > ri3} (h > 2) and let us consider n = hcsns. Clearly,
{(0,0, hc3), (1,0, hes —r13), (0, hea, 0)} € Z(n). We prove that the only factor-
ization of n with nonzero first coordinate is (cy, 0, hcy — r13).

To see this, notice that the minimality of 4 forces hcsz — r3 < ¢3 since otherwise
(h—1)c3 > ry3. Also hes — ri3 = c3 implies that (h — 1)c3 = ry3, and consequently
ciny =ry3n3 = (h—1)c3nz = (h—1)cyn,, which means that con; | cyny, contradicting
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the hypothesis. Hence hcy — r13 < ¢3. Assume that there is another expression
of the form n = hcans = ayny 4+ axny 4+ azns with a; # 0. We can assume that
a, < ¢, because otherwise (ap, a; — ¢2, az + c3) is another factorization of n, and
we can repeat this procedure until the second coordinate is less than ¢;. Thus
(hez —ri3)n3 +ciny = ajny + azxny 4+ azns.

e If a3 > hcy—ry3, then cyny =ajny +axny + (a3 +ri3 —hes)ns. The minimality
of ¢y forces a; > ¢y, and consequently (a; —ci)n1+axnr+(az+riz—hc3)ny =0.
This can only happen if (a1, az, az) = (c1, 0, hc3 — r13), a contradiction.

o Ifay <hcs—ry3, then (hes—ri3—az)ns+ciny =ajny+axn,. Ashey—ri3 <cs,
it follows that ¢; > ay, and thus (hcz —ri3 —az)ns + (¢ —ay)n; = axn,. But
this forces a, = 0 since otherwise a, > ¢, contradicting the choice of aj.
Again we obtain (ay, az, a3) = (c1, 0, hes —r13).

Since hcz > ri3 and hey > ¢p, we have
t(S) = d((Cl, 0’ hC3 - r13)’ (07 hcz’ O))
= max{c; + hcy — r13, hcp} > max{cy, ¢} = c(S). O
Example 18. We use the same idea of Example 15. Here we need a gluing of N and

(na, n3)/gcd(no, n3). We start again with N and (2, 3). As we need n; < np < ns,
we choose, for example, A = 5 and u = 4, obtaining S = (5, 8, 12).

gap> s:=NumericalSemigroup(5,8,12);;

gap> AsGluingOfNumericalSemigroups(s);

tfctsl, 8,121 1]
The minimal presentation and Betti elements of S are

gap> MinimalPresentationOfNumericalSemigroup(s);

tftcto,3 01, 00,0,211,[[4,0,01,[00,1,111]1
gap> BettiElementsOfNumericalSemigroup(s);

[ 20, 24 ]

Finally, we check that indeed c(S) < t(S).

gap> CatenaryDegreeOfNumericalSemigroup(s) ;
4

gap> TameDegreeOfNumericalSemigroup(s);

6

Proposition 19. Let S = (ny, ny, n3) withny < ny < n3 and cin| # cony = c3n3.
If cony | ciny, then t(S) = c(S).

Proof. Since cyny | ciny and cyny # ciny, we deduce that ¢in; = kcyny for some
integer k > 1.
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We start by proving that Betti(S) = Prim(S) N NC(S). Assume that there exists
n € (Prim(S) NNC(S)) \ Betti(S). Then, for some permutation (i, j, k) of (1,2, 3)
and some a;, a;, ay € Nwitha; >0and a;+ay > 2, we have n =a;n; =ajnj+any
and a;e; +ajej3+arerss € I,(S). We distinguish three cases depending on i.

Case 1:If i =1, then n = any = apny+azns. Hence a; > ¢, and since n ¢ Betti(S),
aj > c1. This implies that

n=ain; = (a1 —cy)ni +ciny = (a1 —cp)ny + (k — 1)cona +c3ny,

and consequently the graph associated to n is complete, a contradiction.

Case 2: If i =2, then n = ayny = ajny + azns. As above, we deduce that ap > ¢».
Hence n = ayny = (ay — c2)ny + can3 = ajn| + asnsz, and in particular the edge
npns3 is in the graph associated to 7.

Assume that a3 > c3. Then (a; —cp)ny = ajn; + (a3 —c3)nsz. But this implies that
(a1,0,a3 —c3,0,a2 —c2,0) < (a1, 0, a3, 0, az, 0), contradicting that n € Prim(S).
Thus, as < c3, and then (a; — c2)ny 4 (¢3 — az)nz = ajn;. The minimality of ¢
leads to a; > c;. If a; = ¢y, then axny = kcyny + asnsz. The fact that az < ¢3
forces kcy > ay. But then, 0 = (kcy — az)no + aznz which implies that az = 0, and
consequently n = cjn; € Betti(S), a contradiction. It follows that a; > ¢;. We
conclude that

n=ayny =an| +asznz = (a; —cy)n + kcyny + aszns
= (a1 —c1)ny + (kez +az)ns,
and thus the graph associated to n is complete.
Case 3: The case i = 3 is analogous to the previous one.

Hence t(S) = max{t(ciny), t(cyny)}. We already know that Z(cono) = {coez, c3es},
and then t(cyny) = ¢. Also every factorization of c¢in; is either cje; or some
xep + yes with x + y < cy. It follows that t(c;n1) = c;. We conclude the proof by
using Lemma 16. O

Example 20. We use once more S; =N and S, = (2, 3). We need cony | cjny. We
choose A =12 and u = 7, obtaining S = (12, 14, 21).

gap> s:=NumericalSemigroup(12,14,21);;

gap> AsGluingOfNumericalSemigroups(s);

(fCf121, [ 14,2111, [ [12, 14 ], [ 211] 1,
(012,211, [ 141 1]

gap> MinimalPresentationOfNumericalSemigroup(s);

rtcto,3 01,00,0,2171, [[7,0,01,[0,0,411]1

gap> BettiElementsOfNumericalSemigroup(s);

[ 42, 84 ]



690 PEDRO A. GARCIA-SANCHEZ AND CATERINA VIOLA

Thus ¢cin; =7 x 12 =22 x 3 x 7, which is a multiple of cony =3 x14=2x3 x 7.
We check that the tame and catenary degrees agree in this case.

gap> CatenaryDegreeOfNumericalSemigroup(s);
7

gap> TameDegreeOfNumericalSemigroup(s);

7

The case ciny = c3n3 # cony.

