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In the paper “What is special about the divisors of 24?”, Sunil Chebolu proved
an interesting result about the multiplication tables of Zn from several different
number theoretic points of view: all of the 1s in the multiplication table for Zn

are located on the main diagonal if and only if n is a divisor of 24. Put another
way, this theorem characterizes the positive integers n with the property that the
proportion of 1s on the diagonal is precisely 1. The present work is concerned
with finding the positive integers n for which there is a given fixed proportion of
1s on the diagonal. For example, when p is prime, we prove that there exists a
positive integer n such that 1=p of the 1s lie on the diagonal of the multiplication
table for Zn if and only if p is a Sophie Germain prime.
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1. Introduction

Let R be a ring and let R� denote its group of units. Call a unit u in R� a diagonal
unit if the multiplicative order of u is at most 2. Such units are more commonly
referred to as involutions; our motivation for calling them diagonal units is as
follows. The units of R are in one-to-one correspondence with 1s appearing in its
multiplication table, and the diagonal units are in one-to-one correspondence with
the 1s appearing on the diagonal. When the order of R� is finite, we will write
du.R/ for the number of diagonal units and

pdu.R/D
du.R/
jR�j
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for the proportion of diagonal units in R�. We will only consider commutative rings,
in which case R� is an abelian group. This means that the units of order at most 2
form a subgroup of R�. Hence, du.R/ divides jR�j by Lagrange’s theorem, so
pdu.R/ is always the reciprocal of an integer. We therefore find it more convenient
to work with the ratio of diagonal units,

rdu.R/D
jR�j

du.R/
D

1

pdu.R/
:

For brevity, we will write du.n/, pdu.n/ and rdu.n/ for the quantities du.Zn/,
pdu.Zn/, and rdu.Zn/.

A ring R is said to satisfy the diagonal property if every unit of R is a diagonal
unit; that is, R satisfies the diagonal property if and only if pdu.R/D rdu.R/D 1.
Chebolu [2012] proved that Zn satisfies the diagonal property if and only if n is a
divisor of 24. This leads naturally to a more general study of the equation

rdu.n/D �; (1)

where � � 1. For which values of � does (1) have a solution? If (1) has a solution,
can we find the entire solution set? We will answer both of these questions in
several cases in Section 4. For example, we will prove the following theorem,
which answers both questions when � is prime.

Theorem 1.1. Let p be a prime. There exists a positive integer n such that the
proportion of diagonal units in Zn is 1=p if and only if p is a Sophie Germain prime.
For a Sophie Germain prime p, the set of solutions to rdu.n/D p is

.2pC 1/ � fdivisors of 24g if p > 3;

.2pC 1/ � fdivisors of 24g[ p2
� fdivisors of 8g if p D 3;

.2pC 1/ � fdivisors of 24g[ p4
� fdivisors of 3g if p D 2:

A Sophie Germain prime is a prime p such that 2pC1 is also prime, in which case
2pC 1 is called a safe prime. Such primes arose in Marie-Sophie Germain’s con-
siderable work on Fermat’s last theorem (see [Laubenbacher and Pengelley 1999]).

The remainder of this paper is organized as follows. Section 2 includes back-
ground information and a formula for the ratio of diagonal units. We then prove
in Section 3 that the equation rdu.n/D � has a solution if and only if � admits a
special type of factorization, and we provide a principle for organizing solutions to
this equation given a list of these factorizations. Section 4 is devoted to examples,
including proofs of Chebolu’s 24 theorem and Theorem 1.1. We also explore a
surprising connection between the proportion of diagonal units and the Gauss–
Wantzel theorem on the constructibility of regular polygons (Theorem 4.2). In the
last section, we consider a generalization of the current situation and examine 1s
on the diagonal of the multiplication cube for Zn.
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2. The ratio of diagonal units

A common concept in number theory is the notion of a multiplicative function. A
function f W ZC! ZC is multiplicative if f .st/D f .s/f .t/ whenever s and t are
relatively prime. Euler’s totient function is an example of a multiplicative function
par excellence (see [Burton 1989, §7]); it counts the positive integers k � n that
are relatively prime to n. The relevant properties of �.n/ are summarized in the
next theorem.

