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We present new results regarding the periodicity of outer billiards in the hyper-
bolic plane around polygonal tables which are tiles in regular two-piece tilings of
the hyperbolic plane.

1. Introduction

Outer billiards is a simple dynamical system introduced by B. H. Neumann [1959].
J. Moser [1973; 1978] popularized outer billiards as a toy model for planetary motion
as a means of finding possible unbounded orbits. Since then, many mathematicians
have asked and answered questions about outer billiards systems in various geome-
tries. For example, C. Culter proved in 2004 the existence of periodic orbits for
polygonal tables in the Euclidean plane (the proof is presented by S. Tabachnikov
[2007]). R. Schwartz [2007; 2009] answered, in the affirmative, Moser’s question
about the existence of unbounded orbits for certain polygons.

The main motivation for this paper is a result of Vivaldi and Shaidenko [1987]
that in the Euclidean case, outer billiards associated to quasirational polygons
have all orbits bounded; see also [Kołodziej 1989; Gutkin and Simányi 1992].
As a consequence, all orbits about a lattice polygon in the Euclidean plane are
periodic. We continue the work of Dogru and Tabachnikov [2003], who studied the
relationship between one-tile regular tilings of the hyperbolic plane and the outer
billiards system.

For a detailed account of hyperbolic geometry and the hyperbolic plane, we direct
the reader to [Greenberg 1980], and for a survey of outer billiards, see [Tabachnikov
and Dogru 2005; Tabachnikov 2005].

2. Definitions

The outer billiard map associated to a convex polygonal table P in the hyperbolic
plane is defined as follows. For a point x 2 H2 nP , there are two lines that pass
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Figure 1. Outer billiards map in the Klein model.

through x and are tangent to the table P . By convention, we consider the tangent
line for which P is on the left, from the point of view of x. Then we reflect x about
the tangency (support) point to get T .x/ (see Figure 1). The map is well-defined
whenever the tangency point is unique and so we are able to define the map T on
the entire hyperbolic plane except for the clockwise continuations of the sides of P

(see Figure 1) and their preimages under T . An immediate consequence of the
definition is that T is a piecewise isometry.

Likewise, the inverse map T �1 is not defined on the counterclockwise continua-
tions of the sides of P . We define the web associated to P to be the union of all
preimages under T of the clockwise continuation of the sides and of all preimages
under T �1 of the counterclockwise continuation of the sides. For each connected
component of the complement of the web, the restriction of the map T n to that
component is defined by a single isometry of the hyperbolic plane for every n 2 Z.
That means that each connected component of the complement of the web maps as
a whole under the iterations of T .

Another feature of the billiards map T is that it extends continuously to a
continuous circle map t W S1 ! S1 at infinity. The map t is defined using the
same reflecting procedure. In this case, the uniqueness of the support point is not
needed since the distance between our initial point and the support point is infinite
no matter the choice, and hence the map t is well-defined for every point at infinity.
Since t is a circle map, it has a well-defined Poincaré rotation number �.t/, and
we will prove in Section 3 that �.t/ encodes information about the combinatorial
dynamics of the outer billiards.
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3. Outer billiards on tilings

We are studying the hyperbolic outer billiards map associated with a polygonal
table that is part of a two-piece regular tiling of the hyperbolic plane. These tilings
use two polygonal pieces, a regular M -gon and a regular N -gon that meet four
in each vertex (see Figure 2). We describe the combinatorial dynamics for outer
billiards around one of the M -gons. We note that the web associated to such a map
will fall exactly on the grid lines of the tiling. This is because the reflection around
a vertex of the table tile is just a rotation by 180ı around vertices in the tiling. It
follows that each tile maps as a whole under iterations of T .

3.1. Previous results. Previous results describing outer billiards of tiles in the
hyperbolic plane are obtained in [Dogru and Tabachnikov 2003]. In this paper, the
authors have proved that every orbit of the outer billiard map around a right-angled
regular n-gon, for n� 5, is periodic. Any right-angled regular n-gon generates a
tiling of the hyperbolic plane entirely consisting of n-gons. The theorems proven in
the next sections have the same flavor as Theorem 4 in the above mentioned paper.

Define the rank of a tile as the minimum number of sides that one has to cross,
when starting inside the table, to get to the given tile. This means that tiles that
have one common side with the table have rank 1, and tiles that have a common
side with a tile of rank 1 have rank 2, and so on.

