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An L(2, 1)-labeling of a simple graph G is a function f : V (G) → Z such
that if xy ∈ E(G), then | f (x) − f (y)| ≥ 2, and if the distance between x
and y is two, then | f (x)− f (y)| ≥ 1. L(2, 1)-labelings are motivated by radio
channel assignment problems. Denote by λ2,1(G) the smallest integer such that
there exists an L(2, 1)-labeling of G using the integers {0, . . . , λ2,1(G)}. We
prove that λ2,1(G)≤12, where 1=1(G), if the order of G is no greater than
(b1/2c+1)(12

−1+1)−1. This shows that for graphs no larger than the given
order, the 1992 “12 conjecture” of Griggs and Yeh holds. In fact, we prove more
generally that if L ≥12

+ 1, 1≥ 1, and

|V (G)| ≤ (L −1)
(⌊ L−1

21

⌋
+ 1

)
− 1,

then λ2,1(G) ≤ L − 1. In addition, we exhibit an infinite family of graphs with
λ2,1(G)=12

−1+ 1.

1. Introduction

The channel assignment problem is the determination of assignments of channels
(integers) to stations in such a way that those stations close enough to interfere
receive distant enough channels. Hale [1980] formulated the problem in terms of
T -colorings, which are integer colorings in which adjacent vertices’ colors cannot
differ by a member of a set of integers T with {0} ⊂ T . Roberts [1988] proposed
a generalization in which closer transmitters would be required to have channels
that differed by more than those of the slightly more distant transmitters, adding a
condition for nonadjacent vertices as well. The L(2, 1)-labeling problem was first
studied by Griggs and Yeh [1992] in response to Roberts’ proposal. An L(2, 1)-
labeling of a graph G is an integer labeling of G in which two vertices at distance
one from each other must have labels differing by at least 2, and those at distance
two must differ by at least 1. Denote by λ2,1(G) the smallest number such that there
exists an L(2, 1)-labeling of G with the difference λ2,1(G) between the highest and
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lowest label. If there is no possibility for confusion, λ2,1(G) is sometimes written
λ2,1. The L(2, 1)-labeling problem has been studied extensively with the central
goal of finding bounds on λ2,1. Griggs and Yeh bounded the λ2,1 number for cycles,
paths, trees, and the n-cube. They also proved the bound λ2,1 ≤1(G)2+ 21(G),
where 1(G) is the maximum degree over the set of degrees of vertices in V (G). In
this paper, we will write 1 when the meaning is clear from context. Chang and Kuo
[1996] improved the bound to12

+1, and by modifying their algorithm, Gonçalves
[2007] reduced the bound to12

+1−2. Bounds on the λ2,1 number have been found
for many subclasses of graphs, such as Sakai’s bound [1991] of (1+ 3)2/4 for
chordal graphs — graphs containing no induced cycle of length four. All examples
tested have corroborated the conjecture Griggs and Yeh made in their 1992 paper:

12 conjecture. If 1(G)≥ 2, then λ2,1 ≤1
2.

However, the conjecture remains unproven, and it is difficult to test the bound for
graphs of any significant size. The largest step towards the proof of the conjecture
was made by Havet, Reed, and Sereni [2012] who proved that the conjecture
holds for all graphs with 1 larger than some 10, but 10 ≈ 1069. Consequently,
λ2,1(G) ≤ 12

+ C for some absolute constant C . The upper bound set by the
conjecture, if proven, would be tight — the Moore graphs are known to satisfy
λ2,1 =1

2 [Griggs and Yeh 1992].

2. Preliminaries

The proof of Theorem 3 involves a classic result of Pósa about the existence of
Hamilton cycles and paths in graphs of high degree (see [Kronk 1969]). In this
respect, our argument has a similar flavor to the proof in [Griggs and Yeh 1992]
that λ2,1 ≤ 1

2 for graphs of order less than 12
+ 1. In addition, we will use the

powerful result of Szemerédi and Hajnal [1970] on equitable colorings.

Theorem (Pósa). Let G have n ≥ 3 vertices. If for every k, 1≤ k ≤ (n− 1)/2 and
|{v : d(v)≤ k}|< k, then G is Hamiltonian.

Corollary 1. Let G have n ≥ 2 vertices. If for every k, 0 ≤ k ≤ (n − 2)/2 and
|{v : d(v)≤ k}| ≤ k, then G has a Hamilton path.

Proof. The corollary follows easily by adding a dominating vertex to G and
observing that by Pósa’s theorem the new graph is Hamiltonian. �

Theorem (Szemerédi, Hajnal). If 1(G)≤ r , then G can be equitably colored with
r + 1 colors; that is, the sizes of the color classes differ by at most one.