Proposition 21. Let S = (ny, ny, n3) withny; < ny < n3 and cijn) = c3n3 7# cyny.
Then c(S) < t(S).

Proof. The catenary degree is reached in one of the two Betti elements, Betti(S) =
{ciny, cana}.

We know that c(c;n1) = c¢; and that Z(cpn,) has just two R-classes, say R =
{(0, c2,0)} and Ry, = Z(cpno) \ Ry (Lemma 11). Take (r31, 0, r23) € R, such that
1 +rp3 =min{r+s | (r,0, s) € Ry}. Hence, c(cony) = max{cy, r1 +r23}. So we
can conclude that ¢(S) = max{cy, ¢2, 21 + 23} (Theorem 1).

Since cany = rpy1n + raznz > razny, we have ry3 < ¢;. Moreover, ¢; > c¢3, and
so if ro; > ¢y, we have ry1ny +rasns = (ry1 —cy)ny + (r3 +¢3)ns, with ry1 +r23 >
r21 + 123 + ¢3 — c1, contradicting the minimality of ry; + ro3. Therefore, rp; < c;.

We distinguish two cases.

Case 1:If rp; #0, thentake n = (¢| — rp1)n| + cony = ciny + r3nz = (c3 + ra3)n;.
We prove that the only factorization of n with nonzero second coordinate is
(c1 — a1, ¢3,0). Assume that there exists (ai, az, az) € Z(n) \ {(c; — 21, ¢2, 0)}
with ap # 0. Since ajn + axny + aznz = (c3 + rp3)n3, we can easily deduce that
az < c¢3+ry3. Thus ayny + axny = (c3 + ro3 — as)ns, so ¢3 + ry3 —az > c3, and
hence a3 < rp3.

If ci — ry1 < ay, from ajny + ayny + azny = (¢1 — ra1)ny + cany, we obtain
(co —ax)ny = (a; — ¢y +ra)ny +aznz > 0. Hence ¢y — ay > ¢, or equivalently
a < 0, which forces a, = 0.

If, instead, a; < ¢i — ray, from ayn| + axno + azny = cyny + ryznz, we obtain
arny = (ry3 —az)nz + (¢c; —ay)ny, and then a, > ¢p. From ayny + ayny + aznz =
(c1 — ra1)ny + cany, it follows that (cy — rp1 — ap)ny = (ap — cz)ny + aznsz. Thus,
c1 —ry —ay =cy, thatis, 1 +a; <0, and then a; = r,; = 0, a contradiction.

Hence, t(n) > d((Cl —r1,c2,0), (0,0, c3 +r23)) =max{c| —rp1+c3, c3+r33}=
c1 — 121 + ¢, since (c3 +rp3)n3 = (1 —ra1)ny +cny < (c1 —r21 +c2)n3.

Now we have

e c1 — 11 + o > ¢ since (cp — rp)ny > cyng — rpny = rpznz > 0 implies
Cy) —121 > 0;

e ¢l —1p1 + ¢ > ¢y since rp > cy;
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e c1 — 11+ ¢y >y + 13 since ¢ > rp and (¢p — rap)ny > cong — ry 1 =
ry3ns3 > ryzny 1mphes Cy — 121 > 3.

So we finally have that
t($) = d((c1 — 21, €2, 0), (0,0, c3 +r23)) > max{cy, ¢z, ra1 +r23} = ().

Case 2: If r,1 =0, then cony = ro3ns, so we deduce the inequalities ¢3 < 23 < ¢».
Take h = min{m | mc3 > rr3} (h > 2) and let us consider n = hczns. It follows that

{(0,0, he3), (0, ¢z, hez —rp3), (hey, 0,00} C Z(n).

Arguing as in Proposition 17, we can prove that the only possible factorizations
with nonzero second coordinate are (0, ¢, hc3 —r23) and (¢, ¢z, 0) (this one occurs
only if hC3 — I3 = 6‘3).

So we have

* d((0, c2, hez—r23), (hey, 0, 0)) =max{ca+hc3—ra3, hey} > max{cy, ¢z, rp3} =
max{cy, ca} = c(S) since hcz > rr3 and hey > cq;

e if he3 —rp3 = ¢3, then cony = (h — 1)cny, and consequently (b — 1)c; > ¢
and & — 1 > 1 (recall that cony # cyny), whence

d((c1, ¢2,0), (hcy, 0,0)) =max{(h — 1)cq, c2} > c(S).

We conclude that t(S) > c(S5). O

Example 22. As in the preceding example we start with S; =N and S = (2, 3).
We need n| < ny < n3, thatis 2u < A < 3u. For the first case of the proof of
Proposition 21 (rp; # 0), we choose A =5 and pu = 2.

gap> s:=NumericalSemigroup(4,5,6);;

gap> AsGluingOfNumericalSemigroups(s);
(ClC4,61, [5]11]

gap> MinimalPresentationOfNumericalSemigroup(s);
tcfto,2,01,01,0,1171,[[3,0,01,[0,0,2711]1
gap> BettiElementsOfNumericalSemigroup(s);

[ 10, 12 ]

gap> CatenaryDegreeOfNumericalSemigroup(s);

3

gap> TameDegreeOfNumericalSemigroup(s);

4

For the second case, rp; =0, we choose A =18 and u =7.

gap> s:=NumericalSemigroup(14,18,21);;
gap> AsGluingOfNumericalSemigroups(s);
(0C14], 018, 21]], [ [14,18], [21]]1],
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(014,211, [18]11]
gap> MinimalPresentationOfNumericalSemigroup(s);
ttcto,o0,61,00,7,011, [[3 0,01, [0,0,2711]1
gap> BettiElementsOfNumericalSemigroup(s);

[ 42, 126 ]

gap> CatenaryDegreeOfNumericalSemigroup(s) ;
7

gap> TameDegreeOfNumericalSemigroup(s);

9

3.2. When S has a single Betti element. Numerical semigroups having a single
Betti element are fully characterized in [Garcia Sanchez et al. 2013, Theorem 12].
The following proposition is a particular instance of [loc. cit., Theorem 19]; we
include it here for sake of completeness.

