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The graph of a real linear symplectomorphism is an R-Lagrangian subspace of
a complex symplectic vector space. The restriction of the complex symplectic
form is thus purely imaginary and may be expressed in terms of the generating
function of the transformation. We provide explicit formulas; moreover, as an
application, we give an explicit general formula for the metaplectic representation
of the real symplectic group.

1. Introduction

1.1. Overview. As part of our symplectic upbringing, our ancestors impressed
upon us the Symplectic Creed:

Everything is a Lagrangian submanifold [Weinstein 1981].

Obviously false if taken literally, rather than a “creed” it might be called the
Maslow–Weinstein hammer, or, in French, la déformation professionnelle symplec-
tique, saying that “if all you have is a [symplectic form], everything looks like a
[Lagrangian submanifold],” or, in other words, to a symplectic geometer, everything
should be expressed in terms of Lagrangian submanifolds. In this paper we consider
a vector space endowed with two symplectic forms, namely the real and imaginary
parts ReωC and ImωC of a complex symplectic form ωC, and begin with the simple
observation that

Not every Lagrangian submanifold [with respect to ReωC] is a Lagrangian
submanifold [with respect to ImωC].

We study its implications for the classification of real linear symplectomorphisms
H, as the graph of H is essentially by definition a Lagrangian subspace with respect
to ReωC; we ask, with some abuse of language:
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Open problem. Is every 2n×2n skew-symmetric matrix of the form ImωC
|graphH

for some H?

We believe that an answer would shed some light on the structure of linear
symplectomorphisms. While our primary reason for writing this article is to
precisely formulate the above open problem, which we do in Section 1.2, our
primary technical result is to rewrite it in terms of generating functions; after all, if
one guiding principle is the Symplectic Creed, another is that “symplectic topology
is the geometry of generating functions” [Viterbo 1992]. Or, to go further back,
while Sir William Rowan Hamilton first conceived of generating functions (or as
he called them, characteristic functions) as mathematical tools in his symplectic
formulation of optics, he later found, in his symplectic formulation of classical
mechanics, that the generating function for a physical system is the least action
function, in a sense that we will not make precise [Abraham and Marsden 1978;
Hamilton 1834]; this gives a striking connection with the calculus of variations.
Moreover, in Fresnel optics and quantum mechanics, the generating function is
used as the phase function of an oscillatory integral operator; the integral operator
is said to “quantize” the corresponding symplectomorphism [Grigis and Sjöstrand
1994; Guillemin and Sternberg 1984]. (Loosely speaking, when differentiating
the integral, one finds that the phase function must satisfy the Hamilton–Jacobi
equation.) This topic will be touched upon in Section 3. For us, the generating
function corresponding to the linear symplectomorphism H is the scalar-valued
function 8 in our main theorem:

Theorem 1. For each H∈Sp(2n,R) there exists a quadratic form8 :Cn
z×R2n

θ →R

such that

graphC H=
{(

z,−2∂8
∂z
(z, θ)

)
:
∂8

∂θ
(z, θ)= 0

}
,

and the restriction of ωC to graphC H is given by

ωC

((
z,−2∂8

∂z
(z, θ)

)
,
(
w,−2∂8

∂z
(w, η)

))
= 2

n∑
j=1

2n∑
`=1

∂28

∂z j∂θ`
(z jη`−w jθ`)+ 2

n∑
j,m=1

∂28

∂z j∂zm
(z jwm −w j zm). (1)

Moreover, our construction provides an explicit general formula for 8.

Our notation will be explained in the following subsection, along with the necessary
background and a restatement of the open problem. We prove the theorem in
Section 2, and in Section 3 we show how our construction seems to adequately
answer a question of Folland [1989] regarding the metaplectic representation. We
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conclude with a broad indication of future work. In the Appendix we give addi-
tional linear-algebraic background and some new elementary results relevant to our
problem, and also give an additional restatement of our open problem.

1.2. Background and restatement of the problem. In a real symplectic vector
space there is already a natural complex structure; the model example is R2n with
the 2n × 2n matrix J =

( 0 −I
I 0

)
, where of course J 2

= −I . What we mean by
“complex symplectic linear algebra” is something else; we instead consider C2n

with the above matrix J , that is, we consider

ωC
=

n∑
j=1

dζ j ∧ dz j on Cn
z ×Cn

ζ

(a nondegenerate alternating bilinear form over C). The basic formalism of complex
symplectic linear algebra is not new; indeed, complex symplectic structures naturally
appear in the theory of differential equations and have been studied through that lens
(see, for example, [Schapira 1981] and [Sjöstrand 1982], or [Everitt and Markus
2004] for another perspective). The point of view of this paper is that elementary
linear-algebraic aspects remain unexplored in the complex case and may help us
better understand the real case.

