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We investigate the level sets of extremal Sobolev functions. For � ⊂ Rn and
1≤ p< 2n/(n−2), these functions extremize the ratio ‖∇u‖L2(�)/‖u‖L p(�). We
conjecture that as p increases, the extremal functions become more “peaked” (see
the introduction below for a more precise statement), and present some numerical
evidence to support this conjecture.

1. Introduction

Let n ≥ 2 and let �⊂ Rn be a bounded domain with piecewise Lipschitz boundary,
satisfying a uniform cone condition. One can associate a large variety of geometric
and physical constants to �, such as volume, perimeter, diameter, inradius, the
principal frequency λ(�), and torsional rigidity P(�) (which is also the maximal
expected exit time of a standard Brownian particle). For more than a century, many
mathematicians have investigated how all these quantities relate to each other;
[Pólya and Szegő 1951] provides the best introduction to this topic, which remains
very active today, with many open questions.

In the present paper we investigate the quantity

Cp(�)= inf

{ ∫
�
|∇u|2 dµ(∫

�
|u|p dµ

)2/p : u ∈W 1,2
0 (�), u 6≡ 0

}
. (1)

The constant Cp(�) gives the best constant in the Sobolev embedding:

u ∈W 1,2
0 (�) ⇒ ‖u‖L p(�) ≤

1√
Cp(�)

‖∇u‖L2(�)
.

By Rellich compactness, the infimum in (1) is finite, positive, and realized by an
extremal function u∗p, which we can take to be positive inside � (see, for instance,
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[Gilbarg and Trudinger 2001; Sauvigny 2004; 2005]). The Euler–Lagrange equation
for critical points of the ratio in (1) is

1u+3u p−1
= 0, u|∂� = 0, (2)

where3 is the Lagrange multiplier. In the case that u=u∗p is an extremal function, a
quick integration by parts argument shows that the Lagrange multiplier3 is given by

3= Cp(�)

(∫
�

(u∗p)
p dµ

)(2−p)/p

.

It is worth remarking that in two cases the PDE (2) becomes linear: that of p= 1
and p= 2. In the case p= 1, we recover the torsional rigidity as P(�)= (C1(�))

−1,
and in the case p = 2, we recover the principal frequency as λ(�)= C2(�). These
linear problems are both very well-studied, from a variety of perspectives, and the
literature attached to each is huge. From this perspective, the second author and
Tom Carroll began a research project several years ago, studying the variational
problem (1) as it interpolates between torsional rigidity and principal frequency,
and beyond. (See, for instance, [Carroll and Ratzkin 2011; 2012].) Primarily, we
are interested in two central questions:

• Which of the properties of P(�) and λ(�) (and their extremal functions) also
hold for Cp(�) (and its extremal functions)?

• Can we track the behavior of Cp(�) and its extremal function u∗p as p varies?

Some of our investigations have led us conjecture the following.

Conjecture 1. Let n ≥ 2 and let �⊂ Rn be a bounded domain with piecewise Lip-
schitz boundary satisfying a uniform cone condition. Normalize the corresponding
(positive) extremal function u∗p so that

sup
x∈�

(u∗p(x))= 1,

and define the associated distribution function

µp(t)=
∣∣{x ∈� : u∗p(x) > t}

∣∣.
Then within the allowable range of exponents, we have

1≤ p < q ⇒ µp(t) > µq(t) for almost every t ∈ (0, 1). (3)

If n = 2, the allowable range of exponents is 1≤ p < q , and if n ≥ 3, the allowable
range of exponents is 1≤ p < q < 2n/(n− 2).

Below we will present some compelling numerical evidence in support of this
conjecture. The remainder of the paper is structured as follows. In Section 2 we
provide some context for our present investigation, and describe some of the related
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work present in the literature. In Section 3 we describe the numerical method we
use, as well as its theoretical background, and we present our numerical results
in Section 4. We conclude with a brief discussion of future work and unresolved
questions in Section 5.

2. Related results

In this section we will highlight some related theorems about principal frequency,
torsional rigidity, qualitative properties of extremal functions, and other quantities.
The following is by no means an exhaustive list.

The distribution function µp is closely related to a variety of rearrangements of
a generic test function u for (1). One can rearrange the function values of a positive
function in a variety of ways, and different rearrangements will yield different
results. One of the most well-used rearrangements is Schwarz symmetrization,
where one replaces a positive function u on � with a radially symmetric, decreasing
function u∗ on B∗, a ball with the same volume as �. The rearrangement is defined
to be equimeasurable with u:

|{u > t}| = |{u∗ > t}| for almost every function value t.

