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(Communicated by Kenneth S. Berenhaut)

Edge-flip distance between triangulations of polygons is equivalent to rotation
distance between rooted binary trees. Both distances measure the extent of
similarity of configurations. There are no known polynomial-time algorithms for
computing edge-flip distance. The best known exact universal upper bounds on
rotation distance arise from measuring the maximum total valence of a vertex in
the corresponding triangulation pair obtained by a duality construction. Here we
describe some properties of the distribution of maximum vertex valences of pairs
of triangulations related to such upper bounds.

1. Introduction

Binary trees are widely used in a broad spectrum of computational settings. Binary
search trees underlie many modern structures devoted to efficient searching, for
example. Shapes of binary trees affect the performance of searches, and there
have been a wide variety of approaches to ensure such efficiency. Natural dual
structures to rooted ordered binary trees are triangulations of polygons with a
marked edge or vertex. Rotations in binary trees correspond to edge-flip moves
in such triangulations of polygons, so the rotation distance between two rooted
ordered binary trees corresponds exactly to the edge-flip distance between the two
corresponding triangulations of marked polygons.

Properties of rotations have been widely studied; see Knuth [1973] for background
and fundamental algorithms. There is no known polynomial-time algorithm for
computing rotation (or equivalently, edge-flip) distance, though there are a variety
of efficient approximation algorithms [Baril and Pallo 2006; Cleary and St. John
2010; 2009]. A straightforward argument of Culik and Wood [1982] shows that for
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Figure 1. Rotation at a node N . Right rotation at N transforms
the left tree to the right one, and left rotation at N is the inverse
operation which transforms the right tree to the left one. A, B, and
C represent leaves or subtrees, and the node N could be at the root
or any other position in the tree.

any two trees with n internal nodes, there is always a path of length at most 2n− 2.
Sleator, Tarjan and Thurston [Sleator et al. 1988] showed that the distance is never
more than 2n−6 using an argument described below based upon maximum summed
vertex valence in the pair of triangulations, and furthermore that for all very large n,
that bound is achieved. Recently, Pournin [2014] showed that, in fact, the upper
bound is achieved for all n ≥ 11.

A rotation move in a rooted binary tree relative to a fixed node N is a promotion
of one grandchild node of N to a child node of N , a demotion of a child of N to a
grandchild of N , and a switch of parent node for one grandchild of N , preserving
order. This occurs in the vicinity of a single node, as pictured in Figure 1. The
corresponding edge-flip move in a triangulation occurs in a single quadrilateral
formed by two triangles which share an edge. The common edge between two
adjacent triangles is exchanged for the opposite diagonal in that quadrilateral, as
shown in Figure 2. If the edge-flip distance between two triangulations of a regular
polygon is k, that means that there is a sequence of k edge flips transforming the
first triangulation to the second and there is no shorter sequence accomplishing the
same transformation.

Q

Figure 2. An edge flip across a quadrilateral Q. The four peripheral
quadrilaterals denote (possibly empty) triangulated polygons whose
triangulations are unchanged by the edge flip in quadrilateral Q.
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Figure 3. A triangulation of the octagon and the corresponding
dual tree, with sides numbered to match the leaves. Pulling up on
the edge from the marked side of the octagon (marked as leaf 0)
gives the tree on the right.

2. Triangular subdivisions of polygons

Here, by a triangulation of size n, we mean a triangulation of n− 1 interior edges
subdividing a regular (n+2)-gon, where we choose to label vertices from 0 to n+1.
Such a triangulation is dual to a tree with n+ 1 leaves and n internal nodes, with
leaves labeled from 0 to n. See Figure 3.

