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A toric domain is a subset of (Cn, ωstd) which is invariant under the standard rota-
tion action of Tn on Cn . For a toric domain U from a certain large class for which
this action is not free, we find a corresponding toric domain V where the standard
action is free and for which c(U )= c(V ) for any symplectic capacity c. Michael
Hutchings gives a combinatorial formula for calculating his embedded contact
homology symplectic capacities for certain toric four-manifolds on which the T2-
action is free. Our theorem allows one to extend this formula to a class of toric do-
mains where the action is not free. We apply our theorem to compute ECH capac-
ities for certain intersections of ellipsoids and find that these capacities give sharp
obstructions to symplectically embedding these ellipsoid intersections into balls.

1. Introduction

Symplectic capacities, introduced by Gromov and Hofer, are symplectic invariants
that assign a nonnegative real number to a subset U ⊂ (Cn, ωstd) and have the
following properties:

(C1) Monotonicity: c(U )≤ c(V ) if U ↪→ V .

(C2) Conformality: c(λU )= λ2c(U ) for λ ∈ R.

(C3) Nontriviality: 0< c(B2n(1)) <∞.

Note that combining all three requires a finite capacity for any bounded U .
Sometimes additional nontriviality and normalization axioms are also assumed, but
we do not use them here. Many useful symplectic capacities have been defined;
some are listed in [Cieliebak et al. 2007].

Define the moment map µ : Cn
→ Rn of the symplectic manifold (Cn, ωstd) by

µ(z1, . . . , zn)= (π |z1|
2, . . . , π |zn|

2),

where ωstd is the standard symplectic form ωstd =
∑n

i=1 dxi ∧ dyi on Cn , and
call µ(Cn) the moment space. We call U ⊂ (Cn, ωstd) a toric domain when it can
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(a) (b) (c)

Figure 1. Appropriate moment regions; (a) and (b) satisfy the
conditions of Criterion 1.1, but (c) does not.

be written U = µ−1(A) for some moment region A ⊂ Rn
≥0 in the moment space, or

equivalently when it is invariant under the rotation action of Tn on Cn . Note that this
is a special case of the more general moment map associated with a Hamiltonian
action of a Lie group.

Since these toric domains are uniquely represented by their moment regions, we
will refer to a symplectic capacity c(A) of a moment region A, and by this mean
c(µ−1(A)). A simple calculation shows that (C2) is equivalent to c(λA)= λc(A).

Our main theorem is that for a duly qualified toric domain U whose moment
region satisfies Criterion 1.1 given below, any symplectic capacity of U is the same
as the capacity of a toric domain with a free action, one whose moment region
is µ(U ) translated off the coordinate planes in the moment space.

Criterion 1.1. Let A ⊂ Rn
≥0. If A intersects a coordinate plane

Pi = {(ρ1, . . . , ρn) ∈ Rn
| ρi = 0},

then any line normal to Pi has connected intersection with A∪ Pi .

The necessary further qualifications are given in the theorem statement below.
Figure 1 illustrates this condition for n=2. In this case, Criterion 1.1 ensures that the
toric domain is a disk bundle over its projection to the first complex plane of C2; more
generally, for A satisfying the other conditions below, Criterion 1.1 requires µ−1(A)
to be a (generalized) disk bundle over its projection to any coordinate plane Pi

which it touches. Disks in the fiber space degenerate to points where A touches a
coordinate plane.

Theorem 1.2. Let A⊂Rn
≥0 be a moment region which is compact with star-shaped

interior and whose boundary intersects transversely the rays from the star-center.
Assume that A satisfies Criterion 1.1. Then c(A) = c(A+ (1, 1, . . . , 1)) for any
symplectic capacity c.