A symplectic vector space over a field1 K is by definition a pair (V, ω), where
V is a finite-dimensional vector space over K and ω is a nondegenerate alternating
bilinear form on V . The basic example is Rn

x × Rn
ξ with the symplectic form

ω =
∑n

j=1 dξ j ∧ dx j :

ω((x, ξ), (x ′, ξ ′))=
n∑

j=1

(ξ j x ′j − x jξ
′

j ). (2)

In fact, this is essentially the only example: for a general symplectic vector space
(V, ω) over a field K one can find a basis {e1, . . . , en, f1, . . . , fn} for V such that

ω(e j , ek)= 0, ω( f j , fk)= 0, ω( f j , ek)= δ jk for all j, k.

Such a basis is called a symplectic basis, and ω is of the form (2) in these coordinates.
(In particular, a symplectic vector space is necessarily even-dimensional.) Note
that ω vanishes on the span of the e j , and it vanishes on the span of the f j ; such
a subspace is called a Lagrangian subspace: a maximal subspace on which ω
vanishes. (A Lagrangian subspace of V is necessarily of dimension n.)

The symplectic formalism is fundamental in Hamiltonian mechanics: the sym-
plectic form provides an isomorphism between tangent space and cotangent space,

1Duistermaat’s book [1996] on Fourier integral operators contains a brief treatment of symplectic
vector spaces over a general field.
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mapping the Hamiltonian vector field of a function f to the differential of f :

d f = ω( · , H f ).

A linear symplectomorphism T on (V, ω) is a linear isomorphism on V such
that T ∗ω = ω, that is,

ω(Tv, Tv′)= ω(v, v′) for all v, v′ ∈ V .

This is equivalent to the property that a symplectic basis is mapped to a symplectic
basis.

We now let (V, ω) be a real symplectic vector space. Then

(V × V, ω⊕−ω)

is a real symplectic vector space. We write ω0 = ω⊕−ω so that, by definition,

ω0((v,w), (v
′, w′))= ω(v, v′)−ω(w,w′).

The following classical result (see [Tao 2012] for a broad perspective) justifies this
choice of the symplectic form:

A map H : V → V is a linear symplectomorphism if and only if its graph
{(v,H(v)) : v ∈ V } is a Lagrangian subspace of (V × V, ω0).

For a basic example, let

H : Rn
x ×Rn

ξ → Rn
y ×Rn

η, (x, ξ) 7→ (y, η),

be a linear symplectomorphism. Then graphH is a Lagrangian subspace for

ωR
=

n∑
j=1

dξ j ∧ dx j − dη j ∧ dy j .

The point of view of this paper is to consider graphH as an R-linear subspace of
a complex symplectic vector space. After all, with z j = x j + iy j and ζ j = ξ j + iη j ,
we have the complex symplectic form

ωC
=

n∑
j=1

dζ j ∧ dz j on Cn
z ×Cn

ζ ,

which induces the two real symplectic forms

ReωC
=

n∑
j=1

dξ j ∧ dx j − dη j ∧ dy j , ImωC
=

n∑
j=1

dξ j ∧ dy j + dη j ∧ dx j

on R2n
x,ξ×R2n

y,η. We then say that an R-linear 2n-dimensional subspace of R2n
x,ξ×R2n

y,η
is an R-Lagrangian subspace if it is Lagrangian with respect to ReωC, and an
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I-Lagrangian subspace if it is Lagrangian with respect to ImωC. Thus the graph of
H :R2n

x,ξ→R2n
y,η may be considered as an R-Lagrangian subspace of (Cn

z ×Cn
ζ , ω

C).
Writing a symplectic matrix H ∈ Sp(2n,R) as H=

(
A B
C D

)
, we have

graphH= {((x, ξ), (Ax + Bξ,Cx + Dξ)) : (x, ξ) ∈ R2n
};

or, in terms of (z, ζ ), we have

graphC H= {(x + i(Ax + Bξ), ξ + i(Cx + Dξ)) : (x, ξ) ∈ R2n
}.

Thus
ωC
|graphC H = i ImωC

|graphH

is given by

ωC
(
(x+ i(Ax+ Bξ), ξ+ i(Cx+Dξ)), (x ′+ i(Ax ′+ Bξ ′), ξ ′+ i(Cx ′+Dξ ′))

)
= i

(
xT ξ T

) (CT
−C −AT

− D
A+ DT B− BT

)(
x ′

ξ ′

)
.

The symplectic form ReωC vanishes, but the symplectic form ImωC might not
vanish; that is, graphC H is R-Lagrangian but not necessarily I-Lagrangian.