Figure 2. Example of .M;N /-tiling for .M;N /D .6; 7/.
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Theorem 1 [Dogru and Tabachnikov 2003]. For a tiling of regular n-gons meeting
in four, n� 5, the dual billiard map T preserves the rank of a tile, and every orbit
of T is periodic. The set of rank k tiles consists of

qk D n
�k

1
��k

2

�1��2

elements, where

�1;2 D
n� 2˙

p
n.n� 4/

2

are the roots of the equation �2� .n� 2/�C 1D 0. The action of T on the set of
rank k tiles is a transitive cyclic permutation i 7! i Cpk , where

pk D
�k�1

1
��k�1

2

�1��2

C
�k

1
��k

2

�1��2

:

The rotation number of the dual billiard map at infinity is given by the formula

�.t/D lim
k!1

pk

qk

D
n�

p
n.n� 4/

2n
:

The proof of this theorem uses geometric arguments for the periodicity of orbits
and recurrence formulas for computing the number of tiles in each rank and the
rotation number of t (see [Dogru and Tabachnikov 2003] for details). The authors
make an important remark that the representation of �1 (and so the rotation number
of the map at infinity) as a continued fraction encodes the dynamics of the tiles
under the billiard map T . We will deduce similar results for two-piece tilings.

3.2. New results. Our results extend Theorem 1 to two-piece regular tilings of the
hyperbolic plane. We will denote a tiling of regular M -gons and regular N -gons
as an .M;N /-tiling, and we will always consider the table to be an M -gon. Such
an .M;N /-tiling exists if 1

M
C

1
N
< 1

2
. As mentioned earlier, these tilings have

four shapes meeting at each vertex, two M -gons and two N -gons.

3.2.1. Triangles and N -gons. Most of the geometric arguments used here are
analogous to those used by Dogru and Tabachnikov. Our counting arguments are
different, although they are also based on recurrence relations.

Let us introduce a more general notation for rank in order to avoid cumbersome
indexing. Observe that the layer of tiles of rank k includes tiles of the same type
(all M -gons or all N -gons) and as rank changes by one, that shape changes. So
triangles always have even rank and N -gons always have odd rank. We will say
that a rank 2k�1 tile is a rank k N -gon and a rank 2k tile is a rank k triangle. The
rest of this section is dedicated to describing the dynamics of the billiard map T in
the .3;N /-tilings through the proof of the following theorem:
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Theorem 2. For a .3;N /-tiling, N � 7, the outer billiard map T preserves the
rank of a tile and every orbit of T is periodic. The set of rank k N -gons consists of

qk D
1

p
N � 6

.ˆ2k�3
1 Cˆ2k�3

2 /Cˆ2k�2
1 Cˆ2k�2

2

elements and the set of rank k triangles consists of

lk D
N � 4
p

N � 6
.ˆ2k�3

1 Cˆ2k�3
2 /C .N � 3/.ˆ2k�2

1 Cˆ2k�2
2 /

elements, where

ˆ1;2 D

p
N � 6˙

p
N � 2

2

are the two roots of the equation

ˆ2
�
p

N � 6ˆ� 1D 0:

The action of T on the set of rank k N -gons is a cyclic permutation i 7! i Cpk ,
where

pk D
qk

3
C

ˆ2k�4
1

�ˆ2k�4
2p

.N � 6/.N � 2/
C
ˆ2k�3

1
�ˆ2k�3

2
p

N � 2
;

and the action of T on the set of rank k triangles is also a cyclic permutation
i 7! i C jk , where

jk D
lk

3
C .N � 4/

ˆ2k�4
1

�ˆ2k�4
2p

.N � 6/.N � 2/
C .N � 3/

ˆ2k�3
1

�ˆ2k�3
2

p
N � 2

:

The rotation number of the outer billiard map at infinity is given by the formula

�.t/D lim
k!1

pk

qk

D lim
k!1

jk

lk
D

1

3
C

1

3.1Cˆ2
1
/
D

1

3
C

1

3
p

N � 2ˆ1

:

Theorem 2 contains many independent results and for reasons of clarity we will
prove them one by one as claims.

Claim 3. Every orbit of T is periodic.

Proof. The proof of this result is written in much detail in [Dogru and Tabachnikov
2003]. We will present here a sketch of it and will refer the reader to the above
work for detailed explanations. The statement of the claim is a consequence of the
following lemma:

Lemma 4. The rank of a tile is preserved under T .