The theorem is proved by establishing equal lower and upper bounds on c(A) in
terms of c(A+ (1, 1, . . . , 1)). The lower bound follows readily from properties of
toric domains and the axioms (C1)–(C3), but for the upper bound we must combine
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the axioms with a nontrivial symplectic embedding. Since the proof assumes only
the general axioms for capacities, this result holds for all symplectic capacities.
Note that the action on a given toric domain U = µ−1(A) is free if and only if U
does not intersect the origin in any C factor; that is, its moment region does not
touch any coordinate plane Pi = {(ρ1, . . . , ρn) ∈ Rn

| ρi = 0} in the moment space.
The embedded contact homology (ECH) developed by Michael Hutchings pro-

vides a natural way to define certain symplectic capacities called ECH capacities.
They are defined for any subset of a symplectic 4-manifold. Hutchings [2011]
gives a combinatorial method to compute these capacities for toric domains over
convex moment regions that do not touch the axes of the moment space R2

≥0 (that
is, the torus action is free). This method is presented in Section 3. In [Hutchings
2014, Remark 4.15] and [Choi et al. 2014, §1.2], it was conjectured that Hutchings’
formula should remain true in most, and probably all, cases where µ(U ) does touch
one or both axes. Theorem 1.2 shows that this is true for the ECH capacities of a
large class of toric domains by showing that it is true for all symplectic capacities.

Given a, b ∈ R+, define the ellipsoid

E(a, b):=
{
(z1, z2) ∈ C2

∣∣∣∣ π |z1|
2

a
+
π |z2|

2

b
≤ 1

}
, (1)

the ball
B(a):=E(a, a),

and the polydisk

P(a, b):=
{
(z1, z2) ∈ C2 ∣∣ π |z1|

2
≤ a, , π |z2|

2
≤ b

}
, (2)

where each inherits the standard symplectic form from C2.
In Section 3, we use Theorem 1.2 to compute ECH capacities of a class of

intersections of ellipsoids. We also study symplectic embeddings of domains from
this class, proving the following proposition:

Proposition 1.3. Let a > b and c > d. Let R be the radius of the smallest ball
containing E(a, b)∩ E(c, d), and let ρ = inf{r | E(a, b)∩ E(c, d) ↪→ B(r)}. If
2a, 2d ≥ R, then ρ = R.

It is known that ECH capacities provide sharp obstructions to symplectically
embedding ellipsoids into ellipsoids (proved by McDuff [2011]) and ellipsoids
into polydisks [Frenkel and Müller 2012]. Recall that by Gromov’s nonsqueezing
theorem [1985], a ball symplectically embeds into a cylinder in R2n if and only if the
radius of the cylinder exceeds that of the ball. This is an illustration of symplectic
rigidity and is easily recovered from the ECH capacities on these domains. The
computation of ECH capacities of the ellipsoid intersections above shows that they
give sharp obstructions to symplectically embedding those ellipsoid intersections
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into balls. Since the balls have much larger volume than the ellipsoid intersections,
Proposition 1.3 is another example of symplectic rigidity.

In Proposition 1.3, the ECH capacities give a sharp obstruction. Recent work
of Hind and Lisi [2014] shows that neither ECH capacities nor Ekeland–Hofer
capacities give sharp obstructions to symplectic embeddings of arbitrary toric
domains; in particular the ECH and Ekeland–Hofer obstructions to symplectically
embedding a product of polydisks into a ball are not always sharp. The torus action
on polydisks and balls is not free, so we might ask whether the situation is any
different if we consider only toric domains for which the action is free. However,
the case of free torus action is not different in this way, as the following corollary
of Theorem 1.2 shows:

Corollary 1.4. Let P∗(1, 2) = µ−1(µ(P(1, 2)) + (1, 1)) be a toric domain, let
a < 3 and let B∗(a)= µ−1(µ(B4(a))+ (1, 1)). There is no symplectic embedding
P∗(1, 2) ↪→ B∗(a).

This shows that neither ECH nor Ekeland–Hofer capacities are sharp even when
we consider only toric domains with a free action because the obstruction given
by both of these sequences of capacities is a ≥ 2 (see [Hind and Lisi 2014]). This
corollary is proved in Section 3B.

2. Proof of main theorem

In this section, we prove Theorem 1.2 by constructing symplectomorphisms as
the products of area preserving maps. It will be convenient to have the follow-
ing standard lemma, which shows that translations in the moment space induce
symplectomorphisms on toric domains whose moment regions do not touch any
coordinate plane.