Krahn [1925] used Schwarz symmetrization to prove an inequality conjectured
by Rayleigh in the late 1880s:

λ(�)≥

(
|�|

ωn

)−2/n

λ(B), (4)

where B is the unit ball in Rn , and ωn its volume. Moreover, equality can only
occur in (4) if �= B apart from a set of measure zero. In fact, it is straightforward
to adapt Krahn’s proof to show

|�| = |B| ⇒ Cp(�)≥ Cp(B), (5)

with equality occurring if and only if �= B apart from a set of measure zero (see
[Carroll and Ratzkin 2011]). One can also use similar techniques to prove, for
instance, that the square has the greatest torsional rigidity among all rhombi of the
same area [Pólya 1948].

However, there is certainly a limit to the results one can prove using only Schwarz
(or Steiner) symmetrization, and to go further one must apply new techniques.
Among these, one can rearrange by weighted volume [Payne and Weinberger 1960;
Ratzkin 2011; Hasnaoui and Hermi 2014], which works well for wedge-shaped
domains. One can rearrange by powers of u, or (more generally) by some function
of the level sets of u [Payne and Rayner 1972; 1973; Talenti 1976; Chiti 1982].
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If one is combining domains using Minkowski addition, then the Minkowski sup-
convolution is a very useful tool [Colesanti et al. 2006].

All these techniques are successful, to varying degrees, when studying (1) for
a fixed value of p. However, we are presently at a loss with regards to applying
them when allowing p to vary. There are comparatively few results comparing the
behavior of Cp(�) and its extremals u∗p for different values of p.

It is well known [Trudinger 1968] that as p→ 2n/(n − 2), the solutions u∗p
become arbitrarily peaked, and the distribution function µp(t) approaches 0 on the
interval (ε, 1) for any ε > 0. This behavior is a reflection of the fact that the Sobolev
embedding is not compact for the critical exponent of 2n/(n− 2), and the loss of
compactness is due to the fact that the functional in (1) is invariant under conformal
transformation for this exponent. Thus, it is interesting to understand the asymptotics
as p→ 2n/(n−2). A partial list of such results includes an asymptotic expansion of
Cp(�) due to van den Berg [2012] and a theorem of Flucher and Wei [1997] (see also
[Bandle and Flucher 1996]) determining the asymptotic location of the maximum
of the extremal u∗p. Additionally, P. L. Lions [1984a; 1984b] started a program to
understand the loss of compactness, due to concentration of solutions, for a variety of
geometric problems in functional analysis and PDEs. R. Schoen and Y.-Y. Li (among
others) have exploited this concentration-compactness phenomenon to understand
the problem of prescribing the scalar curvature of a conformally flat metric.

We remark that until now we had scant evidence for Conjecture 1. Namely, we
knew in advance that the extremals become arbitrarily peaked as p approaches
the critical exponent, and we knew that in the very special case �= B, we have
µ1(t) > µ2(t).

3. Our numerical algorithm

Our numerical method is borrowed from foundational work of Choi and McKenna
[1993] and Li and Zhou [2001], and its theoretical underpinning is the famous
“mountain pass” method of Ambrosetti and Rabinowitz [1973]. Within our range of
allowable exponents, Rellich compactness exactly implies that the functional (1)
satisfies the Palais–Smale condition, and so the mountain pass theorem of [loc. cit.]
implies the existence of a minimax critical point. A later refinement of Ni [1989]
implies that in fact a minimax critical point lies on the Nehari manifold, defined by

M=
{

u ∈W 1,2
0 (�) : u 6≡ 0,

∫
�

|∇u|2− u p dµ= 0
}
. (6)

To find critical points, we project onto M, using the operator

PM(u)=
(∫

�
|∇u|2 dµ∫
�
|u|p dµ

)1/(p−2)

u. (7)
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Our goal will be to find mountain pass critical points of the associated functional

I(u)=
∫
�

1
2 |∇u|2− 1

p |u|
p dµ, (8)

which lie on the Nehari manifold defined in (6). Observe that the Fréchet derivative
of I is

I ′(u)(v)=
d
dε

∣∣∣∣
ε=0

I(u+ εv)

=

∫
�

〈∇u,∇v〉− u p−1v dµ,

so that, after integrating by parts, we can find the direction v of steepest descent by
solving the equation

2λ1v =−1u− u p−1. (9)

We are free to choose λ > 0 as a normalization constant, and choose it so that∫
�
|∇v|2 dµ= 1. (It is well known that by the Poincaré inequality this H 1-norm is

equivalent to the W 1,2-norm.) An expansion of the difference quotient (using our
normalization of v) shows

I(u+ εv)− I(u)
ε

=−2λ+O(ε),

so choosing λ > 0 does indeed correspond to the direction of steepest descent of I,
rather than the direction of largest increase.

