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Zaslavsky proved in 2012 that, up to switching isomorphism, there are six dif-
ferent signed Petersen graphs and that they can be told apart by their chromatic
polynomials, by showing that the latter give distinct results when evaluated at 3.
He conjectured that the six different signed Petersen graphs also have distinct
zero-free chromatic polynomials, and that both types of chromatic polynomials
have distinct evaluations at any positive integer. We developed and executed a
computer program (running in SAGE) that efficiently determines the number of
proper k-colorings for a given signed graph; our computations for the signed
Petersen graphs confirm Zaslavsky’s conjecture. We also computed the chromatic
polynomials of all signed complete graphs with up to five vertices.

Graph coloring problems are ubiquitous in many areas within and outside of
mathematics. We are interested in certain enumerative questions about coloring
signed graphs. A signed graph 6 = (0, σ ) consists of a graph 0 = (V, E) and a
signature σ ∈ {±}E . The underlying graph 0 may have multiple edges and, besides
the usual links and loops, also half-edges (with only one endpoint) and loose edges
(no endpoints); the last are irrelevant for coloring questions, and so we assume in
this paper that 6 has no loose edges. An unsigned graph can be realized by a signed
graph all of whose edges are labeled with +. Signed graphs originated in the social
sciences and have found applications also in biology, physics, computer science,
and economics; see [Zaslavsky 1998–2012] for a comprehensive bibliography.

MSC2010: primary 05C22; secondary 05A15, 05C15.
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The chromatic polynomial c6(2k+ 1) counts the proper k-colorings

x ∈ {0,±1, . . . ,±k}V ,

namely, those colorings that satisfy

xv 6= σvw xw

for any edge vw ∈ E and xv 6= 0 for any v ∈ V incident with some half-edge.
Zaslavsky [1982a] proved that c6(2k + 1) is indeed a polynomial in k. It comes
with a companion, the zero-free chromatic polynomial c∗6(2k), which counts all
proper k-colorings x ∈ {±1, . . . ,±k}V .

The Petersen graph has served as a reference point for many proposed results
in graph theory. Considering signed Petersen graphs, Zaslavsky [2012] showed
that, while there are 215 ways to assign a signature to the fifteen edges, only six of
these are different up to switching isomorphism (a notion that we will make precise
below), depicted in Figure 1. (In our figures we represent a positive edge with a
solid line and a negative edge with a dashed line.)

Zaslavsky [2012] proved that these six signed Petersen graphs have distinct
chromatic polynomials; thus they can be distinguished by this signed-graph invariant.
He did not compute the chromatic polynomials but showed that they evaluate to
distinct numbers at 3 [loc. cit., Table 9.2]. He conjectured that the six different
signed Petersen graphs also have distinct zero-free chromatic polynomials, and
that both types of chromatic polynomials have distinct evaluations at any positive
integer [loc. cit., Conjecture 9.1]. Our first result confirms this conjecture.

Theorem 1. The chromatic polynomials of the signed Petersen graphs (denoted by
P1, . . . , P6 in Figure 1) are

P1 P2 P3

P4 P5 P6

Figure 1. The six switching-distinct signed Petersen graphs.
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cP1(2k+ 1)= 1024k10
− 2560k9

+ 3840k8
− 4480k7

+ 3712k6

− 1792k5
+ 160k4

+ 480k3
− 336k2

+ 72k,

cP2(2k+ 1)= 1024k10
− 2560k9

+ 3840k8
− 4480k7

+ 3968k6

− 2560k5
+ 1184k4

− 352k3
+ 48k2,

cP3(2k+ 1)= 1024k10
− 2560k9

+ 3840k8
− 4480k7

+ 4096k6

− 2944k5
+ 1696k4

− 760k3
+ 236k2

− 40k,

cP4(2k+ 1)= 1024k10
− 2560k9

+ 3840k8
− 4480k7

+ 4224k6

− 3200k5
+ 1984k4

− 952k3
+ 308k2

− 52k,

cP5(2k+ 1)= 1024k10
− 2560k9

+ 3840k8
− 4480k7

+ 4096k6

− 3072k5
+ 1920k4

− 960k3
+ 320k2

− 48k,

cP6(2k+ 1)= 1024k10
− 2560k9

+ 3840k8
− 4480k7

+ 4480k6

− 3712k5
+ 2560k4

− 1320k3
+ 460k2

− 90k.