Proposition 23. Let S = (ny, ny, n3) withn; < ny < n3 and cyn; = cpny = c3ns.
Then c(S) = t(S).

Proof. Take h = cyn| = cyny = cans3. The catenary degree of S is reached in one of
the Betti elements; since in our case Betti(S) = {c1n| = cony = can3 = h}, we get
c(S) = c(h) = max{cy, ¢z, c3} = c1.

We know that the tame degree is reached in some n € Prim(S) NNC(S). Since
we have that Betti(S) C Prim(S§) NNC(S) and t(h) = max{cy, ¢2, ¢3} = ¢y, in order
to prove that c(S) = t(S), we show that Betti(S) = Prim(S§) N NC(S). To this
end, take n € (Prim($) NNC(S)) \ Betti(S). So n = a;n; = a;jn; + axny for some
{i, j, k} = {1, 2, 3}. It follows that a@; > ¢; and, since n ¢ Betti(S), we have a; # c;.
So a; > ¢;. Then we have two cases:

o Ifaja; #0, then n ¢ NC(S) because n = (a; —c¢;)n;+cjn; = (a; —c;)n; +ciny,
and consequently G, is a triangle.

o Ifa; =0, then a; > ¢, so we get (ax —cp)ni+cjnj =a;n; = (a; —c;)n; +cing,
and then G, is a triangle.

In any case we get a contradiction. U

Example 24. If we want cin| = cyny = c3ns, according to [Garcia Sanchez et al.
2013, Theorem 12], we need three pairwise coprime integers greater than one, and
then we need to take all of the products of any two of them. The easiest example is
2,3,5, andthusn; =2 x3,np=2x5and n3 =3 x 5.

gap> s:=NumericalSemigroup(6,10,15);

<Numerical semigroup with 3 generators>

gap> AsGluingOfNumericalSemigroups(s);
(ftrfel, [10,15611]1,C[e6,10]1, [1561]1],
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(06,151, [10]11]
gap> BettiElementsOfNumericalSemigroup(s);
[ 30 1]
gap> MinimalPresentationOfNumericalSemigroup(s);
ttfs,o0,01,[0,0,211, [[5,0,01, [0,3,011]1]
gap> CatenaryDegreeOfNumericalSemigroup(s);
5
gap> TameDegree0fNumericalSemigroup(s);
5

4. Main result

Gathering the results from the previous section, we obtain the following theorem.

Theorem 25. Let S be a numerical semigroup of embedding dimension three mini-
mally generated by {ny, ny, n3}. Forevery {i, j, k} = {1, 2, 3}, define

¢; =min{k € N\ {0} | kn; € (n;, ny)}.
Then c(S) = t(S) if and only if
o cither # Betti(S) # 2,

e or c1n| # cany = c3ng and cyny divides ciny.
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Cylindrical liquid bridges
Lamont Colter and Ray Treinen

(Communicated by Frank Morgan)

We consider a cylindrical liquid bridge under capillary effects, spanning two
horizontal plates and further bounded by a pair of parallel vertical planes. We
explicitly formulate the volume-constrained problem and describe a numerical
procedure for approximating the solution. Finally, a problem of finding the
minimum spanning volume is considered.

1. Introduction

We consider a fluid trapped between two horizontal plates Py, Py, and further
bounded by two parallel vertical planes Iy, [1;. Define the distance between Py
and P, to be h, and that between Il and IT; to be d. We orient a coordinate
system (x, y, z) so that Py is given by z =0 and Py, is given by z = h, while Il is
given by y =0 and I, is given by y = d. We assume that the fluid is connected
and any wetted portions of the plates are simply connected. The fluid then has a
free interface A bounding a volume in the x-direction, and we denote the enclosed
volume by V. For an example, see Figure 1, where we have not drawn I1g or I1,.

We consider dominant energies due to surface tension, wetting energy and
gravitational potential energy. This gives the energy functional

6[A]=aA[A]—aﬂW[A]+/ pgzdz, (D
%

where o is the (constant) surface tension, j is the wetting coefficient, taken to be
constant on each plate, p is the uniform fluid density, and g is the gravitational
constant. Further, A is the area functional for the free-surface, and WV is the area
functional for the wetted portions of Py, Py, [1g and I1,.

It is well known that the first variation for this functional implies

2H = ku — A, )
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Figure 1. A cylindrical bridge.

where H is the mean curvature of A, u is the height of the interface, the capillary
constant is k = pg /o, and we have included a Lagrange multiplier A. It may also be
derived that 8 = cos y for a contact angle y measured within the fluid. The standard
reference is a manuscript by Finn [1986]. In what follows we do not assume that
the interface is a graph over a base domain, though we do restrict our attention to
the physical case where the interface is embedded. See Theorem 2.1 for details on
how we interpret (2).

We make the assumption that 8 = 0 on I1p and I1,. This implies a contact angle
of 7 /2 along the intersection of A with those planes. As we shall see in Section 2,
this also implies that the free-surface is generated by curves in the plane Iy and is
extended as a right cylinder. See Figure 2 for an example of the generating curves,
where 8/2 denotes the value of the horizontal displacement of the fluid interface
on Py. On the plates Py and P, we allow the constant 8 to differ at heights 0 and &
and to be any number in [—1, 1]. This corresponds to contact angles along the
intersection of A with those plates, which we will denote by yy and y;, respectively.

In Section 3, we derive a formula for the enclosed volume in terms of the solution
to a version of the differential equation (2) when the fluid remains connected. Then
we give an algorithm for computing the interface A with a volume constraint in

Vi Volume V

Yo
—5/2 8/2

Figure 2. A liquid bridge.
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Section 4. We use this algorithm to give a numerical approximation of A for
different parameters 4, yp, y», and volume V. Next, in Section 5, we present a
collection of examples. Finally, we explore the minimum spanning volume for
(vo, ¥n) €10, /2] x [0, /2] in Section 6.

As far as we have been able to determine, this is the first exploration of liquid
bridges of this type. Three dimensional liquid bridge problems have been studied
by Athanassenas [1992]; Concus, Finn and McCuan [Concus et al. 2001]; Finn
and Vogel [1992]; and Vogel [1982; 1987; 1989; 2005; 2006; 2013]. In recent
work there is a trend to study the lower dimensional versions of certain related fluid
mechanics problems. We point to papers by Bhatnagar and Finn [2006], as well as
by McCuan and Treinen [2013; > 2015], and Wente [2006] for examples of this
approach. In particular, we mention a paper by McCuan [2013] as a model for the
present approach.