At this point we remark on the importance of taking p > 2. In the superlinear
case, u0 ≡ 0 is a local minimum and, so long as u 6≡ 0, we have I(ku) < 0 for
k > 0 sufficiently large. Thus, for any path γ (t) joining u0 to kuguess, the function
hγ (t)=I(γ (t))will have a maximum at some value tγ . We can imagine varying the
path γ and finding the lowest such maximal value, which is exactly our mountain
pass critical point.

We will begin with an initial guess uguess which is positive inside � and 0 on ∂�,
and let u1 = PM(uguess). Thereafter we apply the following algorithm:

(1) Given uk , we compute the direction of steepest descent vk using (9).

(2) If ‖vk‖W 1,2(�) is sufficiently small, we stop the algorithm, and otherwise we
let uk+1 = PM(uk + vk)

(3) If I(uk+1) < I(uk) then we repeat the entire algorithm starting from the first
step. Otherwise we replace vk with 1

2vk and recompute uk+1.

(4) Upon the completion of this algorithm, we test our numerical solution to verify
that it does indeed solve the PDE (2) weakly.
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Several remarks are in order. The algorithm outlined above is exactly the one
proposed by Li and Zhou [2001]. They proved convergence of the algorithm under
a wide variety of hypotheses, which include the superlinear (p > 2) case of (1)
and (8). However, they do not claim convergence of the algorithm in the sublinear
case, and in this case the algorithm fails. On the other hand, we are able to verify
that in the superlinear case the algorithm converges to a positive (weak) solution of
the PDE (2), so we are confident we have reliable data in this case. We present this
data in the next section.

In this algorithm we must repeatedly solve the linear PDE (9), which we do
in the weak sense, using biquadratic (nine-noded) quadrilateral finite elements.
In each of these steps we replace the corresponding integrals with sums over the
corresponding elements. We outline this numerical step in the paragraphs below.

In this computation we take u as known at the mesh points (by an initial guess
or by the result of a previous iteration). Writing v̄ = 2λv+ u, the solution to (9) is
given by the solution to

1v̄ =−u p−1, (10)

from which we can recover the steepest descent direction v.
To solve for v̄ ∈W 1,2

0 (�), we will solve the weak form of (10), i.e.,∫
�

∇w(x) · ∇v̄(x) dx =
∫
�

w(x)u(x)p−1 dx (11)

for any test functionw∈W 1,2
0 (�). We will now derive the finite element formulation

based on the methods presented by Fish and Belytschko [2007]. We first notice that
we can split up our integral as a sum of the integrals over the individual element
domains �e:

nel∑
e=1

(∫
�e
∇we(x)∇v̄e(x) dx −

∫
�e
we(x)(v̄e(x))p−1 dx

)
= 0.

We now write our functions w and v̄ in terms of their finite element approxima-
tions as

w(x)≈ wh(x)= N(x)w, v̄(x)≈ v̄h(x)= N(x)d,

where N are quadratic shape functions with value 1 at their corresponding mesh
point and value 0 at all other mesh points, while w, d are vectors of nodal function
values. The gradients of w and v̄ can then be written as

∇w ≈ B(x)w, ∇v̄ ≈ B(x)d,
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where B are the gradients of the shape functions. We can rewrite the above
expressions for the element level as

we(x)≈ Ne(x)we, v̄e(x)≈ Ne(x)de, ∇we
≈ Be(x)we, ∇v̄e

≈ Be(x)de.

Rewriting the integral using these approximations leaves us with

nel∑
e=1

(∫
�e

weT
BeT
(x)Be(x)de dx −

∫
�e

weT
NeT

(x)(Ne(x)de)p−1 dx
)
= 0,

since (Be(x)we)T =weT BeT
(x) and (Ne(x)we)T =weT NeT

(x). We notice that we
can take the constants weT

and de outside of the integral to give

nel∑
e=1

weT
(∫

�e
BeT
(x)Be(x) dx de

−

∫
�e

NeT
(x)(Ne(x)de)p−1 dx

)
= 0.

Letting

K e
=

∫
�e

BeT
(x)Be(x) dx and f e

=

∫
�e

NeT
(x)(Ne(x)de)p−1 dx

and using the gather matrix to write

we
= Lew, de

= Led,

we get

wT
( nel∑

e=1

LeT
K e Led−

nel∑
e=1

LeT
f e
)
= 0.

Further letting

K =
nel∑

e=1

LeT
K e Led and f =

nel∑
e=1

LeT
f e,

we end up with

wT (K d− f )= 0, for all w.

Since we know that w ∈ W 1,2
0 is arbitrary, we therefore solve the discrete finite

element form

K d = f , (12)

with Nd the finite element approximation to v̄ from which we can recover the
steepest descent direction v.
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4. Numerical results

In this section we describe our numerical results. We implemented the algorithm
described in Section 3 using Matlab, and all the figures displayed below come from
this implementation.