We have thus defined a map from the group of symplectic matrices to the space
of skew-symmetric matrices

X : Sp(2n,R)→ so(2n,R),

(
A B
C D

)
7→

(
CT
−C −AT

− D
A+ DT B− BT

)
.

We can thus restate our open problem:

Open problem. Is the map X : Sp(2n,R)→ so(2n,R) a surjection?

While we do not solve this problem, the main result of the paper is Theorem 1;
we can explicitly construct a generating function 8 for H and thus give an alternate
characterization of ωC

|graphC H and hence of X.

2. In terms of generating functions: the proof of the theorem

Generating functions (in the sense of symplectic geometry) were discovered by
Sir William Rowan Hamilton in his extensive work on optics. In modern language
(and in the linear case), light rays are specified by the following data: R2

x is a plane
of initial positions perpendicular to the optical axis of the system, ξ ∈ R2 are the
initial “directions” (multiplied by the index of refraction), R2

y is a plane of terminal
positions, and η∈R2 are the terminal directions. The spaces R4

x,ξ and R4
y,η are given

the standard symplectic structures. Taken piece by piece, the optical system consists
of a sequence of reflections and refractions for each light ray, the laws of which
were long known; Hamilton’s discovery was that, taken as a whole, the optical
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system is determined by a single function, the generating function, or, as Hamilton
called it, the characteristic function, of the optical system. The transformation from
initial conditions to terminal conditions is a symplectomorphism expressible in
terms of a single scalar-valued function, “by which means optics acquires, as it
seems to me, an uniformity and simplicity in which it has been hitherto deficient”
[Hamilton 1828, Section IV, Paragraph 20].2

The optical framework gives an intuitive reason why, in the symplectic matrix
H =

(
A B
C D

)
, the rank of B plays a special role in characterizing H and thus its

generating function. Again, H maps the initial (position, direction)-pair (x, ξ) to
the terminal (position, direction)-pair(

y
η

)
=

(
Ax + Bξ
Cx + Dξ

)
.

The case B = 0 corresponds to perfect focusing: all the rays from a given position x
arrive at the same position y, resulting in a perfect image. And the case det B 6= 0
corresponds to no such focusing: two rays with initial position x but different initial
directions must arrive at different positions y. (See [Guillemin and Sternberg 1984]
for an exposition of symplectic techniques in optics.)

2.1. When B is invertible. We recall that

graphC H=
{(

x + i(Ax + Bξ), ξ + i(Cx + Dξ)
)
: (x, ξ) ∈ R2n},

taken over the reals, is an R-Lagrangian subspace of (Cn
z ×Cn

ζ , ω
C), and we note

that

π : graphC H→ Cn, (z, ζ ) 7→ z,

is an R-linear transformation whose kernel is given by (x, ξ) ∈ {0}× ker B. Thus
it is an R-linear isomorphism if and only if B is invertible. In this case, the general
theory of symplectic geometry gives the existence of a real C∞ function 8 defined
on graphC H such that

graphC H=
{(

z,−2∂8
∂z
(z)
)
: z ∈ Cn

}
.

2There are different types of generating functions in symplectic geometry, and, as Arnold writes,
“[the apparatus of generating functions] is unfortunately noninvariant and it uses, in an essential
way, the coordinate structure in phase space” [Arnold 1978, Section 47]. For our purposes, we may
take the term “generating function” to broadly mean a scalar-valued function which generates a
symplectomorphism (or, more generally, a Lagrangian submanifold) in the same sense that a potential
function generates a conservative vector field. Our generating functions are denoted by the symbol 8
below.
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Hence if det B 6= 0, then

graphC H=
{(

x + i(Ax + Bξ), ξ + i(Cx + Dξ)
)
: (x, ξ) ∈ R2n}

=
{(

z,−2(∂8/∂z)(z)
)
: z ∈ Cn}

=
{(

p+ iq, B−1(q − Ap)+ i(Cp+ DB−1(q − Ap))
)
: p+ iq ∈ Cn},

where we write z = p+ iq, so that

8(p, q)= 1
2 pT B−1 Ap− pT B−1q + 1

2qT DB−1q. (3)

This function appears in [Folland 1989, Equation (4.54)] and in [Guillemin and
Sternberg 1984, Section 11]. (Note that B−1 A and DB−1 are symmetric since H
is symplectic.) Substituting p = x and q = Ax + Bξ , we arrive at the following
expression, with the obvious abuse of notation:

8(x, ξ)= 1
2 xT AT Cx + xT CT Bξ + 1

2ξ
T BT Dξ. (4)

Or, writing 8 with respect to z and z, we have

8(z)= 1
8 zT (B−1 A+ 2i B−1

− DB−1)z

+
1
4 zT (B−1 A− i(BT )−1

+ i B−1
+ DB−1)z

+
1
8 zT (B−1 A− 2i B−1

− DB−1)z.