2. Symmetries

There are two types of symmetries in the fluid configurations. The first is the
cylindrical symmetry that allows us to restrict our attention to the generating curves
in the I plane. The second is a reflective symmetry about the plane x = 0.

An Alexandrov moving plane argument has been successful in establishing sym-
metry properties for similar fluid configurations. See Wente [1980], Treinen [2012],
and McCuan [2013]. The following is a direct consequence of first using those
methods with a moving plane parallel to I1p, then a second argument using those
methods with a moving plane parallel to x = 0 can be used to show symmetry
about x = 0. The details are left to the interested reader.

Theorem 2.1. The interface A is right-cylindrically symmetric with generating
curves restricted to the plane Iy. The generating curves satisfy

i cos ¥, 3)
du .

g = sin v, @)
dyp

g = ku A, ®))

and it suffices to compute one generating curve where x > 0.

Note that then the distance d is not important to our consideration, and hence we
can view our problem in this reduced dimensional setting, or as extending infinitely
in a horizontal direction. With this perspective, we normalize so that d = 1 so
that we are considering volume per unit distance in the y-direction. The solution
may be extended infinitely in both y-directions and be seen as an infinitely long
liquid bridge between two horizontal plates generated by the curves in I1y. The
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solution may also interpreted as a lower dimensional problem, where the interfaces
are reduced to curves in the plane Iy, spanning a volume that is more properly seen
as an area in I1g. This last interpretation is the easiest way to visualize the results of
our computations, and so is our default for figures, even while we continue to use the
terminology of volume and area, and we use them in the sense of per unit distance d.

3. Computing the fluid volume
Consider solutions to (3)—(5) with the boundary conditions

siny(0) =cosyy ats =0, where u(0) =0, (6)
sinyy(£) =cosy, ats=4{, where u(f) =h. @)

Solutions to this two-point boundary value problem will determine a value of x(0),
which we denote by /2. We will later use this as a parameter in the process of
constructing approximate solutions, but it is immediately useful in determining a
volume formula as follows.

Theorem 3.1. The volume enclosed by the upper plate, lower plate, and the fluid-air
interface given by area per unit distance in the y-direction satisfies

V:(h—k)(x([)—%)—i—sinyo—sinyh, ®)

where the solutions x, u, and  are parametrized by arc length s, with s = 0 at
height u =0 and s = £ at height u = h.

Proof. We find the volume of the enclosed fluid by computing the right half of the
volume. The geometric idea is to start with a rectangle with height 4 and width 6/2,
and then add to it the additional volume outside this region. The first configuration
is illustrated in Figure 3. This configuration contains a vertical point given by (x, u),
and this partitions the volume outside of the rectangle into two regions. The lower

7777777 --u

YRR

Figure 3. The configuration used in the volume computation, with
only the portion x > 0 shown. Here x = x and u = u, and the plate
heights are 0 and h.
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X 52 X 5/2

Figure 4. Two volume configurations. Here x = x and u = i, and
plate heights are 0 and /.

region is bounded by 4/2 on the left, u = u above, and the fluid interface on the
right. The upper region is bounded by x = x(£) on the left, u = u below, and
the fluid interface on the right. Added to this upper region is a second, smaller,
rectangle of height 7 — i and width x(¢) — §/2. So, we calculate using equations
(3)—(5) and integration by parts as follows:

V=/x(ﬁ—u)dx+/x (u—ﬁ)dx—i—(x(ﬁ)—%)(h—ﬁ) 9)
5/2 x(0)

VAR _ 8 _ ¥ T
:u(x—§+x(z)—x)+(x(z)_5)(h—u)+/x(€)udx—/5/2udx (10)
:h(x(ﬁ)—§)+ﬁ(0)+/x udx—/x udx 1)

2 x() 52

_ 8\, [T (v _[T(dv
_h<x(£) 2)+/x<e)<ds +k)dx /5/2<ds +,\)dx (12)

o N, [Ty, [Tav
—(h A)(x(ﬁ) 2)+/x(£) L dx /8/2 Vo dx (13)

s /2 /2
:(h—k)(x(ﬁ)—z)—l—/ coswdxﬁ—/ cos ¥ dir (14)

Yh—TC —Y0
=(h—x)<x(e)—g)+siny0—sinyh. (15)

There are multiple possible configurations; however, it suffices to adapt the above
calculation to these remaining cases:

e x(s) <6/2for0<s < £ and x(£) < §/2. See Figure 4 (left).

e x(s5) < §/2 for some initial s > 0, and then x (s) increases and x(£) > &/2. See
Figure 4 (right).
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8/2 X x /2

Figure 5. Two remaining volume configurations. Here x = x and
u = u, and plate heights are 0 and A.

e x(s) > §/2 for some initial s > 0, and then x(s) decreases and x(£) < §/2.
See Figure 5 (left).

o There is no vertical point on the interface profile curve. There are many
such configurations; see Figure 5 (right) for a typical example. The volume
computation is straightforward in these cases, only requiring use of (3)—(5). [

4. Numerical solver

We use a shooting method to solve the two-point boundary value problem of (3)—(5)
with boundary conditions (6) and (7). We implement this by nesting two algorithms,
namely an inner implementation of an adaptive Runge—Kutta—Felberg method and
an outer implementation of a multidimensional root finder.

Values for the initial and terminal contact angles yy, ¥, volume V, and height &
are prescribed for the desired solution. The lower conditions for the boundary value
problem are

=3, (16)
u(0) =0, a7
V) =, (18)

where the tangent to the curve forms the contact angle yp with the lower plate, and
the upper boundary conditions are

ul) =h, (19)
V() =—vn, (20)

where the ending arc length € is chosen to terminate at height # with the tangent to
the curve forming the angle y;, with the upper parallel plate.
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Figure 6. A liquid bridge with contact angle 77 /2 on the upper plate.