Lemma 2.1. Suppose U ⊂ (R2n, ωstd) is a toric domain with free torus action such
that µ(U ) = A, and B is any translate of A such that the torus action on µ−1 is
also free. Then U and V = µ−1(B) are symplectomorphic. In particular, they have
the same symplectic capacity for any capacity.

Proof. We can parametrize U by g : A×Tn
→U defined by

g(ρ1, . . . , ρn, eiθ1, . . . , eiθn )=

(√
ρ1

π
eiθ1, . . . ,

√
ρn

π
eiθn

)
.

Then we can pull back the standard symplectic form to A×Tn . A simple calculation
shows that for the first term,

g∗(dx1 ∧ dy1)=
1

2π
dρ1 ∧ dθ1,
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and thus

g∗ωstd =
1

2π

n∑
i=1

dρi ∧ dθi .

Clearly translation in moment space does not affect this last form, so conjugating
a translation by this parametrization yields the desired symplectomorphism. �

Another important fact that can be seen from the proof of Lemma 2.1 is that
for a toric domain U with free torus action and moment region A, the symplectic
volume of U is equal to the volume of A:

vol(U, ωstd)=
1
n!

∫
U
ωn

std =
1
n!

∫
A×Tn

(g∗ωstd)
n

=
1

(2π)n

∫
A×Tn

dρ1 ∧ · · · ∧ dρn ∧ dθ1 ∧ · · · ∧ dθn

=

∫
A

dρ1 ∧ · · · ∧ dρn = vol(A).

So a symplectic embedding of toric domains U ↪→ V may be possible only if
vol(µ(U ))≤ vol(µ(V )).

We will also use the following version of the “Traynor trick” (cf. Proposition 5.2
of [Traynor 1995]):

Lemma 2.2. Given ε > 0, there exists an area preserving diffeomorphism

9 : B2(1)→ SD2(1+ ε)= B2(1+ ε)−{x + iy | y = 0, x ≥ 0}

from the disk to the slit-disk such that

δ < |9(z)|2 < |z|2+ ε

for some δ > 0.

Proof. The left inequality follows from continuity (given such a map). For existence
and the right inequality, define a family of loops which avoid the slit as in Figure 2,
and apply Schlenk [2005, Lemma 3.1]. �

With these tools we can prove Theorem 1.2.

Proof of Theorem 1.2.
Our technique is to find upper and lower bounds on c(A) by producing symplectic

embeddings and applying (C1) and (C2). We show that these bounds agree with
each other and with c(A+ (1, 1, . . . , 1)).

For what follows, we define the scaling of Rn by λ> 0 from p ∈Rn to be the map
q 7→ λ(q− p)+ p. Since λ(q− p)+ p= λq+(1−λ)p, any scaling by λ from p is
equivalent to a scaling from the origin by λ followed by translation by (1−λ)p. So
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Figure 2. A family of loops defining a symplectomorphism
B2(1)→ SD(1+ ε).

with Lemma 2.1 we may apply conformality of capacities, axiom (C2), on moment
regions scaled from points other than the origin. The reason for the requirement
that rays from the star-center be transverse to the boundary will become clear in
Step 2 with the scaling argument.

Step 1. The lower bound may be computed as follows. Let p be a star-center
of int A, which means that any other point in int A may be connected to p by a
line contained in int A. Given any λ < 1, let Aλ be the image of A under the
scaling of the moment space towards p by λ. Since p is away from the coordinate
planes, Aλ is bounded away from the coordinate planes and contained in A. By
Lemma 2.1 and conformality, c(Aλ)=λc(A+(1, 1, . . . , 1)). Then by monotonicity,
λc(A+ (1, 1, . . . , 1))≤ c(A), and since λ < 1 was arbitrary,

c(A+ (1, 1, . . . , 1))≤ c(A).

Step 2. For the upper bound, we embed A into an expanded version of A, and
apply an area-preserving map in each dimension in which A touches a coordinate
plane Pi . We will assume that A is compact, star-shaped, and that the rays from a
star-center p intersect each ∂A j transversely.

