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We consider a cylindrical liquid bridge under capillary effects, spanning two
horizontal plates and further bounded by a pair of parallel vertical planes. We
explicitly formulate the volume-constrained problem and describe a numerical
procedure for approximating the solution. Finally, a problem of finding the
minimum spanning volume is considered.

1. Introduction

We consider a fluid trapped between two horizontal plates P0, Ph , and further
bounded by two parallel vertical planes 50,5d . Define the distance between P0

and Ph to be h, and that between 50 and 5d to be d. We orient a coordinate
system (x, y, z) so that P0 is given by z ≡ 0 and Ph is given by z ≡ h, while 50 is
given by y ≡ 0 and 5d is given by y ≡ d. We assume that the fluid is connected
and any wetted portions of the plates are simply connected. The fluid then has a
free interface 3 bounding a volume in the x-direction, and we denote the enclosed
volume by V . For an example, see Figure 1, where we have not drawn 50 or 5d .

We consider dominant energies due to surface tension, wetting energy and
gravitational potential energy. This gives the energy functional

E[3] = σA[3] − σβW[3] +
∫
V
ρgz dz, (1)

where σ is the (constant) surface tension, β is the wetting coefficient, taken to be
constant on each plate, ρ is the uniform fluid density, and g is the gravitational
constant. Further, A is the area functional for the free-surface, and W is the area
functional for the wetted portions of P0, Ph,50 and 5d .

It is well known that the first variation for this functional implies

2H = κu− λ, (2)

MSC2010: primary 35Q35; secondary 76A02.
Keywords: capillarity, liquid bridges, numerical ODE.

695

http://msp.org
http://msp.org/involve/
http://dx.doi.org/10.2140/involve.2015.8-4


696 LAMONT COLTER AND RAY TREINEN

Figure 1. A cylindrical bridge.

where H is the mean curvature of 3, u is the height of the interface, the capillary
constant is κ = ρg/σ , and we have included a Lagrange multiplier λ. It may also be
derived that β = cos γ for a contact angle γ measured within the fluid. The standard
reference is a manuscript by Finn [1986]. In what follows we do not assume that
the interface is a graph over a base domain, though we do restrict our attention to
the physical case where the interface is embedded. See Theorem 2.1 for details on
how we interpret (2).

We make the assumption that β = 0 on 50 and 5d . This implies a contact angle
of π/2 along the intersection of 3 with those planes. As we shall see in Section 2,
this also implies that the free-surface is generated by curves in the plane 50 and is
extended as a right cylinder. See Figure 2 for an example of the generating curves,
where δ/2 denotes the value of the horizontal displacement of the fluid interface
on P0. On the plates P0 and Ph , we allow the constant β to differ at heights 0 and h
and to be any number in [−1, 1]. This corresponds to contact angles along the
intersection of 3 with those plates, which we will denote by γ0 and γh respectively.

In Section 3, we derive a formula for the enclosed volume in terms of the solution
to a version of the differential equation (2) when the fluid remains connected. Then
we give an algorithm for computing the interface 3 with a volume constraint in

γh

γ0

−δ/2 δ/2

Volume V

Figure 2. A liquid bridge.
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Section 4. We use this algorithm to give a numerical approximation of 3 for
different parameters h, γ0, γh , and volume V . Next, in Section 5, we present a
collection of examples. Finally, we explore the minimum spanning volume for
(γ0, γh) ∈ [0, π/2]× [0, π/2] in Section 6.

As far as we have been able to determine, this is the first exploration of liquid
bridges of this type. Three dimensional liquid bridge problems have been studied
by Athanassenas [1992]; Concus, Finn and McCuan [Concus et al. 2001]; Finn
and Vogel [1992]; and Vogel [1982; 1987; 1989; 2005; 2006; 2013]. In recent
work there is a trend to study the lower dimensional versions of certain related fluid
mechanics problems. We point to papers by Bhatnagar and Finn [2006], as well as
by McCuan and Treinen [2013; ≥ 2015], and Wente [2006] for examples of this
approach. In particular, we mention a paper by McCuan [2013] as a model for the
present approach.

2. Symmetries

There are two types of symmetries in the fluid configurations. The first is the
cylindrical symmetry that allows us to restrict our attention to the generating curves
in the 50 plane. The second is a reflective symmetry about the plane x = 0.

An Alexandrov moving plane argument has been successful in establishing sym-
metry properties for similar fluid configurations. See Wente [1980], Treinen [2012],
and McCuan [2013]. The following is a direct consequence of first using those
methods with a moving plane parallel to 50, then a second argument using those
methods with a moving plane parallel to x = 0 can be used to show symmetry
about x = 0. The details are left to the interested reader.

Theorem 2.1. The interface 3 is right-cylindrically symmetric with generating
curves restricted to the plane 50. The generating curves satisfy

dx
ds
= cosψ, (3)

du
ds
= sinψ, (4)

dψ
ds
= κu− λ, (5)

and it suffices to compute one generating curve where x ≥ 0.