The number of triangulations of size n is the n-th Catalan number, Cn , and since
Cn grows exponentially at rate of 4nn−3/2, the number of pairs of trees of size n
grows on the order of 16nn−3. Because of the rapid growth of the number of tree
pairs (or equivalently, triangulation pairs), computing these quantities exhaustively
via complete enumeration is not feasible beyond small n. To explore this expo-
nentially growing space, we use sampling techniques to characterize the expected
behavior of randomly selected triangulation pairs. We experiment computationally
by choosing pairs of triangulations of size n uniformly at random, computing the rel-
evant vertex sums and tabulating the results. As in [Chu and Cleary 2013], we use the
linear-time random tree-generation procedure of Rémy [1985] to generate efficiently
ordered trees uniformly at random, rather than considering the Yule distribution on
tree pairs studied by Cleary, Passaro and Toruno [Cleary et al. 2015]. The quantities
studied here are the maximum valence sums of vertices, described in the next section.

3. Vertex valence sums

Vertex valence sums play a role in the upper bounds for edge-flip distance. Given
a pair of triangulations S and T , we count the number of interior edges si and ti
incident to each vertex i in the polygon and form the vertex valence sum for vertex i
as si + ti . See Figure 4. The bound of 2n− 6 for n ≥ 11 from [Sleator et al. 1988]
is obtained by the following argument. There are a total of n − 1 edges in each
triangulation, each with 2 endpoints, giving 4n− 4 total endpoints of interior edges
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Figure 4. Two superimposed triangulations, one drawn in dashed
red and one in solid blue. The vertices are numbered and the
total valences are given in purple for each vertex. For example,
the total valence of vertex 0 is five, with 3 red edges and 2 blue
edges incident there. In this example, the summed vertex valences
range from a low of 0 (at vertex 2, indicating a common peripheral
triangle) to a high of 8, which occurs at vertex 3.

for the pair of triangulations. Each endpoint occurs at one of the n + 2 vertices,
so the average valence of a vertex is merely (4n − 4)/(n + 2) = 4− 12/(n + 2).
For n ≥ 11, this gives average valence larger than 3 (approaching 4 in the limit
of large n). Since the summed valences can only be integers, if the sum is more
than 3, there must be a vertex j of total valence 4 or more. We consider a path of
triangulations from S to T by way of a fan triangulation F j , which is the fan from
vertex j (that is, a triangulation of the polygon where every triangle has an edge
incident on vertex j). Transforming S to F j takes exactly n− 1− s j edge flips, as
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Figure 5. Two superimposed zigzag triangulations, one drawn in
dotted blue and one in dashed red, with common segments in solid
purple. Each red dashed edge can be directly flipped to the corre-
sponding blue one, giving an edge-flip distance of 4 between the two
triangulations, despite the vertex valence sums commonly being 4.
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there is always an edge flip which increases the valence of vertex j by one and
there are exactly that many edges to flip. Similarly, from T to F j there is a path
of length n− 1− t j and such a path is minimal. So there is a path from S to F j

to T of length no more than 2n− 2− s j − t j , giving the 2n− 6 bound in the case
that the maximum vertex valence s j + t j is exactly 4. In cases where the maximal
vertex valence is higher, the upper bound is correspondingly decreased.

We note that for a triangulation pair, the vertex sums need to be quite evenly
distributed around the polygon to have a chance of being maximally distant for that
size. The average valence sum is between 3 and 4 for n ≥ 11 and no maximally dis-
tant pair of triangulations can have any vertex sums of 5 or larger. Note that having a
maximal vertex sum of 4 is necessary but not sufficient for being a maximally distant
triangulation pair, as can be easily seen by considering a zigzag triangulation of a
regular n-gon beginning at vertex 0 and a reflected zigzag triangulation beginning
at vertex 2, as shown in Figure 5. The maximal vertex sum is 4 but the edge-flip
distance between these two is less than n/2 (flipping the red edges to the blue edges
in the figure), far less than that of the maximum possible. There are many other
configurations with maximal vertex 4 which are not remotely close to the 2n− 6
upper bound as well. Nevertheless, if there is even a single vertex with summed
valence 5 or more, the two triangulations cannot be at the maximal 2n− 6 distance.

4. Discussion

There is an obviously increasing relationship between triangulation size and expected
maximum observed summed valence across the vertices. However, the growth rate
appears slow, as the relationship appears to be either straightening or slightly
convex downward in log-scaled Figure 6, where a straight line would indicate
logarithmic growth. The experimental evidence suggests that the relationship is at
most logarithmic. Figure 7 shows an example of a distribution of maximum summed
valence for a particular size, n = 950, showing the shape of typical distributions
that arise in these computations.