See also [Kierstead et al. 2010; Kierstead and Kostochka 2008].
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3. Main result

The following lemma is the key ingredient in the proof of the main result. The
lemma requires a concept which we will call the square color graph. Let G be a
graph. Let C0, . . . ,Cl−1 be the color classes of a proper coloring C of G2 with l
colors, where G2 is the graph with V (G2)= V (G) and E(G2)= {xy|d(x, y)≤ 2}.
The square color graph of C , denoted G, is the graph with

V (G)={C0, . . . ,Cl−1} and E(G)=
{
Ci C j

∣∣G[Ci∪C j ] contains an edge of G
}
.

Here G[Ci ∪C j ] denotes the induced subgraph formed by the vertices in Ci ∪C j .

Lemma 2. Let G be a graph, and let C be a proper coloring of G2 with l colors.
If the complement Gc of the square color graph of C has a Hamilton path, then
λ2,1(G)≤ l − 1.

Proof. By assumption, Gc has a Hamiltonian path P = {p0, p1, . . . , pl−1}. Recall
that the vertices of P are color classes partitioning G. Let f : V (G)→Z be defined
as f : v 7→ i , where i is the unique index such that v ∈ pi . We now check that f is
an L(2, 1)-labeling of G. If d(x, y)= 2, then x and y are given two different labels
because C is a coloring of G2. If d(x, y)= 1, then x and y are in two distinct color
classes pi and p j such that pi p j ∈ E(G). Then pi p j /∈ E(Gc), so i 6= j±1 because
otherwise pi p j ∈ E(P). Therefore | f (x)− f (y)| ≥ 2, and f is an L(2, 1)-labeling
for G. �

Theorem 3. Let G be a graph with 1 = 1(G) ≥ 1, and let L be an integer with
L ≥12

+ 1. Then λ2,1(G)≤ L − 1 if

|V (G)| ≤ (L −1)
(⌊

L−1
21

⌋
+ 1

)
− 1.

Before the proof of Theorem 3, we will discuss two corollaries that have impli-
cations for the 12 conjecture.

Corollary 4. Let G be a graph of with 1=1(G)≥ 1. Then λ2,1(G)≤12 if

|V (G)| ≤
(⌊
1

2

⌋
+ 1

)
(12
−1+ 1)− 1.

Proof. Using Theorem 3 with L =12
+ 1 gives the desired result. �

Corollary 4 significantly expands the known orders of graphs that satisfy the
12 conjecture; it does so more dramatically as 1(G) increases. For 1(G) = 3,
|V (G)| ≤ 13 suffices as opposed to the previously known |V (G)| ≤ 10 [Griggs and
Yeh 1992]. For1(G)=4, we have |V (G)|≤38 as opposed to |V (G)|≤17 [loc. cit.].
If G is the Hoffman–Singleton graph, then 1(G) = 7, |V (G)| = 50 = 12

+ 1,
and, in fact, λ2,1(G) = 49 = 12 [loc. cit.]. It might seem productive to look
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among minor variations of the Hoffman–Singleton graph for counterexamples to
the 12 conjecture, but Corollary 4 suggests otherwise — the conjecture holds if
1(G) = 7 and |V (G)| ≤ 169. The bounds on |V (G)| established in Corollary 4
grow quickly with 1, as they are cubic in 1 rather than quadratic as in [loc. cit.].

For some |V (G)|, we can also use Theorem 3 to find upper bounds on λ2,1(G)
that are stronger than the best known bound of Gonçalves [loc. cit.]. The bound on
|V (G)| in the following corollary is larger than the bound in Theorem 3.

Corollary 5. Let G be a graph with1=1(G)≥ 3. Then λ2,1(G) <12
+1−2 if

|V (G)| ≤
(⌊
1

2

⌋
+ 1

)
(12
− 2)− 1.

Proof. Apply Theorem 3 with L =12
+1− 2. This gives

|V (G)| ≤
(⌊
1

2
+

1
2
−

3
21

⌋
+ 1

)
(12
− 2)− 1.

Since we have assumed 1≥ 3, we have 0≤ 1/2− 3/(21) < 1/2, so⌊
1

2
+

1
2
−

3
21

⌋
=

⌊
1

2

⌋
. �

We now proceed to the proof of Theorem 3.

Proof. Let L be as in Theorem 3. We will show that for any integers q, r with
q ≥ 0, 0≤ r ≤ L − 1, and

Lq + r ≤ M = (L −1)
(⌊

L−1
21

⌋
+ 1

)
− 1,

if |V (G)| = Lq + r and 1(G) = 1, then G has an L(2, 1)-labeling with span
at most L − 1. This is sufficient to prove Theorem 3, as for any integer n, there
exist unique integers q ≥ 0 and r ∈ {0, . . . , L − 1} with Lq + r = n. Suppose
|V (G)| = Lq+ r . Recall that L ≥12

+ 1≥1(G2)+ 1. By the Szemerédi–Hajnal
theorem, G2 has an equitable coloring C with L color classes. For convenience,
we will use all L color classes even if several are empty. This means L − r classes
have q vertices and r classes have q + 1 vertices. Our goal is to prove that the
complement of the square color graph of C , or Gc, has a Hamiltonian path. Note
that dG(V )≤1|V | for all V ∈ V (G). Write the degree of V in Gc as dc(V ).