Theorem 2.1 (Euler’s totient function). Let �.n/ denote the number of positive
integers less than n and relatively prime to n.

(A) The order of Z�n is precisely �.n/.

(B) The function �.n/ is multiplicative.

(C) For any prime p and positive integer k, we have �.pk/D pk�1.p� 1/.

We now prove that the functions defined in Section 1 are multiplicative.

Proposition 2.2. The functions du.n/, pdu.n/, and rdu.n/ are multiplicative.

Proof. Certainly, rdu.n/ is multiplicative if and only if pdu.n/ is multiplicative.
Since rdu.n/D jZ�n j= du.n/D �.n/= du.n/ and � is multiplicative by the previous
theorem, it suffices to prove that du.n/ is multiplicative.

Let s and t be relatively prime positive integers. By the Chinese remainder
theorem, Zst Š Zs �Zt . Since the order of .x;y/ 2 Zs �Zt is the least common
multiple of the orders of x and y, the pair .x;y/ is a diagonal unit if and only if x

and y are diagonal units. Thus, du.st/D du.s/ du.t/. �
Our next goal is to give a formula for rdu.n/. To do so, we need one more

ingredient.

Theorem 2.3 (isomorphism class of Z�n ). For any integer k � 1 and odd prime p,

Z�
pk Š Z�.pk/ D Zpk�1.p�1/;

and

Z�
2k Š

8<:
f1g if k D 1,
Z2 if k D 2,
Z2 �Z2k�2 if k � 3.

The odd primary case is a consequence of the primitive root theorem; see [Cohen
2007, 2.1.24] for a short, fairly self-contained proof.

The next proposition provides a formula for the ratio of diagonal units in Zn.

Proposition 2.4. Let n be a positive integer.

(A) For any odd prime p and integer k � 1,

rdu.pk/D �.pk/=2D pk�1.p� 1/=2:
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(B) For any integer k � 0,

rdu.2k/D

�
1 if k D 0; 1; 2, or 3,
2k�3 if k > 3.

(C) Let n D 2a3bn0, where a; b � 0 and .n0; 6/ D 1. Let r denote the number of
distinct primes dividing n0. Then,

rdu.n/D

8̂̂̂<̂
ˆ̂:
�.n0/=2r if a� 3; b � 1;

2a�3�.n0/=2r if a> 3; b � 1;

3b�1�.n0/=2r if a� 3; b > 1;

2a�33b�1�.n0/=2r if a> 3; b > 1:

Proof. By Theorem 2.1(A), rdu.n/D �.n/= du.n/. Next observe that du.2/D 1,
du.4/ D 2, du.2k/ D 4 for k � 3, and du.pk/ D 2 for any odd prime p by
Theorem 2.3 (for the last case, note that the group of units is cyclic of even order,
so it has a unique subgroup of order 2). Combining these facts with the formula for
�.pk/ given in Theorem 2.1(C), one obtains parts (A) and (B). Part (C) follows
from the previous two parts and the fact that rdu.n/ is multiplicative. �

Though it is likely no surprise that the prime 2 is isolated in Proposition 2.4(C),
our reason for isolating the prime 3 may be unclear. For now, we hope the reader
is content with the observation that 2 and 3 are the only prime divisors of 24. In
slightly more detail, the issue has to do with the fact that if p > 3 is prime, then
rdu.pk/ D p is impossible, but rdu.32/ D 3 and rdu.24/ D 2. Note further that
rdu.pk/ in Proposition 2.4(A) factors as �.2� C 1/k , where 2� C 1 is prime. This
hints at the relevance of Sophie Germain primes, which appeared in Theorem 1.1,
and leads to the study of positive integers that admit the special type of factorization
discussed in the following section.