Thus (
∂28

∂z j∂zk

)
=

1
4(B
−1 A− i B−1

+ i(BT )−1
+ DB−1).

We can directly compute ωC restricted to graphC H in terms of z and z:

ωC

((
z,−2∂8

∂z
(z)
)
,
(

z′,−2∂8
∂z
(z′)

))
= 4i Im

(∑
j,k

z j

(
∂28

∂z j∂zk

)
z′k

)

= 2
∑
j,k

∂28

∂z j∂zk
(z j z′k − z′j zk).

If we substitute
z = x + i(Ax + Bξ),

z′ = x ′+ i(Ax ′+ Bξ ′),

then after a lengthy mechanical calculation we recover the expression

ωC

((
z,−2∂8

∂z
(z)
)
,
(

z′,−2∂8
∂z
(z′)

))
= 2

∑
j,k

∂28

∂z j∂zk
(z j z′k − z′j zk)= i

(
xT ξ T

)
X(H)

(
x ′

ξ ′

)
.



558 CHRIS HELLMANN, BRENNAN LANGENBACH AND MICHAEL VANVALKENBURGH

2.2. When B is not invertible. When B is not invertible, we seek

8=8(z, θ) ∈ C∞(Cn
×RN )

such that

graphC H=
{(

z,−2
∂8

∂z
(z, θ)

)
:
∂8

∂θ
(z, θ)= 0

}
. (5)

We follow the general method outlined by Guillemin and Sternberg [1977].
Let

W = graphC H, X = {(z, 0); z ∈ Cn
}, Y = {(0, ζ ); ζ ∈ Cn

}.

Since W is an R-Lagrangian subspace, we know that W ∩ Y and PW ⊂ X are
orthogonal with respect to ReωC, where P is the projection onto X along Y . Indeed,

W ∩Y = {(0, ξ+ i Dξ) : ξ ∈ ker B}, PW = {(x+ i(Ax+ Bξ), 0) : (x, ξ) ∈R2n
},

and we can check directly that, with ξ ∈ ker B,

ωC((0, ξ + i Dξ), (x ′+ i(Ax ′+ Bξ ′), 0))= i
[
ξ T (A+ DT )x ′+ ξ T Bξ ′

]
.

Since graphC H is not a C-linear subspace but an R-linear subspace, for now we
prefer to write

W ∩ Y = {(0, ξ ; 0, Dξ) : ξ ∈ ker B},

PW = {(x, 0; Ax + Bξ, 0) : (x, ξ) ∈ R2n
}.

We note that PW ⊕ (W ∩Y ) has real dimension 2n, hence is a Lagrangian subspace
of (R4n,ReωC).

We seek to write graphH as the graph of a function from PW ⊕ (W ∩ Y ) to
a complementary Lagrangian subspace; as a first step, we choose a convenient
symplectic basis. We let {b1, . . . , bk} be an orthonormal basis for ker B and extend
to an orthonormal basis {b1, . . . , bn} for Rn , so that

{(0, b j ; 0, Db j ) : j = 1, . . . , k}

is a basis for W ∩ Y , and

{(0, 0; Bb j , 0) : j = k+ 1, . . . , n} ∪ {(b j , 0; Ab j , 0) : j = 1, . . . , n}

is a basis for PW . We then extend to the following symplectic basis for (R4n,ReωC):

{(0, 0; Ab j , 0) : j = 1, . . . , k} ↔ {(0, b j ; 0, Db j ) : j = 1, . . . , k},

{(0, 0; Bb j , 0) : j = k+ 1, . . . , n} ↔ {(0, ATβ j ; 0, β j ) : j = k+ 1, . . . , n},

{(b j , 0; Ab j , 0) : j = 1, . . . , n} ↔ {(0,−b j ; 0, 0) : j = 1, . . . , n},

(6)
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where the {β j }
n
j=k+1 satisfy{

ATβ j ∈ (ker B)⊥ = Im BT ,

bJ · BTβ j = δJ j for all J ∈ {k+ 1, . . . , n}.
(7)

One advantage of using the particular symplectic basis (6) is that the vectors on the
left are all “horizontal,” and the vectors on the right are all “vertical”. (The arrows
signify the symplectically dual pairs.)

The following proposition implies the existence of {β j }
n
j=k+1.

Proposition 2. The set {Ab1, . . . , Abk, Bbk+1, . . . , Bbn} is a basis for Rn .