If q ≤ b(L − 1)/21c− 1, then

1(q + 1)≤1
⌊L − 1

21

⌋
≤

⌊L − 1
2

⌋
,

so that δ(Gc)≥ L−1−b(L−1)/2c ≥ (L−1)/2, and the conditions of Corollary 1
are satisfied. Therefore Gc has a Hamiltonian path.
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Otherwise, q = b(L − 1)/21c and

r ≤ L − 1−1
(⌊

L−1
21

⌋
+ 1

)
≤ L − 1

because otherwise Lq + r > M .
Now suppose k is an integer with 0 ≤ k ≤ (L − 2)/2 as in Corollary 1. If

dc(V )≤ k, then

L−2
2
≥ L − 1− dG(V )≥ L − 1−1|V |,

so that |V | ≥ (1/1)(L − 1− (L − 2)/2) = (L − 1)/21+ 1/21 > q. Therefore
|V | = q+ 1, so we know there are at most r vertices with dc(V )≤ k. For any such
vertex V ,

dc(V )≥ L − 1− (q + 1)1= L − 1−1
(⌊

L−1
21

⌋
+ 1

)
≥ r ≥ 0.

Now the conditions of Corollary 1 are satisfied, so Gc still has a Hamiltonian
path. From Lemma 2, Gc having a Hamiltonian path implies that λ2,1G ≤ L−1. As

Lq + L − 1−1
(⌊

L−1
21

⌋
+ 1

)
= (L −1)

(⌊
L−1
21

⌋
+ 1

)
− 1= M,

this argument works for any |V (G)| ≤ M . �

Corollary 6. Let G be a graph of order n with 1 = 1(G) ≥ 1, and let L be an
integer with L ≥12

+ 1. If

n ≤ (L −1)
(⌊

L−1
21

⌋
+ 1

)
− 1,

then there is an L(2, 1)-labeling of G with a span at most L− 1 that is equitable. If
n ≥ L , the labeling is no-hole.

Proof. The proof follows immediately from the proof of Theorem 3. �

The next corollary concerns algorithms involved in finding these labelings. In
general, determining if λ2,1(G) ≤ k for positive integers k ≥ 4 is NP-complete
[Fiala et al. 2001].

Corollary 7. Let G be a graph of order n with1=1(G)≥1 and L≥12
+1. There

is an algorithm with polynomial running time in n to compute an L(2, 1)-labeling
of G with span at most L − 1 for all n and L such that

n ≤ (L −1)
(⌊

L−1
21

⌋
+ 1

)
− 1.



546 COLE FRANKS

Proof. If L ≥ 2n + 1, the appropriate labeling can be obtained by labeling the
vertices 0, 2, . . . , 2n in any order [Griggs and Yeh 1992]. This can clearly be
done in polynomial time. Otherwise, in [Kierstead et al. 2010] there is shown to
be an algorithm, polynomial in n, to equitably color G2 with L colors. Degree
sequences satisfying the conditions of Pósa’s theorem also satisfy those of Chvátal’s
theorem [Bondy and Chvátal 1976], and the paper’s authors exhibit an algorithm,
polynomial in p, to find Hamilton cycles in graphs of order p which satisfy the
conditions of Chvátal’s theorem. From the proofs of Lemma 2 and Corollary 1, we
see that to find the labeling, it is enough find a Hamilton cycle in a certain graph,
namely Gc with a dominating vertex added, of order L + 1≤ 2n+ 2 that satisfies
the conditions of Pósa’s theorem. From [Bondy and Chvátal 1976], we can do this
with an algorithm that is polynomial in L + 1, which must also be polynomial in n.
These two algorithms in succession yield the desired algorithm. �

4. Comments on diameter-2 graphs

It was previously known that diameter-2 graphs satisfy the 12 conjecture, and for
other than a few exceptional graphs, 12

− 1 suffices to label diameter-2 graphs
[Griggs and Yeh 1992]. In this section, we knock this bound down by one, showing
that 12

− 2 suffices to label all but a finite handful of diameter-2 graphs.

Theorem 8 [Griggs and Yeh 1992]. The12 conjecture holds for diameter-2 graphs.
In addition, λ2,1 ≤1

2
− 1 for diameter-2 graphs with 1≥ 2 except for C3, C4, and

the Moore graphs. For these exceptional graphs, λ2,1 =1
2.