3. Sophie Germain factorizations

Given a positive integer � , a Sophie Germain factorization of � is a triple

F D .s; t; f.�1; ˇ1/; : : : ; .�r ; ˇr /g/;

where

(A) � D jF j D 2s3t
Qr

iD1 �i.2�i C 1/ˇi ,

(B) s � 0 and t � 0;

(C) for i D 1; : : : ; r , ˇi � 0 and �i > 1; and

(D) the integers 2�1C 1; : : : ; 2�r C 1 are distinct primes.

When r D 0, the set in the third coordinate of F is empty and the indexed product
in (A) is 1. The ordered triple gives the data for the factorization, but the definition
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of jF j gives a far more readable interpretation of what the data represent. We will
therefore abuse notation and use the expression defining jF j in place of F itself.
There is some ambiguity, however, since �i can be 2 or 3; consequently, we will
always include the exponents s and t unsimplified, even when sD 1 or t D 1, unless
either is equal to zero, in which case we will omit the corresponding factor entirely.
We will not omit zero exponents in the indexed product, and the empty product will
appear as 1. For clarification, here are several examples:

j.0; 0;∅/j D 1;

j.0; 0; f.3; 0/g/j D 3 � 70;

j.0; 1;∅/j D 31
� 1;

j.5; 1; f.3; 0/; .5; 2/; .9; 4/g/j D 25
� 31
� 3 � 70

� 5 � 112
� 9 � 194:

The main difficulty of our current undertaking is to find all possible such factor-
izations of a given positive integer. However, given a list of the Sophie Germain
factorizations of rdu.n/, we will see at the end of this section that it is easy to find
all solutions to (1).

Let S denote the set of all Sophie Germain factorizations of positive integers.
We next define two functions,

F W ZC! S
and

N W S! ZC:

The function F.n/ will select a canonical Sophie Germain factorization of n, and
the function N .F / will select a positive integer whose canonical Sophie Germain
factorization is F . Let

F
�
2a3b

rY
iD1

p
˛i

i

�
D

8̂̂̂̂
<̂
ˆ̂̂:

Qr
iD1..pi � 1/=2/ �p

˛i�1
i if a� 3; b � 1; .1/

2a�3 �
Qr

iD1..pi � 1/=2/ �p
˛i�1
i if a> 3; b � 1; .2/

3b�1 �
Qr

iD1..pi � 1/=2/ �p
˛i�1
i if a� 3; b > 1; .3/

2a�33b�1 �
Qr

iD1..pi � 1/=2/ �p
˛i�1
i if a> 3; b > 1; .4/

and let

N
�
2s3t
�

rY
iD1

�i.2�iC1/ˇi

�
D

8̂̂̂̂
<̂
ˆ̂̂:

Qr
iD1.2�i C 1/ˇiC1 if s D 0; t D 0;

2sC3 �
Qr

iD1.2�i C 1/ˇiC1 if s > 0; t D 0;

3tC1 �
Qr

iD1.2�i C 1/ˇiC1 if s D 0; t > 0;

2sC33tC1 �
Qr

iD1.2�i C 1/ˇiC1 if s > 0; t > 0;

The indexed product in the definition of F is of course just �.n0/=2r , where
n0D n=.2a3b/. In the definition of F , we have labeled the cases 1–4. Every Sophie
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Germain factorization falls into precisely one of these four cases, so we will use
these numbers to refer to the type of a Sophie Germain factorization. If we were to
only consider integers relatively prime to 6, the above formulas would each have a
single case and these functions would be inverses; interference from the divisors of
24 causes a bit of trouble. We summarize the relevant properties of F and N in the
following theorem.

Proposition 3.1. Let F W ZC! S and N W S! ZC be the functions defined above.

(A) For any positive integer n, rdu.n/D jF.n/j.
(B) For any Sophie Germain factorization F ,

F.N .F //D F:

In particular, F is surjective.

Proof. The verification of each statement entails a straightforward computation
using the definitions of F and N combined with Proposition 2.4(C). �

We now have the following general result.

Theorem 3.2. Fix a positive integer � . The equation

rdu.n/D � (2)

has a solution if and only if � admits a Sophie Germain factorization.