Assume without loss of generality that A touches the first k coordinate planes
and does not touch the others. Let p = (ρ1, . . . , ρn) be the star-center in A noted
above. The projection p̃1 = (0, ρ2, . . . , ρn) is also a star-center: Choose any other
point q = (x1, . . . , xn) ∈ A. The line from p̃1 to q is entirely below that from p
to q in the ρ1 coordinate. By Criterion 1.1, any perpendicular dropped from a point
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in A to P1 remains in A. Hence the line from p̃1 to q is also in A, so p̃1 is a star-
center. Repeating in the first k coordinates, we find that p̃k = (0, . . . , ρk+1, . . . , ρn)

is a star-center; call this point p̃. A simple geometric argument making use of
Criterion 1.1 shows that the rays from p̃ must also be transverse to each ∂A j ; we
omit that here.

The next step will be to expand A to Aλ by a finite factor of λ. In order to pre-
vent Aλ from colliding with coordinate planes, first translate A away from the coordi-
nate planes Pk+1 through Pn by some large amount. Note that this is possible because
by assumption pi > 0 for i > k, and furthermore translation in the moment spaces
induces a symplectomorphism. So we shall instead compute the capacity of this
translate, and relabel it A. Now let Aλ be the scaling of A from p̃ by a small λ > 1.

We show that A⊂ int Aλ. Consider any point q = (x1, . . . , xn) ∈ A. If q ∈ int A
then q ∈ int Aλ, so suppose q ∈ ∂A. Write q1/λ for the point mapped to q under
the scaling; q1/λ will be between p̃ and q. Now since the ray from p̃ to q is
transverse to ∂A, it follows that q1/λ must be in int A, so we can find an open ball U
around q1/λ. That ball maps under the scaling to Uλ, which is an open ball around q
in Aλ. Thus q ∈ int Aλ, and A ⊂ int Aλ.

Let ext Aλ denote the exterior of Aλ in Rn
≥0. Both A and Aλ are compact, so

there is some d so that 0< d < dλ = 1
2 dist(A, ext Aλ). Now A is bounded, so let a

be the maximum of the ρ1 coordinate of A, and choose ε > 0 so that ε < d. Then
by Lemma 2.2, there exists 9a : B2(a)→ SD2(a+ ε) such that

δ < |9a(z)|2 < |z|2+ ε (3)

for δ > 0. Let Fε =9a × id× · · ·× id.
Set B = µ ◦ Fε(µ−1(A)). Then we claim B ⊂ int Aλ. Consider a point

(z1, . . . , zn) ∈ µ
−1(A), and let

(ρ1, . . . , ρn)≡ µ(z1, . . . , zn) ∈ A.

By the inequality above, µ ◦ Fε((z1, . . . , zn)) = (ρ̃1, . . . , ρ̃n), where ρ̃1 < ρ1+ ε

and ρ̃i = ρi for i > 1. Thus every point in µ−1(A) is carried by Fε to a point
less than d away from A, so B ⊂ int Aλ; moreover, dist(B, ext Aλ) > dλ. Then let
δ= 1

2 min{δ, dλ} and γ = λδ (using λ< 2). Set A′λ= Aλ+(γ, 0, . . . , 0). The lower
bound on the left of equation (3), together with the distance from B to outside Aλ,
show that in fact B ⊂ A′λ. So by Lemma 2.1, c(B)≤ c(A′λ)= λc(A+(δ, 0, . . . , 0)).
Now λ > 1 was arbitrary, so c(B) ≤ c(A + (δ, 0, . . . , 0)). Since A and B are
symplectomorphic,

c(A)≤ c(A+ (δ, 0, . . . , 0)).

Repeating the same process in the dimensions up to k and translating up by δ
in the other coordinates shows that for some δ > 0, c(A) ≤ c(A+ (δ, δ, . . . , δ)).
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Aλ

A

Aλ+ (δ, 0, . . . , 0)

A

Figure 3. Illustration of the conformality argument for the lower
bound (left) and the upper bound (right).