Proof of lemma. The proof is by induction on the rank, based on geometrical observa-
tions. Observe that rank 1 tiles are preserved by T and notice that every rank k tile is
adjacent to a rank k�1 tile, where these two tiles map together under a single appli-
cation of T . These two facts complete the base case and the step of the induction. �
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Figure 3. Special case for Lemma 6.

From Lemma 4, since there are finitely many tiles of rank k, every tile must
eventually map back to itself after m iterations, for some natural number m. Hence
the m-th iteration of T maps the entire tile to itself. This implies that T ım (the
composition of T with itself m times) is a rotation by either 2�j=N (for N -gons)
or 2�j=3 (for triangles) around some point inside the tile. Hence T ıN m restricted
to that tile is the identity if the tile is an N -gon and T ı3m restricted to that tile is
the identity if the tile is a triangle. We conclude that every orbit of T is periodic.

�
Claim 5. For every k � 1, T permutes the rank k tiles cyclically.

Proof. This claim is an immediate corollary to the following lemma:

Lemma 6. Any two consecutive rank k tiles are mapped to two consecutive rank k

tiles.

Proof of lemma. We know by Lemma 4 that the rank of two tiles is preserved
under T . If the two consecutive tiles are not separated by a clockwise continuation
of one of the sides of the table then their common point is mapped, together with the
two tiles, through the same vertex. Thus the tiles are mapped to two consecutive tiles.

If the two tiles are separated by such a continuation of one side of the table then
the argument is more involved. A similar argument is presented in [Dogru and
Tabachnikov 2003]. Figure 3 gives a pictorial representation of the situation. The
first tile is reflected in O1, while the second one is reflected in O2. What remains
to prove is that A0=B0 so that the images of the two tiles still touch in one point.
The following sequence of equalities completes the proof:

A0O2DA0O1�O1O2DBO1CAB�O1O2DBO1CO1O2DBO2DB0O2: �

In order to compute the formulas for qk ;pk ; jk ; lk , we first explain why the
tiling we are working with has an intrinsic self-similar geometric structure. We will
refer from now on to this self-similar structure as the crochet pattern. To describe
the crochet pattern, we consider N -gons to be of two types, X -type and Y -type (see
Figure 4). Type X N -gons have two parents in the sense that they touch two N -
gons of the previous rank, while type Y N -gons touch only one parent. The rank 1
N -gons are of neither of the types, having zero parents, so we call them type 0
N -gons. (This is why our counting argument begins with counting rank 2 N -gons.)
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The following claim gives an intuitive explanation of why we call this self-similar
structure of the tiling a crochet pattern.

Claim 7. When passing from the k-th layer of N -gons to the .kC1/-th layer of
N -gons, we apply the replacement rules

X !XY N�6;

Y !XY N�5;

i.e., when incrementing rank of the layer by 1, every X gets replaced by an X

followed by N�6 Y s, and every Y gets replaced by an X followed by N�5 Y s.

Proof. The methods used to prove this claim have been developed by Poincaré, and
we will not dwell on the details here. The reader can find extensive explanation in
The Symmetry of Things [Conway et al. 2008].

Instead, we will illustrate the methods used to prove the claim in the case of
N D7 in order to give the geometrical intuition behind the proof. Figure 4 illustrates
the local and global behavior of a .3; 7/-tiling.

In the local picture, the difference between a type X 7-gon and a type Y 7-gon
is encoded in the different types of degenerate heptagons we associate to them. We
associate to the Y -type heptagon a rectangle with three additional points on the upper
side, while to the X -type heptagon we associate a rectangle with two additional
points on the upper side and one on the lower side since it has two parents. Now by
reducing the triangles in the global picture to points, we notice that the heptagons
must meet three in each vertex. This results in the crochet pattern shown in Figure 4.
This crochet pattern immediately implies the claimed replacement rules. �

X Y Y X Y X Y Y X

Y X Y

Y

Y

X

Y

YY

X

Y

Y

Y
X

Y

0

0

0

X

Y X
Y Y

X

big
cone

small
cone

table

Figure 4. The .3; 7/-tiling.
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We can now use this crochet pattern to start our counting argument in order to
get the exact numbers in Theorem 2.

Claim 8. The formulas for qk ;pk ; jk ; lk hold as stated in Theorem 2.