Their zero-free counterparts are

c∗P1
(2k)= 1024k10

− 7680k9
+ 26880k8

− 58240k7
+ 86592k6

− 91552k5
+ 68400k4

− 34440k3
+ 10424k2

− 1408k,

c∗P2
(2k)= 1024k10

− 7680k9
+ 26880k8

− 58240k7
+ 86848k6

− 93088k5
+ 72304k4

− 39880k3
+ 14792k2

− 3288k,

c∗P3
(2k)= 1024k10

− 7680k9
+ 26880k8

− 58240k7
+ 86976k6

− 93856k5
+ 74256k4

− 42592k3
+ 16960k2

− 4222k,

c∗P4
(2k)= 1024k10

− 7680k9
+ 26880k8

− 58240k7
+ 87104k6

− 94496k5
+ 75664k4

− 44320k3
+ 18192k2

− 4698k,

c∗P5
(2k)= 1024k10

− 7680k9
+ 26880k8

− 58240k7
+ 86976k6

− 93984k5
+ 74800k4

− 43560k3
+ 17840k2

− 4616k,

c∗P6
(2k)= 1024k10

− 7680k9
+ 26880k8

− 58240k7
+ 87360k6

− 95776k5
+ 78480k4

− 47760k3
+ 20640k2

− 5660k.

Consequently (as a quick computation with a computer algebra system shows), none
of the difference polynomials cPm (2k + 1)− cPn (2k + 1) and c∗Pm

(2k)− c∗Pn
(2k),

with m 6= n, have a positive integer root.

To compute the above polynomials, we developed and executed a computer
program (running in SAGE [Stein et al. 2012]) that efficiently determines the
number of proper k-colorings for any signed graph. This code can be downloaded
from math.sfsu.edu/beck/papers/signedpetersen.sage or from the online supplement
to this paper. The procedure chrom is the main method; it takes an incidence matrix
and outputs the chromatic polynomial as an expression.

http://math.sfsu.edu/beck/papers/signedpetersen.sage
http://msp.berkeley.edu/involve/2015/8-5/involve-v8-n5-x10-code.txt
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We also used our program to compute the chromatic polynomials of all signed
complete graphs up to five vertices; up to switching isomorphism, there are two
signed K3s, three signed K4s, and seven signed K5s. As with the signed Petersen
graphs, the chromatic polynomials distinguish these signed complete graphs:

Theorem 2. The chromatic polynomials of the signed complete graphs (denoted
K (1)

3 , K (2)
3 , . . . , K (7)

5 in Figure 2) are

cK (1)
3
(2k+ 1)= 8k3

− 2k,

cK (2)
3
(2k+ 1)= 8k3,

cK (1)
4
(2k+ 1)= 16k4

− 16k3
− 4k2

+ 4k,

cK (2)
4
(2k+ 1)= 16k4

− 16k3
+ 4k2,

cK (3)
4
(2k+ 1)= 16k4

− 16k3
+ 12k2

− 2k,

cK (1)
5
(2k+ 1)= 32k5

− 80k4
+ 40k3

+ 20k2
− 12k,

cK (2)
5
(2k+ 1)= 32k5

− 80k4
+ 64k3

− 16k2,

cK (3)
5
(2k+ 1)= 32k5

− 80k4
+ 88k3

− 48k2
+ 10k,

cK (4)
5
(2k+ 1)= 32k5

− 80k4
+ 72k3

− 28k2
+ 4k.

cK (5)
5
(2k+ 1)= 32k5

− 80k4
+ 96k3

− 56k2
+ 12k,

cK (6)
5
(2k+ 1)= 32k5

− 80k4
+ 80k3

− 40k2
+ 8k,

cK (7)
5
(2k+ 1)= 32k5

− 80k4
+ 120k3

− 80k2
+ 20k.