We first implement our method on a unit ball of dimension four. In this case, the
solution is radially symmetric, so we only need to solve an ODE. We display plots
of these solutions and the corresponding distribution functions in Figure 1.

Observe that, as we expected, the distribution function appears to be monotone,
and that as p→ 4= 2n/(n− 2) the solution becomes arbitrarily concentrated at
the origin.

We can verify that we are indeed finding solutions to the correct PDE. For the
cases p= 1 and p= 2, we can compute the solutions analytically, and verify directly
that our numerical solutions agree quite well. These are (up to a constant multiple)

u∗1(r)= 1− r2, u∗2(r)= r (2−n)/2 J(n−2)/2( j(n−2)/2r),
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Figure 1. Extremal Sobolev functions (top) and their distributions
(bottom) for a four-dimensional unit ball.



LEVEL SETS OF EXTREMAL SOBOLEV FUNCTIONS 795

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

1

2

3

4

5

6

7

u 4
(x
,
y)

y x
0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.5

1

1.5

2

2.5

u 8
(x
,
y)

y x

Figure 2. Extremal Sobolev functions for p = 4 (left) and p = 8
(right) on a unit square.

where Ja is the Bessel function of the first kind of index a and ja is its first positive
zero. For other values of p we can verify that we have found a weak solution of (2).
As the solution is a priori radial, we know that the weak form of the PDE is

W Tw(u) :=
∫ 1

0

(
−r1−n ∂w(r)

∂r

(
rn−1 ∂u(r)

∂r

)
+w(r)3u(r)p−1

)
rn−1 dr=0. (13)

The above lends itself well to testing via finite element approximation. A random
test function w(r) is created by randomly generating numbers at the mesh points
and W Tw(u) is evaluated by Gauss quadrature. For comparison purposes, the
functions u are normalized so that sup(u) = 1. This requires that 3 be rescaled (3
is set equal to 1 in the algorithm for simplicity), and the appropriate rescaling is
then given by a2−p, where a is the factor normalizing u. This rescaling is derived
from the fact that if u solves

1u+ u p−1
= 0, (14)
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Figure 3. Distributions of extremal Sobolev functions for a unit
square in the plane.
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Figure 4. Extremal Sobolev functions for p = 2 (top), p = 4
(middle), and p = 8 (bottom) on a 1× 4 rectangle.
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Figure 5. Distributions of extremal Sobolev functions for a 1× 4 rectangle.
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then au solves 1(au)+ a2−p(au)p−1
= 0, by simply multiplying (14) by a.

We generate values of W Tw(u) for a number of test functions w and examine the
average magnitude. As alluded to previously, the result of the test (13) is that for
solution candidate functions derived from our algorithm for 2≤ p< 2n/(n−2) and
for p = 1, we have W Tw(u) very close to zero, meaning that we can be confident
that we have found appropriate solutions.

Next we implemented our algorithm in a unit square in the plane. We display
plots of our numerical solutions for both p = 4 and p = 8 in Figure 2 and the
distribution functions for several values of p in Figure 3. Again we verify that our
numerical algorithm does find a weak solution of (2). This time we define

W Tw(u) :=
∫
�

(
−∇u(x)∇w(x)+w3u(x)p−1) dx (15)

and again compute W Tw(u) for our candidate solutions, with appropriate rescalings
as described previously. We have closely matched the result of Choi and McKenna
for the case p = 4, which means that we should be able to use the value W Tw(u∗4)
as a gauge for how close to zero W Tw(u) should be for appropriate solutions. Again
we find that for 2≤ p< 2n/(2−n) and p= 1, we get values of W Tw(u) very close
to zero and of the same magnitude as W Tw(u∗4).

Finally we implemented our algorithm on a rectangle of width 1 and length 4
in the plane. We display plots of our numerical solutions for p = 2, 4, and 8 in
Figure 4, as well as the distribution functions for several values of p in Figure 5.
We use the same test as we did in the case of the unit square to verify that in the
case of the 1×4 rectangle, we have indeed found (weak) numerical solutions of (2).

5. Outlook

The present paper is only the start of our numerical and theoretical investigations
into Conjecture 1. We would like to verify our results on some more planar domains,
such as triangles and parallelograms. Next we anticipate numerical computations
for higher dimensional objects, such as cubes and parallelepipeds, in the superlinear
case, as well as possibly some ring domains. We will also need to develop a new
numerical algorithm which yields reliable results for 1< p < 2. Finally, we hope
that our numerical data provides enough insight to rigorously prove our conjecture.
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