Proof. Suppose
k∑

j=1

α j Ab j +

n∑
j=k+1

α j Bb j = 0.

We take the dot product with DbJ , J ∈ {1, . . . , k}, to get α1 = · · · = αk = 0, and
the rest are zero by the linear independence of {Bbk+1, . . . , Bbn}. �

Thus for J ∈ {k+ 1, . . . , n} we can take βJ to be the unique vector orthogonal
to the set

{Ab1, . . . , Abk, Bbk+1, . . . , B̂bJ , . . . , Bbn}

(where the wide hat denotes omission) and satisfying

βJ · BbJ = 1.

We will now describe graphH in terms of the above symplectic coordinate system:
we write a general linear combination of the 4n vectors and find necessary and
sufficient conditions on the coefficients to make the vector in graphH. Explicitly,
we write the general vector in R4n as

k∑
j=1

t ′j (0, 0; Ab j , 0)+
n∑

j=k+1

t ′′j (0, 0; Bb j , 0)+
n∑

j=1

t ′′n+ j (b j , 0; Ab j , 0)

+

k∑
j=1

θ ′j (0, b j ; 0, Db j )+

n∑
j=k+1

θ ′′j (0, ATβ j ; 0, β j )+

n∑
j=1

θ ′′n+ j (0,−b j ; 0, 0) (8)

(the primes are not necessary but are useful for bookkeeping), and we will describe
graphH as (t ′, θ ′′) as a function of (t ′′, θ ′).

We have the following necessary and sufficient conditions for the vector (8) to
be in graphH:
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k∑
j=1

t ′j Ab j −

n∑
j=k+1

θ ′′j ABTβ j +

n∑
j=k+1

θ ′′n+ j Bb j

=−

n∑
j=k+1

t ′′j Bb j −

n∑
j=k+1

θ ′′j C BTβ j +

n∑
j=1

θ ′′n+ j Db j =

n∑
j=1

t ′′n+ j Cb j .

In matrix form, this says:

| | | | | |

Ab1 · · · Abk (−ABTβk+1) · · · (−ABTβn) Bb1 · · · Bbn

| | | | | |

| | | |

0n,k (−C BTβk+1) · · · (−C BTβn) Db1 · · · Dbn

| | | |





t ′

θ ′′



=



| |

(−Bbk+1) · · · (−Bbn) 0n,n

| |

| |

0n,n−k Cb1 · · · Cbn

| |



t ′′


. (9)

We would now like to invert the matrix on the left to get (t ′, θ ′′) as a function of
(t ′′, θ ′). Once we do that, we are close to our goal of expressing graphH in terms
of a generating function 8.

Letting 5 denote the orthogonal projection onto ker B, we find that the inverse
of the matrix on the left side of (9) is

——— Db1 ———
... 0k,n

——— Dbk ———

——— D(5CT B− I )bk+1 ——— ——— Bbk+1 ———
...

...

——— D(5CT B− I )bn ——— ——— Bbn ———

——— (D5AT
− I )Cb1 ——— ——— Ab1 ———
...

...

——— (D5AT
− I )Cbn ——— ——— Abn ———



.
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Thus, defining the functions

f ′′i (t
′′)=

n∑
j=k+1

[Bbi · Db j ]t ′′j +
n∑

j=1

[Bbi ·Cb j ]t ′′n+ j for i = k+ 1, . . . , n,

f ′′n+i (t
′′)=

n∑
j=k+1

[Cbi · Bb j ]t ′′j +
n∑

j=1

[Abi ·Cb j ]t ′′n+ j for i = 1, . . . , n,

we see that (9) is equivalent to the conditions t ′ = 0, θ ′′ = f ′′(t ′′). Noting that

∂ f ′′i
∂t ′′j
=
∂ f ′′j
∂t ′′i

for all i, j ∈ k+ 1, . . . , n,

and defining

F(t ′′)=
1
2

n∑
i=k+1

n∑
j=k+1

t ′′i [Bbi · Db j ]t ′′j

+

n∑
i=k+1

n∑
j=1

t ′′i [Bbi ·Cb j ]t ′′n+ j +
1
2

n∑
i=1

n∑
j=1

t ′′n+i [Abi ·Cb j ]t ′′n+ j ,

we conclude that the vector is in graphH if and only if

t ′ = 0,
∂F
∂t ′′

(t ′′)= θ ′′.

We now define

ϕ(t ′, t ′′; θ ′, θ ′′)= θ ′ · t ′+ F(t ′′)+ (θ ′′− f ′′(t ′′))2.

Then in (t ′, t ′′; θ ′, θ ′′)-coordinates, graphH is given as{(
t ′, t ′′;

∂ϕ

∂t ′
,
∂ϕ

∂t ′′

)
:
∂ϕ

∂θ ′
= 0,

∂ϕ

∂θ ′′
= 0

}
.