Proof. If (2) has a solution, then � D jF.n/j, so � admits a Sophie Germain
factorization. Conversely, if jF j D � , then take nDN .F /. Now,

rdu.n/D jF.N .F //j D jF j D �: �

It may feel at this point that we have saddled the reader with a great deal of
notation without having accomplished much, given that the true difficulty is finding
all possible Sophie Germain factorizations. However, given the set of factorizations,
the following proposition provides a nice principle for organizing the solutions
to (2). It measures the failure of F to be injective, and it is the main reason we
have defined F and N . The proof amounts to a reflection upon the meaning of the
conditions used to divide the definition of F into four cases.

Proposition 3.3. Let Fi be a Sophie Germain factorization of type i . Then,

F�1.F1/DN .F1/ � fdivisors of 24g;

F�1.F2/DN .F2/ � fdivisors of 3g;

F�1.F3/DN .F3/ � fdivisors of 8g;

F�1.F4/DN .F4/ � f1g:

We will use the above proposition in the next section.
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4. Examples

Thankfully, it is now time to more concretely investigate the possible proportions
of diagonal units using the tools developed above. We begin with Chebolu’s
theorem [2012].

4A. Chebolu’s 24 theorem. We include this example for completeness; certainly,
the proofs given in [Chebolu 2012] are either more direct or more interesting, or both.

Theorem 4.1 (Chebolu). The ring Zn satisfies the diagonal property if and only if
n is a divisor of 24.

Proof. We seek all possible solutions to rdu.n/ D 1. Since the integer 1 has the
unique (type 1) Sophie Germain factorization 1, the solution set is

N .1/ � fdivisors of 24g D 1 � fdivisors of 24g

D fdivisors of 24g:

by Proposition 3.3. �

4B. Proof of Theorem 1.1. It is straightforward to check that when p is a Sophie
Germain prime, the listed sets provide solutions to rdu.n/D p. We therefore turn
our attention to the converse.

Let p > 3 be prime and suppose rdu.n/ D p has a solution, in which case p

admits a Sophie Germain factorization. Any such factorization F of p must have
sD t D 0 and r D 1 since p cannot have more than one distinct prime factor. Hence,
jF j D �.2� C 1/ˇ . Further, since �.2� C 1/ˇ D p and � > 1, we must have � D p

and ˇ D 0. Thus,
p � .2pC 1/0

is the only possible Sophie Germain factorization of p. This forces 2pC 1 to be
prime, so p is a Sophie Germain prime and the set of solutions to rdu.n/D p is

N .p � .2pC 1/0/ � fdivisors of 24g D .2pC 1/ � fdivisors of 24g

by Proposition 3.3.
For p D 2, the only Sophie Germain factorizations of 2 are 2 � 50 and 21 � 1. The

first factorization has type 1, and the second has type 2. Note that N .2 � 50/D 5

and N .21 � 1/D 16. Hence, the set of solutions to rdu.n/D 2 is

5 � fdivisors of 24g[ 16 � fdivisors of 3g:

Finally, for p D 3, we have the type 1 factorization 3 � 70 with N D 7 and the
type 3 factorization 31 � 1 with N D 9. Hence, the set of solutions to rdu.n/D 3 is

7 � fdivisors of 24g[ 9 � fdivisors of 8g:

This completes the proof of Theorem 1.1.
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4C. Prime power ratios. We now consider the more general case rdu.n/D pk for
k � 1. First, assume p > 3 is prime.

Any Sophie Germain factorization of pk must have the property that sD tD0 and
each �i is a positive power of p. Since p cannot divide both �i and 2�iC1, we must
have ˇi D 0 for all i . Thus, every Sophie Germain factorization must have the form

rY
iD1

pki .2pki C 1/0;

where the integers 2pk1 C 1; : : : ; 2pkr C 1 are distinct primes and
P

ki D k is a
partition of k into distinct odd parts (each ki is odd because 2pvC 1 is divisible
by 3 whenever v is even). Each such factorization contributes

rY
iD1

.2pki C 1/ � fdivisors of 24g

to the set of solutions to rdu.n/D pk . Here are several examples of what may be
gleaned from this discussion:

(A) There is no solution to rdu.n/D pk when p � 1 .mod 3/ (since this implies
that 2pvC 1 is always divisible by 3).