Again, the boundary value problem is solved using a shooting method based
on an adaptive ODE solver. The solver uses the adaptive Runge—Kutta—Felberg
method for 4th and 5th order, implemented by Matlab as ODE45. The absolute
and relative tolerances were both set to le — 8. To begin to solve the problem,
reasonable guesses are given for the free parameters: the distance between the
generating curves 8, the ending arc length ¢, and the Lagrange multiplier A. These
values are used to generate candidates satisfying the ODE. Then the solutions to
(3)—(5) with these values of the free parameters are used to evaluate the equations

V—V(#) =0, (21)
h—u(t) =0, (22)
vn— ¥ (6) =0, (23)

which are not, in general, solved. The parameters §, £, and A are adjusted in the
multidimensional root finder implemented in Matlab as FSOLVE, which defaults to a
trust region method. The tolerances for this portion of the algorithm were set to 1e—6.
We recompute the solutions to (3)—(5) with new values of the parameters §, £, and A
at each step, until (21)—(23) are satisfied to the prescribed tolerance.

5. Examples

We present some examples of note generated with the algorithm described in the
previous section. In Figure 2 we saw a typical example of a configuration where
Y0, Y € [0, %] Figure 6 shows a configuration where y;, = 7 /2, and Figure 7
shows a configuration where both yg, y, > /2. If the volume does not span the
gap between Py and Py, then it will rest on the plate Py as a sessile drop. We see in
Figure 8 a configuration where (yp, y,) = (2.57, 1.05), which appears to be close
to the maximum height . before the liquid bridge pinches off of the upper plate Py
and becomes a sessile drop.
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Figure 8. A liquid bridge that is visually similar to a sessile drop.

6. Minimum spanning volume

Consider configurations where the contact angles y, and y;, are both less than /2.
The phenomenon explored is the minimum volume which admits a solution spanning
the two plates Pp and Pj. In Figure 9 we see that for angles (o, y1,) = (0.99, 0) and
a particular volume, we have a point on the interior of the fluid interface on the right
that touches a corresponding point on the interior of the fluid interface on the left.

-0.21
-0.5 0 0.5

X

Figure 9. A liquid bridge with interfaces touching on the interior.
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minimum volume

Figure 10. The minimum spanning volume over a grid of 50 x 50
samples in the (yy, yn)-space.

This is clearly nonphysical and represents an absolute minimum spanning volume.
It is apparent that this contact between the left and right interfaces occurs on either
Py or Py if either yy > /2 or y;, > /2. Therefore, we restrict our attention to
the region 0 < yp < 7w /2 and 0 < y, < /2. We seek a minimum volume where
x(s) =0 for some s € [0, £].

Observe the crucial fact of the system (3)—(5) that

M=Ku—k

ds

is independent of x, and so the x solution may be translated by a constant. We
are able to use this to some degree to adjust the volume spanned. If the left and
right interfaces are rigidly moved apart in the x-direction, then the spanned volume
increases while still solving the boundary value problem, and conversely, if they are
rigidly moved together, they will eventually touch. At this point there exists an arc
length s such that x(s) = O for both the left and right portions of the configuration.
We are able to use this idea in conjunction with our previous solver to obtain the min-
imum spanning volume at a fixed height 4 for a given pair of contact angles (yy, ¥).

We use the following algorithm to run over a grid of 50 x 50 samples in the
(v0, Yn)-space. We solve the constrained boundary value problem similar to the
method in Section 4, however, we replace the condition

Y—-VK)=0
with
x(s)=0 for some s € [0, £]. (24)

The results are collected in Figure 10. Here it is worth noting that the examples from
Figure 11 are generated from interesting points on the minimum spanning volume
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Figure 11. Left: The minimum spanning volume. Here (yy, 1) &
(%, 1.35). Right: A very small spanning volume, but not the
minimum spanning volume. Here (yp, ;) = (%, %)

surface. The minimum spanning volume on the left is actually the minimum volume
of all the contact angle pairs, and perhaps surprisingly, it is not the (7 /2, 7w /2) case
(which is pictured on the right).
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Some projective distance inequalities
for simplices in complex projective space

Mark Fincher, Heather Olney and William Cherry

(Communicated by Michael Dorff)

We prove inequalities relating the absolute value of the determinant of n + 1
linearly independent unit vectors in C"*! and the projective distances from the ver-
tices to the hyperplanes containing the opposite faces of the simplices in complex
projective n-space whose vertices or faces are determined by the given vectors.

A basis of unit vectors in C"*! determines the vertices (or the faces) of a simplex
in n-dimensional complex projective space. For reasons originally motivated by an
inequality in complex function theory proven by Cherry and Eremenko [2011], we
investigated the relationship between the determinant of the vectors forming the
basis and the projective distances from each vertex of the simplex to the hyperplane
containing the face of the opposite side. We show that if dpi, denotes the minimum
of these projective distances and if D denotes the determinant of the basis vectors,
thendf. < |D| < dpyin.

Let e, . .., e, be a basis for C"*!. Given two vectors @ = apeg + - - - +ane, and
b=byey+---+bye, in C"T!, we use a - b to denote the standard dot product,

a-b=apby+---+ayb,,

rather than the Hermitian inner product more typically used with complex vector
spaces. Thus, in our notation,

2 -

|

la|"=a-a,

where the bar denotes complex conjugation, as usual.
Fork=1,...,n+1, we let A“C"*! denote the k-th exterior power of the vector
space C"*!, and we recall that

eQNCIN - Nek—_1, ..., € NeH N N€,, ..., Eeurl—Neyt2_[/N\: - -Ney,

MSC2010: primary 51N15; secondary 32Q45.
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where 0 <i| <iy < --- < iy <n form a basis for AKC"*!, By declaring this basis
to be orthonormal in A¥C"*!, the norm and dot product on C"*! extend to a norm
and inner product on AKC"*!. For a detailed introduction to exterior algebras and
wedge products, see [Bowen and Wang 1976].

Proposition 1. Let 1 <k <n+ 1 be an integer, and let vy, ..., vy and wy, ..., Wy
be vectors in C". Then,

(v] ANCREWAN vk) . (w1 ANEREWAN wk) = det(vi . wj)lil-,jik.
Remark. The matrix of dot products on the right is called a Gramian matrix.