Proof. Denote the number of X -type and Y -type N -gons of rank k by xk and yk

and use Claim 7 to obtain the system of linear difference equations�
xk

yk

�
D

�
1 1

N � 6 N � 5

��
xk�1

yk�1

�
:

The initial configuration is
�

x2

y2

�
D
�

3
3.N�4/

�
because there must be three rank 2

N -gons with two parents, and the rest of the vertices of the rank 1 N -gons must
serve as an anchor for a different Y -type rank 2 N -gon. Solving this recurrence
gives the general term formula

�
xk

yk

�
D 3

 
1p

N�6
.ˆ2k�3

1
Cˆ2k�3

2
/

ˆ2k�2
1

Cˆ2k�2
2

!
;

where

ˆ1 D

p
N � 2C

p
N � 6

2
and ˆ2 D

�
p

N � 2C
p

N � 6

2
:

From here the formula for qk D xk Cyk follows immediately.
To count the triangles of rank k, we observe that the triangles of rank k are the

next layer after the N -gons of rank k, and each X -type N -gon is replaced by N�4

triangles and each Y -type is replaced by N�3 triangles. Hence the formula for
lk D .N � 4/xk C .N � 3/yk can be computed.

In order to count how many rank k N -gons T jumps, i.e., pk , we need to define
sk as the number of rank k N -gons in a small cone, as can be seen in Figure 4. A
small cone is opposite one of the triangle’s vertices and doesn’t contain any side of
the triangle. In the same way, a big cone (see Figure 4) is opposite one of the sides
of a triangle and contains the table. The number of rank k N -gons in a big cone is
just qk=3� sk because of the 3-fold symmetry of the tiling.

As above, we need to introduce xs
k

and ys
k

, the number of X -type and Y -type
rank k N -gons in a small cone. With this, sk D xs

k
Cys

k
. The billiard map T makes

any tile jump over two small cones and one big cone so in total it will jump

pk D 2sk C

�qk

3
� sk

�
D

qk

3
C sk :

By studying the structure of the small cone, we observe the crochet pattern once
again. One notices that the cone that starts at the last X -type N -gon of the rank k

(k � 2) layer looks exactly the same as the initial small cone. That is why sk is
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equal to the total number of N -gons obtained by starting with an X -type N -gon
and using the replacement rules in Claim 7. We express this as a sum,�

xs
k

ys
k

�
D

k�2X
iD0

�
1 1

N �6 N �5

�i �
1

0

�
;

which, after some computation, becomes

�
xs

k

ys
k

�
D

0BBBB@
1C

ˆ2k�4
1

�ˆ2k�4
2p

.N � 6/.N � 2/

�1C
ˆ2k�3

1
�ˆ2k�3

2
p

N � 2

1CCCCA :
The formula for pk D qk=3Cxs

k
Cys

k
follows immediately, and jk is computed

in the same manner as lk was computed. As we have already said, every X type
N -gon is replaced by N�4 triangles and every Y type N -gon is replaced by N�3

triangles on the next level, and this procedure leaves uncounted only one rank k

triangle in the small cone, so jk D .N � 4/xs
k
C .N � 3/ys

k
C 1. �

Claim 9. The rotation number �.t/ equals

1

3
C

1

3.1Cˆ2
1
/
D

1

3
C

1

3
p

N � 2ˆ1

:

Proof. The k-th layer of N -gons gives a discrete approximation of the circle map
at infinity and so pk=qk is an approximation of �.t/ as k goes to1. By taking the
limit we obtained the desired formula for the rotation number �.t/. �

This last claim completes the proof of all the statements in Theorem 2.

Remark 10. (1) One might expect the formulas in Theorem 2 to also work for
N D 6, i.e., a .3; 6/-tiling of the Euclidean plane. That is not the case even
though the crochet pattern works exactly the same also in the .3; 6/-tiling. The
difference that appears when computing the formulas in the .3; 6/-tiling is that
the matrix of the difference system is not diagonalizable and so its powers
look completely different.

(2) Note that the determinant of all the matrices given by the crochet pattern is 1.
We believe this is true because the crochet pattern replacement can also be re-
versed, i.e., starting with the rank k layer, we can construct the rank k�1 layer.