Combining with the lower bound, and using Lemma 2.1,

c(A)= c(A+ (1, 1, . . . , 1)). �

Remark 2.3. It is worth noting that we may like to consider regions A for which ∂A
is not completely smooth. The ellipsoid intersections below are one example.
The notion of transversality must then be generalized slightly with the goal that
A ⊂ int Aλ. If ∂A is the gluing of multiple hypersurfaces, it is sufficient that the
rays from the star-center be transverse to each of the hypersurfaces at the points
where they are glued together.

3. Applications

3A. ECH capacities. The remainder of this paper focuses on 4-dimensional toric
domains, with accompanying planar moment regions. Using Michael Hutchings’
theory of embedded contact homology (ECH), one can associate real numbers

0= c0(M)≤ c1(M)≤ c2(M)≤ · · ·

called ECH capacities to any 4-dimensional Liouville domain M , such that each ci

is a symplectic capacity for 4-manifolds. For precise definitions of ECH capacities
and Liouville domains, see [Hutchings 2011].

We briefly describe the computation of ECH capacities, as given by Theorem 4.14
of [Hutchings 2014]. Given a convex body A in the moment space which does not
touch any coordinate plane, we can define a norm `A, not necessarily symmetric, as
follows. Choose an origin in A from which to draw position vectors to ∂A. Let vi

be some vector, and qi one of the position vectors on ∂A such that the outward
normal to ∂A at qi is parallel to vi . If vi has angle between the normals to ∂A
at two incident edges of ∂A, let qi be the corner where the edges meet. Then set
`A(vi ) = vi · qi . It is not hard to check that this yields a well-defined norm; see
[Hutchings 2014] for details.
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(0, d)

(a, 0)

(0, R)

(R, 0)

(abc−acd
bc−ad ,

bcd−abd
bc−ad

)

Figure 4. The image of E(a, b)∩ E(c, d) under µ with suitable
a, b, c, d , and the smallest ball into which it symplectically embeds.

We compute the ECH capacities according to [Hutchings 2011] as follows:
for each k, ck(A) is the shortest perimeter length of an oriented lattice-polygon
enclosing k+ 1 lattice points, where perimeter length is measured in the norm `A

on the edge vectors of the oriented polygon.

3A1. Embedding ellipsoid intersections into balls. We now use Theorem 1.2 to
compute the second ECH capacity of a family of ellipsoid intersections. This
capacity is in turn used to prove Proposition 1.3. Throughout this section, let
a, b, c, d > 0, a < b, c > d , and put

R =
abc+ bcd − acd − abd

bc− ad

(see Figure 4). We show that for 2a, 2d ≥ R, we have c2(E(a, b)∩ E(c, d))= R.
A simple consequence is that E(a, b)∩ E(c, d) symplectically embeds into a ball
if and only if it embeds by inclusion (that is, Proposition 1.3). While in principle
that result only requires the easier lower bound of Theorem 1.2, we illustrate the
use of Theorem 1.2 to produce the actual ECH capacity, which is sufficient to prove
the proposition.

A short computation, or consideration of Figure 4, shows that B(R) is indeed
the smallest ball into which E(a, b)∩ E(c, d) embeds by inclusion. We first prove
the following lemma:

Lemma 3.1. If 2a, 2d ≥ R, then c2(E(a, b)∩ E(c, d))= R.

Assuming Lemma 3.1, observe that Proposition 1.3 is immediate:
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1 2
3

4

5

c
d x

a
b x

Figure 5. Calculation of `A′-length by region.

Proof of Proposition 1.3. By [Hutchings 2011, Corollary 1.3], c2(B(r))= r , so we
have ρ ≥ R by Lemma 3.1. Since E(a, b)∩ E(c, d)⊂ B(R), ρ ≤ R and the result
follows. �

Proof of Lemma 3.1. Let A be the moment region of E(a, b)∩ E(c, d). Since A
satisfies Criterion 1.1, we know that c2(A)= c2(A′) for A′ = A+ (1, 1).

First, we observe that the oriented lattice-polygonal path shown in Figure 6 has
`A′-length R when oriented clockwise, so c2(A)≤ R.