Proof. This is Exercise 39.3 in [Bowen and Wang 1976]. (]

Corollary 2. Let vy, ..., vy be k vectors in C*t!. Then,
[or A= Avg|? = det(v; - D)) 1<i, j<k-

Corollary 3. Let vy, ..., v be k vectors in C*t'. Then,

lor A A o] < oy o]

Equality holds if and only if one of the vectors is the zero vector or if v; - v; =0 for
alli # j.

Proof. 1f any of the vectors v; are the zero vector, then the inequality is obvious.
So, assume that none of the v; are zero. Let

v
uj= —L
lv;]
be unit vectors in the directions of the v;. Then, clearly,
[or A A vl = [ oy A Afvoglug = Tor] - ok lug A A
Thus, it suffices to show that |u; A --- Aug| < 1. To this end, by Corollary 2,
luy A Aug)? = det(u; ). (1)

The matrix (u; - u;) is a k x k Hermitian matrix with nonnegative eigenvalues
A1, ..., Ak. Thus, by the geometric-arithmetic mean inequality,

M4 a\E

where the equality on the right follows from the fact that
A+ o+ A =Trace(u; -u;) =k,

since u; -u; = 1.
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Equality holds in the arithmetic-geometric mean inequality if and only if all
the eigenvalues are equal, and hence all equal to one. This is the case if and only
if (u;-u;) is the k x k identity matrix, which happens if and only if v; -v; =0
foralli # j. (I

We will be most interested in the n-th exterior power of C"*!, where
elN---Nep, ..., €N---Nej_1N€j 1N - -Ney, ..., €yN---Ney_|

form a basis of A"C"*!. Let L denote the isometric isomorphism from A"C"*!
to C"*! defined on the basis vectors as follows:

L(el/\---/\e,,)=e0,

LegA---Aej_1Aneji1A---Aey) = (—1)e;,

LegN---Ne_1) =(—1)"e,.

Observe that if n = 2 and a and b are vectors in C>, then L(a A b) = a x b, where
the product on the right is the ordinary cross product in C3.
We will use L(b; A --- Aby) as a generalized cross product.

Proposition 4. Leta, by, ..., b, be n+ 1 vectors in C**'. Then,
det(a, by, ...,b,) =a-L(biA---Ab,).

Proof. If we compute the determinant of the (n+ 1) x (n+ 1) matrix whose rows are
a, by, ..., b,, then the expression on the right is nothing other than the computation
of the determinant by expansion of minors along the first row. O

Corollary 5. The vector L(by A --- A'by,) is orthogonal to each of the b;.

We define an equivalence relation on C"**!\ {0} by declaring that two nonzero
vectors v and w in C"*! are equivalent if there exists a nonzero complex scalar ¢
such that v = cw. The set of all such equivalence classes is denoted by CP"
and is called the complex projective space of dimension n. A point in CP" is
an equivalence class of vectors in C"*! and by the definition of the equivalence
relation, we can always represent a point in CP" by a unit vector in C**!. The set
of equivalence classes associated with the vectors in a kK + 1 dimensional subspace
of C"*! is a k-dimensional subspace of CP". When k = n — 1, such a subspace
is called a hyperplane in CP". We say that n + 1 points in CP" are in general
position if they are not all contained in any one hyperplane. This is equivalent to
the vectors representing the points being linearly independent in C"*!. Similarly,
we say that n + 1 hyperplanes in CP" are in general position if there is no point in
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CP" contained in all the hyperplanes. Note that a nonzero vector v in C**! can
be thought of as representing a hyperplane where the points in the hyperplane are
represented by the vectors x in C"*! such that v-x = 0.

If v and w are two unit vectors in C"*! representing points in CP", then the
Fubini—Study distance between the two points is defined to be |v A w|. Now let u
and v be unit vectors in C"*!. We think of u as representing a point in CP" and v
as representing a hyperplane in CP". Then, the Fubini-Study distance from the
point represented by u to the hyperplane represented by v is defined by

distance from the point u to the hyperplane v
= min{distance fromu to x : v-x =0 and |x| =1}
=min{lu Anx|:v-x=0and x| =1}

Second perhaps only to hyperbolic geometry, projective geometry, which arose
out of the study of perspective in classical painting, is among the most ubiquitous
of the non-Euclidean geometries encountered in modern mathematics. See, for
instance, [Richter-Gebert 2011] for a recent accessible introduction.

Our first result is a convenient formula for the distance from a vertex of a
projective simplex to the hyperplane determined by the opposite face in the simplex.

Proposition 6. Leta, by, ..., b, be n+ 1 linearly independent unit vectors in crt!
representing n + 1 points in general position in CP". Then, the Fubini—Study
distance d from the point a to the hyperplane in CP" spanned by by, ..., b, is

given by
g | det(a, by, ..., b,)]
by A---AD,|
Proof. Without loss of generality, by making an orthogonal change of coordinates,
we may choose our standard basis vectors ey, . .., e, in C"t so that eg- b ;=0 for
j=1,...,n. Let u be a unit vector in the span of {by, ..., b,}. Then,

Uu=uie;+--+upe,, with |uj]>+--+|u,>=1.

Let a = apey + - - - + aye,. Then, the Fubini-Study distance from the point in CP"
represented by a to the point in CP" represented by u is given by |a A u|. Note that

aru=aouiegANey+---+aou,eyg Ne,+ E (ajuj —aju;)e; Nej.  (2)
1<i<j<n

Hence,

la Aul® > |agui|* + -+ lagun |* = laol*(Jur > + - - - + [un*) = laol*.  (3)
Now,
det(a, by,...,b,)=a-L(byA---Ab,)
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by Proposition 4. Of course, L(by A- - - Ab,) is orthogonal to each of the b;. By our
choice of basis, ey is also orthogonal to each of the b;. Since the b; form a set of n
linearly independent vectors in an (n+1)-dimensional vector space, there is only
one direction simultaneously orthogonal to all of the b;. Thus, L(by A--- A b,) is
in the span of ey, and so

la-L(bi A---Aby)|=lagl - LBy A---Aby)l.
Thus, observing that
LBy A Abp)| =By A Abyl,

we see from (3) that
lao| - [L(by A -+ Aby)|

la Au| > |ag| = b A A D]
la-L(byA---Aby)|

- by A---Ab,]
_|det(a, by, ..., by)|
by A---AD,

To complete the proof, we need to show that equality is obtained for some choice
of u. There are two cases. If a is the direction of eg, then equality holds for any
choice of u since a; = - - - = a,, = 0. Otherwise, if we choose

a:

U= /
ViaP+ -+ lan?
we see that the terms in the sum on the far right of (2) are all zero, and so equality
holds in (3). [l

for j=1,...,n,

Corollary 7. Leta, by, ..., b, and d be as in Proposition 6. Then,
d > |det(a, by, ..., b,)|.
Equality holds if and only if b; -I;j =0foralli # j.