Note that then the distance d is not important to our consideration, and hence we
can view our problem in this reduced dimensional setting, or as extending infinitely
in a horizontal direction. With this perspective, we normalize so that d = 1 so
that we are considering volume per unit distance in the y-direction. The solution
may be extended infinitely in both y-directions and be seen as an infinitely long
liquid bridge between two horizontal plates generated by the curves in 50. The
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solution may also interpreted as a lower dimensional problem, where the interfaces
are reduced to curves in the plane 50, spanning a volume that is more properly seen
as an area in 50. This last interpretation is the easiest way to visualize the results of
our computations, and so is our default for figures, even while we continue to use the
terminology of volume and area, and we use them in the sense of per unit distance d .

3. Computing the fluid volume

Consider solutions to (3)–(5) with the boundary conditions

sinψ(0)= cos γ0 at s = 0, where u(0)= 0, (6)

sinψ(`)= cos γh at s = `, where u(`)= h. (7)

Solutions to this two-point boundary value problem will determine a value of x(0),
which we denote by δ/2. We will later use this as a parameter in the process of
constructing approximate solutions, but it is immediately useful in determining a
volume formula as follows.

Theorem 3.1. The volume enclosed by the upper plate, lower plate, and the fluid-air
interface given by area per unit distance in the y-direction satisfies

V = (h− λ)
(

x(`)− δ
2

)
+ sin γ0− sin γh, (8)

where the solutions x, u, and ψ are parametrized by arc length s, with s = 0 at
height u = 0 and s = ` at height u = h.

Proof. We find the volume of the enclosed fluid by computing the right half of the
volume. The geometric idea is to start with a rectangle with height h and width δ/2,
and then add to it the additional volume outside this region. The first configuration
is illustrated in Figure 3. This configuration contains a vertical point given by (x̄, ū),
and this partitions the volume outside of the rectangle into two regions. The lower

u

δ/2 x

Figure 3. The configuration used in the volume computation, with
only the portion x > 0 shown. Here x = x̄ and u = ū, and the plate
heights are 0 and h.
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u

x δ/2

u

x δ/2

Figure 4. Two volume configurations. Here x = x̄ and u = ū, and
plate heights are 0 and h.

region is bounded by δ/2 on the left, u = ū above, and the fluid interface on the
right. The upper region is bounded by x = x(`) on the left, u = ū below, and
the fluid interface on the right. Added to this upper region is a second, smaller,
rectangle of height h− ū and width x(`)− δ/2. So, we calculate using equations
(3)–(5) and integration by parts as follows:

V =
∫ x̄

δ/2
(ū− u) dx +

∫ x̄

x(`)
(u− ū) dx +

(
x(`)− δ

2

)
(h− ū) (9)

= ū
(

x̄ − δ
2
+ x(`)− x̄

)
+

(
x(`)− δ

2

)
(h− ū)+

∫ x̄

x(`)
u dx −

∫ x̄

δ/2
u dx (10)

= h
(

x(`)− δ
2

)
+ ū(0)+

∫ x̄

x(`)
u dx −

∫ x̄

δ/2
u dx (11)

= h
(

x(`)− δ
2

)
+

∫ x̄

x(`)

(dψ
ds
+ λ

)
dx −

∫ x̄

δ/2

(dψ
ds
+ λ

)
dx (12)

= (h− λ)
(

x(`)− δ
2

)
+

∫ x̄

x(`)

dψ
ds

dx −
∫ x̄

δ/2

dψ
ds

dx (13)

= (h− λ)
(

x(`)− δ
2

)
+

∫ π/2

γh−π

cosψ dψ −
∫ π/2

−γ0

cosψ dψ (14)

= (h− λ)
(

x(`)− δ
2

)
+ sin γ0− sin γh . (15)

There are multiple possible configurations; however, it suffices to adapt the above
calculation to these remaining cases:

• x(s) < δ/2 for 0< s < ` and x(`) < δ/2. See Figure 4 (left).

• x(s) < δ/2 for some initial s > 0, and then x(s) increases and x(`) > δ/2. See
Figure 4 (right).
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u

xδ/2 x δ/2

Figure 5. Two remaining volume configurations. Here x = x̄ and
u = ū, and plate heights are 0 and h.

• x(s) > δ/2 for some initial s > 0, and then x(s) decreases and x(`) < δ/2.
See Figure 5 (left).

• There is no vertical point on the interface profile curve. There are many
such configurations; see Figure 5 (right) for a typical example. The volume
computation is straightforward in these cases, only requiring use of (3)–(5). �

4. Numerical solver

We use a shooting method to solve the two-point boundary value problem of (3)–(5)
with boundary conditions (6) and (7). We implement this by nesting two algorithms,
namely an inner implementation of an adaptive Runge–Kutta–Felberg method and
an outer implementation of a multidimensional root finder.