Let 0 be an oriented lattice path containing three lattice points with edge vectors
(α, β), (γ, δ), (ε, ζ ) (if 0 has only two edge vectors, i.e., is just a line segment, the
forthcoming argument applies mutatis mutandis). Suppose for a contradiction that
`A′(0) < R.

We first claim that β, δ, ζ ≤ 1 and that at most one is positive. Suppose without
loss of generality that β ≥ 2. Depending on the region in which (α, β) lies (or its
slope β/α, Figure 5), the `A′-length is determined by cases:

`A′((α, β))=


(α, β) · (0, d) if α ≤ 0 or β

α
≥

c
d (regions 1, 2),

(α, β) ·
(abc−acd

bc−ad ,
bcd−abd

bc−ad

)
if c

d ≤
β

α
≤

a
b (region 3),

(α, β) · (a, 0) if 0< β

α
≤

a
b (region 4).

We treat each case separately. In region 1, we have (α, β) ·(0, d)= βd ≥ 2d ≥ R,
a contradiction. In region 2,

`A′((α, β))= (α, β) ·
(abc−acd

bc−ad
,

bcd−abc
bc−ad

)
and α ≥ 1. Hence,

(α, β) ·
(abc−acd

bc−ad
,

bcd−abc
bc−ad

)
> (1, 1) ·

(abc−acd
bc−ad

,
bcd−abc
bc−ad

)
= R.
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Figure 6. The minimal path for c2(A) in Lemma 3.1.

Lastly, in region 3, `A′((α, β))= (α, β) · (a, 0) and α > β, so `A′((α, β))= αa >
2a ≥ R. Thus β, δ, ζ ≤ 1.

To show that at most one of β, δ, γ is positive, assume without loss of gener-
ality that β, δ ≥ 1. Another calculation as above shows that both `A′((α, β)) and
`A′((γ, δ)) are greater than or equal to min{a, d}, so `A′(0)≥ 2 min{a, d} ≥ R, a
contradiction.

A symmetric argument but with regions 2, 3, 4, and 5 shows that α, γ, ε ≤ 1 and
that at most one is positive. These facts imply that the maximum displacement in
either coordinate is 1; that is, 0 lies in [0, 1]2 up to translation. We check that the
shortest lattice path containing three lattice points in [0, 1]2 has `A′-length R, so 0
cannot exist. �

3B. Toric domains with free action. The proof of Corollary 1.4 simply combines
the embeddings involved in the proof of Theorem 1.2 with the result that a symplectic
embedding P(1, 2) ↪→ B4(a) is possible if and only if a ≥ 3 [Hind and Lisi 2014,
Theorem 1.1].

Proof of Corollary 1.4. Suppose to the contrary that a< 3 is given for which we can
find an embedding f : P∗(1, 2) ↪→ B∗(a). Let λ> 1 be close to 1 such that λ2a< 3.
Let P∗λ (1, 2)= µ−1(µ(P(λ, 2λ))+ (1, 1)) and B∗λ(a)= µ

−1(µ(B4(λa))+ (1, 1)).
After scaling by λ, we can find an embedding fλ : P∗λ (1, 2) ↪→ B∗λ(a). This is
combined with the embeddings from the proof of Theorem 1.2 as follows:

First, we can find a symplectic embedding F : P(1, 2) ↪→ P∗λ (1, 2) by the same
technique illustrated in that theorem since P∗λ (1, 2) is just the translated expansion
of P(1, 2). We also have the inclusion embedding ι : B∗λ(a) ↪→ B(λ2a) because of
the translation law (Lemma 2.1) above. Combining these we get

ι ◦ fλ ◦ F : P(1, 2) ↪→ B(λ2a).

Since λ2a < 3, this violates [Hind and Lisi 2014, Theorem 1.1]. Thus no such
embedding f : P∗(1, 2) ↪→ B∗(a) exists. �

By Theorem 1.2, the ECH and Ekeland–Hofer capacities of P∗(1, 2) and B∗(a)
are the same as those of P(1, 2) and B(a), so neither of these capacities give sharp
obstructions to embedding P∗(1, 2) into B∗(a).
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