Example 8. When n =3, let 0 < s < 1 and consider the projective triangle with
vertices represented by the unit vectors

1 —s? 1 —s?
a= 5 55 by =(1,0,0), and by =(0,1,0).

Then, |by Aby| =1, and so d =det(a, by, by) = s, and equality holds in Corollary 7.
We remark that geometrically, these triangles are isosceles with projective side

lengths
. \/ 1+ 57 \/ 1+ 57
) 2 ) 2 .
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Proof of Corollary 7. By Corollary 3, we have
[by A---Ab,| <1.

Hence, by the formula for d in Proposition 6,

det(a, by, ..., b,
_ [dett@. by s et br, ... b,

|bl ARERIVAN bn|
Equality holds if and only if equality holds in Corollary 3. (]
Proposition 9. Let vy, ..., v,—1 be n — 1 linearly independent vectors in C**! and
let wy, ..., w, be n linearly independent vectors in crtl, If we let

a=L(wA---Aw,) and b=LWiA---ANv,_1 A Na),

then
w1 ce wy,

b ( ])”dt vp-wp ... V- wy
=(— €

Vy—1 W1 ... VUy_1- Wy

Remark. Note that the matrix specified in the proposition has vector entries in
its first row, and hence its determinant results in a vector. This proposition is a
generalization of Lagrange’s formula for the vector triple product in R?. The proof
of this proposition was inspired by a discussion Cherry had with Charles Conley,
and we thank him for his interest. We suspect that Proposition 9 is reasonably
well-known, but we were unable to find a reference to it in the literature.

Proof. Let

w1 w,
~ vp-wp ... V- Wy
b = det

Vy—1 W1 ... Vy_1-Wy

We want to show that b = (—1)”12, and for this, it suffices to show that for all z
in C"*!, we have z- b = (—1)"z - b. Clearly,

Z-W ce Z-Wy,

Vi cwW; ... U-Wy,

z-5=det

Vy—1-Wp ... Vy_1-Wy
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On the other hand, by Proposition 4,

z-b=det(z,v,...,v,_1, Q)
= (—1)"det(a, z, v1, ..., V,—1)
=(=D"a-LEZAv A AV,_1)
=(—D"L(wiA---Aw,) -LEAVA---AV,_1)
=(—D"(wi A---Aw,)-(ZAVIA---AV,_1) (since L is an isometry)

=(=D"@AVI A AV ) - (WA Awy)

Z-Wq . Z-wy,
V- W v -wy .
= (—1)"det . ) . (by Proposition 1). O
Vy—1 W1 ... Uy—1-Wy
Proposition 10. Leta,uy, ..., u, be n+ 1 linearly independent vectors in Ccrtl,

For j=1,...,n,let
vi=L@AugAN---ANUj_ | AU N ANUy).
Then, L(vi A---Av,) = £D" la, where D =det(a, uy, ..., u,).

Remark. The unspecified sign depends only on 7 and can be explicitly determined
from the proof. Since the sign will not matter for our purpose, we did not bother to
record it here.

Proof. By Proposition 9, we get that

a u U,_1
v-a vp-up ... Vy-Up—1
LwiA---Av,)=(—1)"det
Vp—1-@Q@ Vy_1-U] ... VUy_1 -Up_]

If i #£ j, then
vicuj=L@n---ANuj g AN Ao Auy)-up =0

since u j appears in the wedge product defining v;, and hence v; is orthogonal to u ;.
Similarly, v; - @ = 0. Moreover,

vj-uj:L(a/\‘--/\uj,l/\uj+1/\-~-/\un)-uj:(—l)JD
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by Proposition 4. Hence,

a uy up ... U,_1
0-D 0 ... 0

L(vl/\.../\vn):(_l)"det 0O 0 D ... 0 ::I:Dn_la, ]
0 0 0 ...(D"'D

Theorem 11. Let uq, ..., u, be n + 1 linearly independent unit vectors in C"+!
representing n + 1 points in general position in CP", which we think of as the
vertices of a projective simplex. For each j from O to n, let d; denote the Fubini—
Study distance from the point represented by u j to the hyperplane containing the
opposite face of the simplex. Let dy;, denote the minimum of the d;. Then,

ti < |det(uo, ..., uy,)|.

min
For equality to hold, at least n of the n + 1 projective distances d; must equal dy;n.

Proof. Let D = det(uy, ..., u,). Note that D # 0 by the linear independence
(general position) hypothesis. Without loss of generality, assume that dyi, = d,.

Then, d}}, < did>---d,, and equality holds if and only if all of these distances are
equal. By Proposition 6,
d = |D]
j —_ .
|u0/\---/\uj_1/\uj+1 /\---/\un|
Thus,
n
e D)

min = szl |u0/\"'/\uj—l/\uj+l/\"‘/\un|‘
For j from 1 to n, let
vVi=LoN---ANuj_ 1 ANUj N Aly),
and we now consider L(v; A --- A v,). By Proposition 10,

L A---Avy) =£D"luy.
Hence,

L@ A~ A =D
since |ug| = 1. We also know that

ILi Ao Ao =[or Ao Avp| S o] - |y
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by Corollary 3. Moreover, the inequality is strict unless v; -v; =0 for all i # j. Thus,

n n

Hlqu---Auj_lAuj+1/\un|:1_[|L(u0/\---/\uj_1/\uj+1/\u,1)|
j=1 j=1

n
=[T1v1
j=1

> Ly A---Av,)| = D"

Hence,
n |DI" |DI"
dminf n = n—1 :|D|’
szl|u()/\"'/\uj_1/\uj+1/\"‘/\un| |D|
as required, with strict inequality unless dj =- - - =d, and v;-v; =0 foralli # j. [J

Remark. Equality of the n distances is not sufficient for equality to hold in
Theorem 11, but the proof of Theorem 11 suggests the following conjecture.