(B) There is no solution to rdu.n/Dp2 since there is no partition of 2 into distinct
odd parts.

(C) There is a solution to rdu.n/ D p4 if and only if 2pC1 and 2p3C1 are
both prime.

(D) There is a solution to rdu.n/D p7 if and only if 2p7C 1 is prime.

(E) There is a solution to rdu.n/D p8 if and only if either f2pC 1; 2p7C 1g or
f2p3C 1; 2p5C 1g is a set of primes.

The prime p D 5 illustrates (C). The prime p D 677, which is not a Sophie
Germain prime, illustrates (D). For (E), p D 29 is a prime where both of the
indicated sets are sets of primes; p D 149 is a prime where the second set is a set
of primes and neither element of the first set is prime; p D 179 is a prime where
the first set is a set of primes and neither element of the second set is prime.

The situations for the primes 2 and 3 are similar, so will only discuss the case
p D 2. A Sophie Germain factorization of 2k must be of type 1 or 2. For type 1
factorizations, one obtains solutions as above: k must admit a partition into distinct
positive integers such that 2 � 2ki C 1D 2kiC1C 1 is prime. Such primes are called
Fermat primes, and ki C 1 is forced to be a power of 2, so again each ki must be
odd. It is unknown whether there are infinitely many Fermat primes, therefore it
is unknown whether there are infinitely many powers of 2 such that rdu.n/D 2k

admits a type 1 solution. A type 2 factorization must take the form 2s �� , where � is
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a type 1 Sophie Germain factorization of 2k�s . Since 3 is a Fermat prime, and the
set of all solutions is obtained by multiplying the relevant N -values by divisors of
3 or 24, we obtain that rdu.n/ is a power of 2 if and only if nD 2sp1 � � �pt , where
s � 0 and p1; : : : ;pt is a (possibly empty) list of distinct Fermat primes.

This provides an interesting connection between the ratio of diagonal units and a
classical result of Gauss and Wantzel (see [Pollack 2009]): it is possible to construct
a regular n-sided polygon in the plane with straightedge and compass if and only
if n takes the form given at the end of the previous paragraph. Gauss proved that
the condition on n is necessary, and Wantzel proved that it is sufficient. Gauss’
decision to devote his life to mathematics was in part due to his discovery at age 18
of the constructibility of the regular 17-gon. We summarize our observation in the
next theorem.

Theorem 4.2. Let n be a positive integer. The following statements are equivalent.

(A) The ratio of diagonal units in Zn is a power of 2.

(B) The integer n has the form 2sp1 � � �pt , where s � 0 and p1; : : : ;pt is a
(possibly empty) list of distinct Fermat primes.

(C) It is possible to construct a regular n-gon in the plane with straightedge and
compass.

The authors wish to thank Sunil Chebolu for noticing this connection to the
Gauss–Wantzel theorem.

4D. Pairs of distinct primes. Call a positive integer n a Sophie Germain number if
2nC1 is prime. In all of the cases thus far considered, the integer � is a product of So-
phie Germain numbers whenever rdu.n/D � has a solution. We include this section
mainly to give a family of simple examples where this is not necessarily the case.

Let 3< p < q be distinct primes. The possible Sophie Germain factorizations
of pq are p.2pC 1/0q.2qC 1/0 (if p and q are each Sophie Germain primes),
.pq/.2pqC 1/0 (if pq is a Sophie Germain number), and p � q0 (if p is a Sophie
Germain prime with safe prime q D 2p C 1). Each of these factorizations is
type 1, so the solution sets (provided they exist) are .2p C 1/ � fdivisors of 24g,
.2pC 1/.2qC 1/ � fdivisors of 24g, and .2pC 1/2 � fdivisors of 24g, respectively.