(3) According to Theorem 2, one can express the eigenvalues ˆ1 and ˆ2D 1=ˆ1

via the rotation number �.t/. Therefore this rotation number determines the
numbers qk ; lk ;pk ; jk , and hence the whole dynamics of the map T .
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3.2.2. General .M;N /-tilings. Next we consider the case of a general .M;N /-
tiling. The theorem and subsequent proof are analogous to those in the .3;N / case in
the previous subsection, but we must consider the cases separately due to a difference
in the counting method. In the previous section, N -gons were classified into types
X and Y , having two parents and one parent, respectively. However, due to the
difference in geometry of triangles versus generic M -gons, the tilings in the M � 4

case never produce N -gons with two parents. In this case, N -gons either have one
parent or no parent, which we denote as types Y and Z. This alternate counting
method will be explained in detail in the proof, but first we state the theorem:

Theorem 11. For an .M;N /-tiling with M;N � 4 and

1

M
C

1

N
<

1

2
;

the outer billiard map T preserves the rank of a tile and every orbit of T is periodic.
The set of rank k N -gons consists of

qk D
M

p
b2� 4

�
.bC 1/.˛2k�2

1 �˛2k�2
2 /� .˛2k�4

1 �˛2k�4
2 /

�
elements, and the set of rank k M -gons consists of

lk D
M.N � 2/
p

b2� 4

�
b.˛2k�2

1 �˛2k�2
2 /� .˛2k�4

1 �˛2k�4
2 /

�
elements, where b D .M � 2/.N � 2/� 2 and

˛1;2 D

p
b� 2˙

p
bC 2

2

are the two roots of the equation ˛2�
p

b� 2˛� 1D 0. The action of T on the set
of rank k N -gons is a cyclic permutation i 7! i Cpk , where

pk D
qk

M
C

M � 2

.b� 2/
p

bC 2

�
.b� 1/.˛2k�3

1 �˛2k�3
2 /� .˛2k�5

1 �˛2k�5
2 /

�
;

and the action of T on the set of rank k M -gons is also a cyclic permutation
i 7! i C jk , where

jk D
lk

M
C

1

.b� 2/
p

bC 2

�
.b2
� 2/.˛2k�3

1 �˛2k�3
2 /� b.˛2k�5

1 �˛2k�5
2 /

�
:

The rotation number of the outer billiard map at infinity is given by the formula

�.t/D
1

M
C

M � 2

M
p

b� 2˛1

.b� 1/˛2
1
� 1

.bC 1/˛2
1
� 1

:

Remark 12. If N DM , the statement of Theorem 11 reduces to that of Theorem 1.
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Figure 5. A .4; 5/-tiling, with rank 1 and rank 2 pentagons labeled
either as type Y (one parent) or as type Z (no parents).

The proof of Theorem 11 also consists of several steps.

Claim 13. Every orbit of T is periodic.

Proof. The proof of this claim is analogous to the proof in the previous section.
Because the rank of each tile is preserved under the billiard map, and because there
are finitely many tiles of a given rank, every tile must map back to itself after some
finite number of iterations m. When the tile maps back to itself, it has rotated by
2�j=M if it is an M -gon or by 2�j=N if it is an N -gon. Then T ımM is the
identity if the tile is an M -gon and T ımN is the identity if the tile is an N -gon. �
Claim 14. For every k � 1, T permutes the rank k tiles cyclically.

Proof. Proof is similar to that for Claim 5. �
Recall that type Y tiles have one parent and type Z tiles have zero parents (see

Figure 5). We now give a crochet pattern for general .M;N /-tilings, M � 4.

Claim 15. The following replacement rules hold for .M;N /-tilings:

Y ! .YZM�3/N�4YZM�4; (1)

Z! .YZM�3/N�3YZM�4: (2)

Proof. In a similar manner to the .3;N / case, we represent type Y and Z tiles
as degenerate polygons, with additional vertices. See Figure 6 for illustrations of
the .4; 5/ case. Type Y tiles are represented as quadrilaterals with N vertices, and
type Z tiles are represented as triangles with N vertices. Because a Y tile has
N�3 sides available to connect with a tile of higher rank, a rank k Y tile produces
N�3 Y tiles of rank kC 1. Then, since tiles must meet M to a vertex, there must
be M�3 Z tiles between every pair of Y tiles, and there must be M�4 type Z
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� � ��� � � �����

Y Y

Z Z Z

Y Y Y

Y Z

Y ! YZY Z! YZYZY

Figure 6. Tiling of pentagons meeting in fours. Can be extended
to a .4; 5/-tiling.

tiles following the last Y . Similarly, a Z tile has N � 2 edges free to connect to a
tile of higher rank, so a rank k Z tile produces N�2 Y tiles of rank kC1, again
with Z tiles appropriately interspersed.