Conjecture 12. With notation as in Theorem 11, fix 0 < D < 1 and consider all
configurations of uy, ..., u, such that D = |det(uo, ..., u,)|. Among all such
configurations, the configuration with the largest dui, will be a regular simplex.

Remark. When D < 1, equality will not hold in Theorem 11 for the regular simplex
with determinant D.

We now observe that if we like, we could just as easily work with vectors defining
the faces of the simplices, rather than the vertices.

Proposition 13. Leta, by, ..., b, be n+1 linearly independent unit vectors in C"*1.
We think of the vectors as the coefficients of linear forms defining hyperplanes
in CP". By linear independence, the hyperplanes are in general position and thus
determine a simplex. Let d denote the distance from the hyperplane determined
by a to the vertex of the simplex where the hyperplanes determined by by, . . ., by,
intersect. Then,

_ |det(a9b]9"'7bn)|
by A Aby|

Remark. Observe that the distance formula here is identical to that in Proposition 6.
Thus, Theorem 11 and Corollary 7 immediately translate to the following corollary.

Corollary 14. Let ug, ..., u, be n + 1 linearly independent unit vectors in cnt!
representing n + 1 linear forms defining n + 1 hyperplanes in general position
in CP"*, which we think of as the faces of a projective simplex. For each j from 0
to n, let d; denote the Fubini-Study distance from the hyperplane represented by u ;
to the opposite vertex of the simplex. Let dyin denote the minimum of the d;. Then,

Irrzlin <|det(uo, ..., u,)| < dmin.
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0.8

0.6 L]

|D] |D| = din
./ |D|=d?

in

0.2

dmin

Figure 1. |D| versus dp,, in the case of dimension n = 2.

Remark. Figure 1 illustrates the inequalities constraining the absolute value of the
determinant and the minimum distance in the case when n = 2, i.e., for the case of
projective triangles in the projective plane. The points marked as circles along the
line | D| = dny illustrate isosceles triangles, as in Example 8. The points marked
as squares just above the curve |D| = dfnin are from equilateral triangles. The other
points are triangles with randomly generated vertices.

Proof of Proposition 13. Let

L _LBiA--Aby
h by A---Aby| ’

which is the unit vector representing the vertex of the simplex where the hyperplanes
determined by by, ..., b, intersect. For j =1, ..., n, let

vi=L@AnbinA---Abj_1 Abj i A Aby).

Then, the vectors v;, which are not necessarily unit vectors, represent the n other
vertices of the simplex. By Proposition 6 and Proposition 4,

i n_
g ‘det<“’ IR |vn|>‘ _Ju LA Avy)l
LA A D VI A+ Ay .
[v1] [V
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By Proposition 10, L(v; A --- A v,) = D" 'a, where D = det(a, by, ..., b,).
Thus,

_Ju- LA Ayl

d
[vp A Ay
D" Nu-a| . . .
= ———— (since a is a unit vector)
|D|n—1
|IL(byA---Aby)-al .
= by the definition of u
by A---Aby| (y )
det(a,by,.... b .
= | det(. by 2 (by Proposition 4). U
|by A=+ A byl

We conclude by explaining some of the initial motivation coming from complex
function theory for this investigation. Let [ denote the unit disc in the complex
plane. J. Dufresnoy [1944] studied complex analytic mappings f from D to CP"
such that the image of f omits at least 2n 4 1 hyperplanes in general position
in CP", where here general position means that the linear forms defining any n + 1
of the hyperplanes will be linearly independent. As in [Cherry and Eremenko 2011],
we let f* denote the Fubini—Study derivative of f, which measures how much
the mapping f distorts length, where length in D is measured with respect to the
standard Euclidean metric and length in CP" is measured with respect to the Fubini—
Study metric. A consequence of Dufresnoy’s work is that £#(0) is bounded above
by a constant depending only on the dimension 7 and the set of omitted hyperplanes,
but Dufresnoy remarked in his 1944 paper that the constant depends on the omitted
hyperplanes in a “completely unknown” way. By making a portion (see [Eremenko
1999]) of the potential-theoretic method of Eremenko and Sodin [1991] effective,
Cherry and Eremenko [2011] were able to give an explicit and effective estimate
on how the constant depends on the omitted hyperplanes. Cherry and Eremenko’s
bound was expressed in terms of the singular values of the (n+ 1) x (n+ 1) matrices
formed by the coefficients of the normalized linear forms defining n+1 of the omitted
hyperplanes. Let P be a point in CP" where n of the 2n + 1 omitted hyperplanes
intersect, and let Q be a point where a different n of the 2n + 1 omitted hyperplanes
intersect. Then, the projective line connecting P with Q will intersect the 2n + 1
omitted hyperplanes in only three points: it will intersect n of the hyperplanes at P,
another n at Q and the last one at some third point R. Such a line is called a diagonal
line for the hyperplane configuration. In the event that the hyperplane configuration
is such that for some diagonal line, two of the three points P, Q, and R are very close
together, it is not hard to see that one can find a complex analytic map f from D into
the diagonal line omitting the three points such that £#(0) is very large. One is then
led to ask if this is the only way one can get a very large value of f*(0). One would
thus like to know how this minimum distance among the pairs of points in { P, O, R}
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compares to the singular values appearing in Cherry and Eremenko’s bound. Rather
than look initially at collections of 2n + 1 hyperplanes in CP", we began with the
easier situation of n + 1 hyperplanes in CP" and did some numerical experiments
comparing the singular values of the matrices formed by the coefficients of the
defining forms of the hyperplanes and the projective distances from the hyperplanes
to the opposite vertices of the simplex whose faces are contained in the given
hyperplanes. These opposite vertices would be the points determining the diagonal
lines in bigger configurations of hyperplanes. Although Cherry and Eremenko’s
bound is expressed only in terms of some of the singular values, we realized that we
could obtain prettier results for the determinant, whose absolute value is of course
the square root of the product of all the singular values. We therefore decided to
write this note focusing on the pure projective geometry of the simplices and leave
the possible application to complex function theory to another time.
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