Or, written in terms of the standard basis, graphH is the set of values of

k∑
j=1

t ′j (0, 0; Ab j , 0)+
n∑

j=k+1

t ′′j (0, 0; Bb j , 0)+
n∑

j=1

t ′′n+ j (b j , 0; Ab j , 0)

+

k∑
j=1

∂ϕ

∂t ′j
(t, θ)(0, b j ; 0, Db j )+

n∑
j=k+1

∂ϕ

∂t ′′j
(t, θ)(0, ATβ j ; 0, β j )

+

n∑
j=1

∂ϕ

∂t ′′n+ j
(t, θ)(0,−b j ; 0, 0) (10)

subject to the condition that ∂ϕ
∂θ
(t, θ)= 0.
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We return to complex coordinates, in the standard basis; for that purpose we
write the “horizontal” parts of (10) as

z :=
k∑

j=1

i t ′j Ab j +

n∑
j=k+1

i t ′′j Bb j +

n∑
j=1

t ′′n+ j (I + i A)b j .

That is,

Re z =
n∑

j=1

t ′′n+ j b j ,

Im z =
k∑

j=1

t ′j Ab j +

n∑
j=k+1

t ′′j Bb j +

n∑
j=1

t ′′n+ j Ab j .

With the same notation as before, the inverse transformation is given by

t ′j =−b j ·Re z+ Db j · Im z for j ∈ {1, . . . , k},

t ′′j =−ATβ j ·Re z+β j · Im z for j ∈ {k+ 1, . . . , n},

t ′′n+ j = b j ·Re z for j ∈ {1, . . . , n}.

(11)

We write the “vertical” part of (10) as:

Re ζ =
k∑

j=1

∂ϕ

∂t ′j
(t, θ)b j +

n∑
j=k+1

∂ϕ

∂t ′′j
(t, θ)ATβ j −

n∑
j=1

∂ϕ

∂t ′′n+ j
(t, θ)b j ,

Im ζ =

k∑
j=1

∂ϕ

∂t ′j
(t, θ)Db j +

n∑
j=k+1

∂ϕ

∂t ′′j
(t, θ)β j .

(12)

Using t = t (z) to denote the transformation (11), we define

8(z, θ) := ϕ(t (z), θ),

so that (12) says

ζ =−2
∂8

∂z
(z, θ).

In summary, we now have the following expression for graphC H:

graphC H=
{(

z,−2
∂8

∂z
(z, θ)

)
:
∂8

∂θ
(z, θ)= 0

}
, (13)

where the θ ∈ R2n are considered as auxiliary parameters, as in (5).
As for ωC

|graphC H, we use the expression

∂8

∂z
(z, θ)=

∂28

∂z∂θ
· θ +

∂28

∂z2 · z+
∂28

∂z∂z
· z
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to compute

ωC

((
z,−2∂8

∂z
(z, θ)

)
,
(
w,−2∂8

∂z
(w, η)

))
= 2z · ∂8

∂z
(w, η)− 2w · ∂8

∂z
(z, θ)

= 2
n∑

j=1

2n∑
`=1

∂28

∂z j∂θ`
(z jη`−w jθ`)+2

n∑
j,m=1

∂28

∂z j∂zm
(z jwm−w j zm), (14)

where the variables are related by the conditions

∂8

∂θ
(z, θ)= 0 and

∂8

∂θ
(w, η)= 0.

Of course, from Section 1, we know that (14) is equal to

i
(
xT ξ T

)
X(H)

(
x ′

ξ ′

)
, (15)

where

z = x + i(Ax + Bξ),

−2
∂8

∂z
(z, θ)= ξ + i(Cx + Dξ),

w = x ′+ i(Ax ′+ Bξ ′),

−2
∂8

∂z
(w, η)= ξ ′+ i(Cx ′+ Dξ ′).

This completes the proof of the theorem.

We leave it as an illustrative exercise for the reader to compute 8 and its deriva-
tives in the special cases when B = 0 and when B is invertible (to be compared
with the generating function (3) in Section 2.1).