Values for the initial and terminal contact angles γ0, γh , volume V , and height h
are prescribed for the desired solution. The lower conditions for the boundary value
problem are

r(0)= δ
2
, (16)

u(0)= 0, (17)

ψ(0)= γ0, (18)

where the tangent to the curve forms the contact angle γ0 with the lower plate, and
the upper boundary conditions are

u(`)= h, (19)

ψ(`)=−γh, (20)

where the ending arc length ` is chosen to terminate at height h with the tangent to
the curve forming the angle γh with the upper parallel plate.
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Figure 6. A liquid bridge with contact angle π/2 on the upper plate.

Again, the boundary value problem is solved using a shooting method based
on an adaptive ODE solver. The solver uses the adaptive Runge–Kutta–Felberg
method for 4th and 5th order, implemented by Matlab as ODE45. The absolute
and relative tolerances were both set to 1e − 8. To begin to solve the problem,
reasonable guesses are given for the free parameters: the distance between the
generating curves δ, the ending arc length `, and the Lagrange multiplier λ. These
values are used to generate candidates satisfying the ODE. Then the solutions to
(3)–(5) with these values of the free parameters are used to evaluate the equations

V − V (`)= 0, (21)

h− u(`)= 0, (22)

γh −ψ(`)= 0, (23)

which are not, in general, solved. The parameters δ, `, and λ are adjusted in the
multidimensional root finder implemented in Matlab as FSOLVE, which defaults to a
trust region method. The tolerances for this portion of the algorithm were set to 1e−6.
We recompute the solutions to (3)–(5) with new values of the parameters δ, `, and λ
at each step, until (21)–(23) are satisfied to the prescribed tolerance.

5. Examples

We present some examples of note generated with the algorithm described in the
previous section. In Figure 2 we saw a typical example of a configuration where
γ0, γh ∈

[
0, π2

]
. Figure 6 shows a configuration where γh = π/2, and Figure 7

shows a configuration where both γ0, γh > π/2. If the volume does not span the
gap between P0 and Ph , then it will rest on the plate P0 as a sessile drop. We see in
Figure 8 a configuration where (γ0, γh)= (2.57, 1.05), which appears to be close
to the maximum height h before the liquid bridge pinches off of the upper plate Ph

and becomes a sessile drop.
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Figure 7. A liquid bridge with both γ0 and γh larger than π/2.
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Figure 8. A liquid bridge that is visually similar to a sessile drop.

6. Minimum spanning volume

Consider configurations where the contact angles γ0 and γh are both less than π/2.
The phenomenon explored is the minimum volume which admits a solution spanning
the two plates P0 and Ph . In Figure 9 we see that for angles (γ0, γh)= (0.99, 0) and
a particular volume, we have a point on the interior of the fluid interface on the right
that touches a corresponding point on the interior of the fluid interface on the left.

−0.5 0 0.5

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

u

x

Figure 9. A liquid bridge with interfaces touching on the interior.
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Figure 10. The minimum spanning volume over a grid of 50× 50
samples in the (γ0, γh)-space.

This is clearly nonphysical and represents an absolute minimum spanning volume.
It is apparent that this contact between the left and right interfaces occurs on either
P0 or Ph if either γ0 > π/2 or γh > π/2. Therefore, we restrict our attention to
the region 0 ≤ γ0 ≤ π/2 and 0 ≤ γh ≤ π/2. We seek a minimum volume where
x(s)= 0 for some s ∈ [0, `].

Observe the crucial fact of the system (3)–(5) that

dψ
ds
= κu− λ

is independent of x , and so the x solution may be translated by a constant. We
are able to use this to some degree to adjust the volume spanned. If the left and
right interfaces are rigidly moved apart in the x-direction, then the spanned volume
increases while still solving the boundary value problem, and conversely, if they are
rigidly moved together, they will eventually touch. At this point there exists an arc
length s such that x(s)= 0 for both the left and right portions of the configuration.
We are able to use this idea in conjunction with our previous solver to obtain the min-
imum spanning volume at a fixed height h for a given pair of contact angles (γ0, γh).

We use the following algorithm to run over a grid of 50× 50 samples in the
(γ0, γh)-space. We solve the constrained boundary value problem similar to the
method in Section 4, however, we replace the condition

V − V (`)= 0
with

x(s)= 0 for some s ∈ [0, `]. (24)

The results are collected in Figure 10. Here it is worth noting that the examples from
Figure 11 are generated from interesting points on the minimum spanning volume
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Figure 11. Left: The minimum spanning volume. Here (γ0, γh)≈(
π
2 , 1.35

)
. Right: A very small spanning volume, but not the

minimum spanning volume. Here (γ0, γh)=
(
π
2 ,

π
2

)
.

surface. The minimum spanning volume on the left is actually the minimum volume
of all the contact angle pairs, and perhaps surprisingly, it is not the (π/2, π/2) case
(which is pictured on the right).
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