The proof of these facts rely on Brooks’ theorem and several results from Griggs
and Yeh:

Theorem 9 (Brooks [Lovász 1975]). If G is an odd cycle or a complete graph,
χ(G)≤1+ 1; otherwise, χ(G)≤1.

Lemma 10 [Griggs and Yeh 1992]. λ2,1(G)≤ |V (G)| +χ(G)− 2.

Lemma 11 [Griggs and Yeh 1992]. There exists an injective L(2, 1)-labeling
of a graph G with span |V (G)| − 1 if and only if the complement of G has a
Hamilton path.

Theorem 12 [Griggs and Yeh 1992]. Let Cn be a cycle on n vertices. Then
λ2,1(Cn)= 4.

We now proceed to prove Theorem 8.

Proof. If 1= 2, one can verify the theorem readily using Theorem 12. Suppose
1≥ 3. We now split into cases.

In the first case, suppose 1≥ (|V (G)|)/2. Lemma 10 implies

λ2,1(G)≤ 21+χ(G)− 2.
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If G is a complete graph, then clearly λ2,1(G) = 21(G). As 1 ≥ 3, G is not an
odd cycle. Otherwise, 21+χ(G)− 2≤ 31− 2 by Brooks’ theorem. Note that in
both cases, 1(G)≥ 3 implies that λ2,1(G)≤12

− 2.
In the second case, suppose 1≤ (|V (G)|−1)/2. Then δ(Gc)≥ (|V (G)|−1)/2.

Also, we have assumed G has 1 ≥ 3, so |V (G)| ≥ 7. By Corollary 1, Gc has
a Hamilton path. By Lemma 11, there is an L(2, 1)-labeling of G with span
|V (G)| − 1. As the Moore graphs are the only diameter-2 graphs with |V (G)| =
12
+ 1, Theorem 8 holds. �

In fact, we can do better by the following result:

Theorem 13 [Erdős et al. 1980]. Except C4, there is no diameter-2 graph of or-
der 12.

This and the proof of Theorem 8 imply the following theorem.

Theorem 14. With the exception of C3, C4, C5, and the Moore graphs, any diameter-
2 graph with 1(G)≥ 2 has λ2,1(G)≤12

− 2.

We also have some comments on a special family of diameter-2 graphs that have
large λ2,1 number. In order to do this, we must define the points of the Galois plane,
denoted PG2(n). Let F be a finite field of order n. Let P = F3

\{(0, 0, 0)}. Define
an equivalence relation ≡ on P by (x1, x2, x3) ≡ (y1, y2, y3)⇐⇒ (x1, x2, x3) =

(cy1, cy2, cy3) for some c ∈ F . The points of PG2(n) are the equivalence classes.

Definition 15. The polarity graph of PG2(n), denoted H , is the graph with the
points of PG2(n) as vertices and with two vertices (x1, x2, x3) and (y1, y2, y3)

adjacent if and only if y1x1+ y2x2+ y3x3 = 0.

By the properties of PG2(n), we know that the diameter of H is two, 1(H)=
n+ 1, and its order is n2

+ n+ 1=12
−1+ 1 [Kárteszi 1976]. This implies that

λ2,1(H)≥12
−1. In fact, Yeh showed that λ2,1(H)=12

−1 [Griggs and Yeh
1992]. This is an infinite family of graphs, as finite fields exist for n = pk with p
prime.

However, we can improve this by one. This construction follows that of Erdős,
Fajtlowicz and Hoffman [Erdős et al. 1980]. A vertex (x, y, z) in H has degree n if
and only if the norm x2

+y2
+z2 is equal to 0. Suppose F has characteristic 2 and the

order of F is n. If (a, b, c) is in H then it is adjacent to the point (b+c, a+c, a+b),
which has norm equal to 0 and is also in H . In other words, every vertex in H
is adjacent to a vertex of degree n. We proceed to find the number of points of
degree n in H . Since F has characteristic 2, f (x) = x2 is injective and hence
surjective on F . This means we can choose x2 and y2 freely as long as one of them
is nonzero, and then z2 is determined. We must also eliminate proportional pairs,
so in total this leaves (n2

− 1)/(n− 1)= n+ 1 vertices of degree n.
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Now we can make an (n+1)-regular, diameter-2 graph H̃(n) by adding a vertex
that is adjacent to all vertices of degree n. This graph is of order n2

+ n + 2 =
12
−1+ 2.

Theorem 16. The graph H̃(n) has λ2,1(H̃)=12
−1+ 1.

Proof. Because H̃ has diameter 2, λ2,1(H̃) ≥ 12
−1+ 1. As 1 ≥ 3, we have

1 ≤ (12
−1+ 1)/2 = (|V (H)| − 1)/2. By the proof of Theorem 8, λ2,1(H̃) ≤

|V (G)| − 1=12
−1+ 1. �

Since H̃(n) exists for all n = 2k , this is an infinite family of graphs.
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