3. Application: the metaplectic representation

In the previous section, we showed how to associate to a linear symplectomorphism
H a (real-valued) generating function 8. For the purposes of Fresnel optics and
quantum mechanics one then associates to the generating function 8 an oscillatory
integral operator

µ(H) : S(Rn)→ S ′(Rn), u 7→ a h−3n/2
∫∫

ei8(x+iy,θ)/hu(x) dx dθ. (16)

The map µ :H→ µ(H) is called the metaplectic representation of the symplectic
group, and µ(H) is said to be the “quantization” of the classical object H. As
defined, the operator µ(H) maps Schwartz functions to tempered distributions, but
in fact it extends to a bounded operator on L2(Rn); we choose a so that µ(H) is
unitary on L2(Rn), and here h > 0 is a small parameter. These are the operators
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of “Fresnel optics,” a relatively simple model theory for optics which accounts for
interference and diffraction, describing the propagation of light of wavelength h
[Guillemin and Sternberg 1984]. For the analytic details we refer the reader to a
text in semiclassical analysis [Dimassi and Sjöstrand 1999]; here we only show that
the standard conditions are indeed satisfied.

The above (real-valued) generating function 8, for an arbitrary H ∈ Sp(2n,R),
has the property that the 1-forms d(∂8/∂θ1), . . . , d(∂8/∂θ2n) are linearly indepen-
dent. Equivalently, with the notation from the previous section, the matrix

∂28

∂(Re z)∂θ ′
∂28

∂(Re z)∂θ ′′

∂28

∂(Im z)∂θ ′
∂28

∂(Im z)∂θ ′′

∂28

∂θ ′2
∂28

∂θ ′∂θ ′′

∂28

∂θ ′′∂θ ′
∂28

∂θ ′′2


=



| |

(−b1) · · · (−bk) ∗

| |

| |

Db1 · · · Dbk ∗

| |

0k,k 0k,(2n−k)

0(2n−k),k 2I(2n−k),(2n−k)


has linearly independent columns. (The asterisks denote irrelevant components.)
This condition says that quadratic form 8 = 8(z, θ) is a nondegenerate phase
function in the sense of semiclassical analysis [Dimassi and Sjöstrand 1999].

Folland writes: “it seems to be a fact of life that there is no simple description of
the operator µ(A) that is valid for all A ∈ Sp” [Folland 1989, p. 193]; however, we
believe that (16), combined with our construction of 8 in the proof of Theorem 1,
is such a description.

4. Conclusion

The open problem and results presented in this paper were motivated by the basic
question of the relationship between real and complex symplectic linear algebra.
Our approach to this question was to consider a real symplectomorphism as a
Lagrangian submanifold with regard to the real part of a complex symplectic form.
We believe the resulting problem of the nature of the restriction of the imaginary
part of the complex symplectic form to this submanifold (formally, X(H) for a
symplectomorphism H) is relevant to the structure of the real symplectic group.
(We direct the reader to the Appendix for a list of properties of X and reformulations
of our open problem which lend credence to this belief.) Accordingly, we view the
main result of this paper as primarily a means for further investigation of the open
problem of the image of X. In addition to solving our open problem, we believe
that, in line with our generating function formulation, it would be interesting to
have a “complexified” theory of the calculus of variations. At present we only have
trivial extensions of the real theory.
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Appendix

A. Elementary properties of X. We first note some standard facts about symplectic
matrices that are used throughout the paper; for further information, see, for example,
[Cannas da Silva 2001] or [Folland 1989]. We write

J =
(

0 −I
I 0

)
for the matrix representing the standard symplectic form.

Proposition 3 [Folland 1989]. Let H ∈ GL(2n,R). The following are equivalent:

(1) H ∈ Sp(2n,R).

(2) HTJH= J .

(3) H−1
= JHTJ −1

=

(
DT
−BT

−CT AT

)
.

(4) HT
∈ Sp(2n,R).

(5) AT D−CT B = I , AT C = CT A and BT D = DT B.

(6) ADT
− BCT

= I , ABT
= B AT and C DT

= DCT .

While X may be extended to all of M2n(R),

X : M2n(R)→ so(2n,R), M 7→ J M +MTJ , (1)

for purposes of our open problem the resulting linearity of X does not seem to help
when X is restricted to Sp(2n,R).

The following proposition presents some of the most interesting elementary
linear algebraic properties of X, which follow immediately from the definition.

Proposition 4. Let X : M2n(R)→ so(2n,R) be defined as above. Then:

(1) ker(X)= sp(2n,R), the symplectic Lie algebra.

(2) For any H ∈ Sp(2n,R), X(H)= J (H+H−1).
In particular, for U ∈ U (n) =

{( A −B
B A

)
∈ Sp(2n,R)

}
we have U−1

= UT ,
so X(U)= J (U +UT ).

(3) For any H ∈ Sp(2n,R), X(H) is invertible (equivalently, ImωC
|graphH is

nondegenerate) if and only if −1 is not a member of the spectrum of H2.

(4) For H,R ∈ Sp(2n,R), we have HTX(R)H= X(H−1RH).

We now take some examples.