This crochet pattern tiles the hyperbolic plane with M N -gons meeting at every
vertex. From this tiling, we obtain the .M;N /-tiling by considering the points in
the tiling becoming M -gons, as in Figure 7 (compare with [Conway et al. 2008]).
The described crochet pattern translates to the replacement rules given above. �

We can now compute the formulas for the number of M - and N -gons of any
rank, as well as for the cyclic permutation of M - and N -gons of any rank.

Claim 16. The formulas for qk ;pk ; jk ; lk hold as stated in Theorem 11.

Proof. Denoting the number of Y -type and Z-type N -gons of rank k by yk and zk ,

Figure 7. Left: Tiling of the plane by hexagons meeting in fives.
Right: by replacing the vertices in the previous picture with pen-
tagons, we achieve a .5; 6/-tiling. Here two hexagons and two
pentagons meet at each single vertex.
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we obtain the recursion formula�
yk

zk

�
DA

�
yk�1

zk�1

�
; (3)

where the matrix A is obtained from the rules given in (1) and (2), and

AD

�
N � 3 N � 2

.M � 3/.N � 3/� 1 .M � 3/.N � 2/� 1

�
: (4)

As mentioned above, the initial conditions are
�

y1

z1

�
D
�

0
M

�
.

Solving the recurrence, we find the general formula

 
yk

zk

!
D

0BBB@
M.N �2/.˛2k�2

1 �˛2k�2
2 /

p
b2�4

M..M�3/.N �2/�1/.˛2k�2
1
�˛2k�2

2
/CM.˛2k�4

2
�˛2k�4

1
/

p
b2�4

1CCCA ;
where

b D .M � 2/.N � 2/� 2; ˛1 D

p
b� 2C

p
bC 2

2
; ˛2 D

p
b� 2�

p
bC 2

2
:

Then qk D yk C zk , so

qk D
M

p
b2� 4

�
.bC 1/.˛2k�2

1 �˛2k�2
2 /C˛2k�4

2 �˛2k�4
1

�
:

Now that we have counted the N -gons, we count the M -gons of rank k by
noticing a pattern in the tiling. We see that a type Y N -gon of rank k produces
N�3 M -gons of rank k, and a type Z N -gon produces N�2 M -gons. Thus the
number of M -gons of rank k is given by lk D .N �3/ykC.N �2/zk . The formula
for lk given in Theorem 11 follows.

Next we determine pk by counting how many tiles a rank k N -gon jumps
when T is applied. As in the previous section, we define sk as the number of rank
k N -gons in a small cone. We call ys

k
and zs

k
the number of rank k Y s and Zs in

the small cone. Also, as before, applying T to any tile causes the tile to jump over
two small cones and one big cone. In total, the jump is given by pk D sk C qk=M .

We observe that �
ys

k

zs
k

�
D

k�2X
iD0

Ai

�
2

M � 4

�
; (5)

where A is given in (4).
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This becomes

 
ys

k

zs
k

!
D

0BBB@
1�˛2k�2

1

1�˛2
1

C
2

p
b2�4

1�˛2k�2
2

1�˛2
2

.˛2
1
�N C 3/

1
p

b2�4

�
1�˛2k�2

1

1�˛2
1

.B �˛2
2
.M � 4//C

1�˛2k�2
2

1�˛2
2

.�BC˛2
1
.M � 4//

�
1CCCA ;

where B D .M � 3/.b� 2/C .M � 4/. Then, since sk D ys
k
C zs

k
, we have

sk D
M � 2

.b� 2/
p

bC 2

�
.b� 1/.˛2k�3

1 C˛2k�3
2 /C˛2k�5

2 �˛2k�5
1

�
:

This allows us to calculate pk , and we can compute jk by noticing again that every
Y -type N -gon will be replaced by N�3 M -gons and every Z-type .N�2/-gon
will be replaced by N�3 M -gons on the next level. This procedure will leave again
only one M -gon out, so jk D .N � 3/ys

k
C .N � 2/zs

k
C 1. �

Claim 17. The rotation number is given by

�.t/D
1

M
C

M � 2

M
p

b� 2˛1

.b� 1/˛2
1
� 1

.bC 1/˛2
1
� 1

:

Proof. This results from taking the limit of pk=qk as k!1. �
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