The integer 1081D 23 � 47 is not expressible as a product of Sophie Germain
numbers since, though 2 � 23 C 1 D 47 is prime, neither 2 � 47 C 1 D 95 nor
2 � 23 � 47C 1D 2163 is prime. However, rdu.n/D 1081 has solution set

472
� fdivisors of 24g:

4E. Further questions. We conclude this section with a few questions to ponder.

� The set of primes such that rdu.n/D p has a solution is precisely the set of
Sophie Germain primes. From (B) in Section 4C we see that the set of primes
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such that rdu.n/D p2 has a solution is the set f2; 3g (since rdu.25/D 22 and
rdu.33/D 32). For k > 2, what can we say about the set of primes such that
rdu.n/D pk has a solution? Is it always nonempty? When is it finite?

� If p � 2 .mod 3/, must rdu.n/D pk have a solution for some k?

� The number of partitions of k into distinct odd parts is the same as s.k/, the
number of self-conjugate partitions of k. The maximum number of solutions
to rdu.n/D pk (for p > 3 prime) is 8 � s.k/. For each k, how many primes
actually achieve this maximum value?

� Let k be a positive integer. Call a prime p a k-Sophie Germain prime (k-SGP)
if k admits a partition into distinct odd parts and 2pk1 C 1; : : : ; 2pkr C 1 is a
list of prime numbers for every partition k D k1C � � �C kr of k into distinct
odd parts. The value k D 1 corresponds to an ordinary Sophie Germain prime,
and there are no 2-SGPs. A prime p is a 3-SGP if and only if 2p3C1 is prime;
a prime p is an 8-SGP if and only if 2pC 1; 2p7C 1; 2p3C 1, and 2p5C 1

are prime. Does a k-SGP exist for each k > 2?

5. The multiplication cube for Zn

One could also analyze the multiplication cube for Zn. We know 1s lie exclusively
on the diagonal if and only if nD 1 or 2 since otherwise .�1/ � .�1/ � 1 gives a 1
off the diagonal. Since this question seems uninteresting, we might require that
every 1 in the multiplication table that is not in a coordinate plane (where one entry
in the product is equal to 1) lies on the diagonal. The number of 1s appearing in
the multiplication cube for Zn is �.n/2. (The first and second coordinates may
be completely arbitrary units, but then the third coordinate is determined.) The
number of 1s off all coordinate planes is �.n/2� 3�.n/C 3� 1 (by the principle
of inclusion/exclusion), and we wish to find values of n where this quantity is
equal to the number of elements of multiplicative order precisely 3 (since the entry
for 1 � 1 � 1 has been omitted). Put another way, we wish to find values of n such
that �.n/2 � 3�.n/C 3 is equal to the number of elements of order dividing 3.
In Z�

pk there is one element of order dividing 3 if p � 2 .3/; three such elements
if p � 1 .3/; one such element if p D 3 and k D 1; and three such elements if
p D 3 and k � 2. Hence, the number of elements of Z�n whose order divides 3
is 3rC�, where r is the number of prime divisors congruent to 1 modulo 3 and
� D 1 if 9 divides n and � D 0 otherwise. We must now consider the equation
�.n/2� 3�.n/C 3D 3rC�. If 3 divides the right-hand side, then 3 divides �.n/2,
so in fact 9 divides �.n/2� 3�.n/. This means 9 cannot divide the right-hand side,
so we need only consider �.n/2�3�.n/C3D 1 or 3. This in turn forces �.n/D 1

or 2 (�.n/ cannot equal 3). The only values of n satisfying either of these equalities
are nD 1; 2; 3; 4, and 6. Conversely, it is easy to check that for nD 1; 2; 3; 4 or 6,
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all 1s in the multiplication cube lie on the diagonal or the coordinate planes. This
proves the following theorem.

Theorem 5.1. All 1s in the multiplication cube for Zn lie exclusively on the diagonal
or the coordinate planes (where one of the three coordinates is 1) if and only if n is
a divisor of 4 or 6.
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