566 CHRIS HELLMANN, BRENNAN LANGENBACH AND MICHAEL VANVALKENBURGH

Examples of symplectic matrices and their images under X.

(1)
(

A 0
0 (AT )−1

)
7→

(
0 −AT

− (AT )−1

A+ A−1 0

)
.

In particular, (
I 0
0 I

)
7→

(
0 −2I

2I 0

)
= 2J .

(2) For B = BT , (
I B
0 I

)
7→

(
0 −2I

2I 0

)
.

(3) For C = CT , (
I 0
C I

)
7→

(
0 −2I

2I 0

)
.

(4) J =
(

0 −I
I 0

)
7→

(
0 0
0 0

)
.

(5) For t ∈ R,(
(cos t)I (−sin t)I
(sin t)I (cos t)I

)
7→

(
0 −2(cos t)I

2(cos t)I 0

)
.

(6) For any H ∈ Sp(2n,R), we have X(H)= X(H−1).

Thus in Examples (2) and (3), graphC H is an RI -subspace (R-Lagrangian and
I-symplectic). And in Example (4), graphC H is a C-Lagrangian subspace (R-
Lagrangian and I-Lagrangian).

The exact nature of the image of X is an open question. The following is a partial
result

Proposition 5. For each k ∈ {0, 1, . . . , n}, there exists Hk ∈ Sp(2n,R) such that
rank(X(Hk)) = 2k. Moreover, for any H ∈ Sp(2n,R), we have kerX(H) =
ker(H2

+ I ).

Proof. We fix k ∈ {0, 1, . . . , n} and write

(x, ξ)= (x ′, x ′′, ξ ′, ξ ′′), x ′, ξ ′ ∈ Rk, x ′′, ξ ′′ ∈ Rn−k .

Let

Hk(x ′, x ′′, ξ ′, ξ ′′)= (x ′,−ξ ′′, ξ ′, x ′′).



LINEAR SYMPLECTOMORPHISMS AS R-LAGRANGIAN SUBSPACES 567

The matrix representation of Hk is
Ik 0k

0n−k −In−k

0k Ik

In−k 0n−k

 ∈ Sp(2n,R).

Then

X(Hk)=


−2Ik

0n−k

2Ik

0n−k

 ,
so that

rank(X(Hk))= 2k.

The last statement of the proposition follows from (1). �

B. Restatement of the problem. It is sometimes convenient to work with the ex-
tension of X to all of M2n(R):

X(M)= J M +MTJ .

Then X :M(2n,R)→ so(2n,R) is a linear epimorphism with kernel sp(2n,R), the
symplectic Lie algebra (see, for example, [Folland 1989, Proposition 4.2]). Thus
the map X|Sp(2n,R) is surjective if and only if every element of the quotient space
M(2n,R)/sp(2n,R) contains a symplectic matrix. So our question is:

Question. Can every M∈M(2n,R) be written as M=H+A for some H∈Sp(2n,R)

and some A ∈ sp(2n,R)?

Proposition 6. Every M ∈M(2n,R)/sp(2n,R) has a unique representative of the
form (

0 S2

S3 D

)
,

where S2 and S3 are skew-symmetric.

Proof. Existence: let

M =
(

M1 M2

M3 M4

)
∈M(2n,R).

Since
(
α β
γ δ

)
∈ sp(2n,R) if and only if δ=−αT , β = βT , γ = γ T , we may replace

M by

M̃ = M −
(

M1
1
2(M2+MT

2 )
1
2(M3+MT

3 ) −MT
1

)
=

(
0 1

2(M2−MT
2 )

1
2(M3−MT

3 ) M4+MT
1

)
.
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Uniqueness: suppose(
0 S2

S3 D

)
=

(
0 S ′2
S ′3 D′

)
∈M(2n,R)/sp(2n,R),

with the S j and S ′j skew-symmetric. Thus(
0 S2−S ′2

S3−S ′3 D−D′

)
=

(
α β

γ −αT

)
∈ sp(2n,R).

This shows that S j −S ′j is symmetric and skew-symmetric, hence zero, and it is
clear that D = D′. �

Thinking geometrically, we are to find the projection of Sp(2n,R) onto{(
0 S2

S3 D

)
: S2,S3 skew-symmetric

}
along sp(2n,R). That is, let H=

(
A B
C D

)
∈ Sp(2n,R). Then

π(H)=
(

0 1
2(B− BT )

1
2(C −CT ) AT

+ D

)
.

Is every (
0 S2

S3 D

)
of this form?

For a possible simplification, the map

Y : Sp(2n,R)→ so(2n,R), H 7→ X(−JH)=H−HT ,

has the same image as X : Sp(2n,R)→ so(2n,R) and may be easier to understand.
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