A combing triangulation with respect to v is a triangulation where every edge
is incident with the vertex v. Using the argument of [Sleator et al. 1988], an
upper bound on rotation distance from S to T comes from the path which first flips
successively edges in S to be incident with v, a vertex of maximum summed valence,
to obtain the combing triangulation for v. Then the path goes from that combing
triangulation to T , successively flipping to edges in T which are not incident on v.
At each step of the resulting path, there is at least one edge in S which can be
flipped to be incident to v or one edge incident to v which can be flipped to an edge
in T . The resulting length of the path is the number of edges in S and T which are
not incident on v. Combinatorial arguments give that there is always a vertex of
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Figure 6. Maximum valence increases with triangulation size.
Here we show average maximum summed vertex valence ver-
tically, against the size of triangulations plotted horizontally on a
logarithmic scale. For each size, the number of triangulation pairs
sample to estimate the average maximum vertex valence ranges
from 100,000 to 10 million depending upon size.

summed degree 4, giving the universal (for n ≥ 11) bound of 2n− 6. For larger
summed valence k for a particular pair of trees, the same arguments show that an
upper bound for distance for that pair is 2n−k−2. The experimental data in Table 1
shows that though it is common for randomly selected tree pairs to have higher
summed valence than the minimum of 4, it is often not markedly higher than 4. In
the case of randomly selected tree pairs, we know from the asymptotic analysis of
Cleary, Rechnitzer and Wong [Cleary et al. 2013] that for large n, two randomly
selected triangulations of size n are likely to have about (16/π − 5)n ∼= 0.093n
common edges. Thus, the upper bounds for rotation distance arising from common
edges, edges which are a single rotation from a common edge, and from common
components of small size are generally much stronger than those upper bounds
arising from the path through a fan on a vertex of maximum summed valence.

15 20 25 30

50 000

100 000

150 000
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Figure 7. An example of the distribution of maximum vertex va-
lence for one million triangulation pairs, for size 950, with average
17.8 and standard deviation 2.26.
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triangulation size average max vertex sum σ max vertex sum

15 8.03203 1.55756
20 8.96568 1.70762
30 10.1791 1.87928
40 10.9805 1.97628
50 11.5674 2.03815
75 12.5759 2.12531

100 13.2461 2.16791
200 14.7589 2.23289
500 16.5983 2.26295

1000 17.9277 2.27465
2000 19.184 2.24797
3000 19.9369 2.2556
5000 20.8352 2.24551
7500 21.5392 2.23559

10000 22.0527 2.2108
12000 22.3505 2.20521
15000 22.7512 2.20811

Table 1. Observed averages and standard deviations of maximum
vertex sums via experiments involving 10 million (n≤30), 1 million
(n < 1000) or 100,000 (for n ≥ 10000) runs depending upon the
triangulation sizes.

n fraction with max vertex sum 4

11 0.0050032
12 0.0015352
13 0.0004462
14 0.0001232
15 0.000035
16 8.1 · 10−6

17 2.4 · 10−6

18 5.0 · 10−7

19 1.0 · 10−7

20+ none observed

Table 2. Fractions of triangulations with maximum vertex sum
exactly 4. Hundreds of millions were considered for n≥ 20, finding
none selected at random.
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The work of Pournin [2014] constructs carefully very specific examples of
triangulations which are at maximal distance 2n− 6 for all n ≥ 11. One question
is how common such maximally distant pairs are. The experimental evidence
in Table 2 shows that examples with this extremal behavior are quite rare. In the
language of associahedra, used in [Pournin 2014], pairs of triangulations at maximal
2n− 6 distance correspond to antipodal points, which have many long geodesics
between them, with typically many of those passing through the distinguished
“fan” triangulations. But from the analysis here, it appears quite rare that a pair of
triangulations will have a geodesic which passes through a fan point, indicating
further the rarity of these extremal antipodal pairs.
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