The corresponding zero-free chromatic polynomials are

c∗
K (1)

3
(2k)= 8k3

− 12k2
+ 4k,

c∗
K (2)

3
(2k)= 8k3

− 12k2
+ 6k,

c∗
K (1)

4
(2k)= 16k4

− 48k3
+ 44k2

− 12k,

c∗
K (2)

4
(2k)= 16k4

− 48k3
+ 52k2

− 24k,

c∗
K (3)

4
(2k)= 16k4

− 48k3
+ 60k2

− 34k,

c∗
K (1)

5
(2k)= 32k5

− 160k4
+ 280k3

− 200k2
+ 48k,

c∗
K (2)

5
(2k)= 32k5

− 160k4
+ 304k3

− 272k2
+ 114k,

c∗
K (3)

5
(2k)= 32k5

− 160k4
+ 328k3

− 340k2
+ 174k,

c∗
K (4)

5
(2k)= 32k5

− 160k4
+ 312k3

− 296k2
+ 136k,

c∗
K (5)

5
(2k)= 32k5

− 160k4
+ 336k3

− 360k2
+ 190k,

c∗
K (6)

5
(2k)= 32k5

− 160k4
+ 320k3

− 320k2
+ 158k,

c∗
K (7)

5
(2k)= 32k5

− 160k4
+ 360k3

− 420k2
+ 240k.
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K (1)
3 K (2)

3 K (1)
4 K (2)

4 K (3)
4

K (1)
5 K (2)

5 K (3)
5 K (4)

5

K (5)
5 K (6)

5 K (7)
5

Figure 2. The switching classes of signed complete graphs.

We now review a few constructs on a signed graph 6 = (V, E, σ ) and describe
our implementation. The restriction of 6 to an edge set F ⊆ E is the signed graph
(V, F, σ |F ). For e ∈ E , we denote by 6− e (the deletion of e) the restriction of 6
to E −{e}. For v ∈ V , denote by 6− v the restriction of 6 to E − F , where F is
the set of all edges incident to v. A component of the signed graph 6 = (0, σ ) is
balanced if it contains no half-edges and each cycle has positive sign product.

Switching 6 by s ∈ {±}V results in the new signed graph (V, E, σ s), where
σ s
vw = sv σvw sw. Switching does not alter balance, and any balanced signed graph

can be obtained from switching an all-positive graph [Zaslavsky 1982b]. We also
note that there is a natural bijection of proper colorings of 6 and a switched version
of it, and this bijection preserves the number of proper k-colorings. Thus the
chromatic polynomials of 6 are invariant under switching.

The contraction of6 by F⊆ E , denoted by6/F , is defined as follows [Zaslavsky
1982b]: switch 6 so that every balanced component of F is all positive, coalesce
all nodes of each balanced component, and discard the remaining nodes and all
edges in F ; note that this may produce half-edges. If F = {e} for a link e, 6/e is
obtained by switching 6 so that σ(e) = + and then contracting e as in the case
of unsigned graphs; that is, disregard e and identify its two endpoints. If e is a
negative loop at v, then 6/e has vertex set V −{v} and edge set resulting from E
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by deleting e and converting all edges incident with v to half-edges. The chromatic
polynomial satisfies the deletion-contraction formula [Zaslavsky 1982a]

c6(2k+ 1)= c6−e(2k+ 1)− c6/e(2k+ 1). (1)

The zero-free chromatic polynomial c∗6(2k) satisfies the same identity provided that
e is not a half-edge or negative loop. We will use (1) repeatedly in our computations.

We encode a signed graph 6 by its incidence matrix as follows: first bidirect 6;
i.e., give each edge an independent orientation at each endpoint (which we think
of as an arrow pointing towards or away from the endpoint), such that a positive
edge has one arrow pointing towards one and away from the other endpoint, and a
negative edge has both arrows pointing either towards or away from the endpoints.
The incidence matrix has rows indexed by vertices, columns indexed by edges, and
entries equal to ±1 according to whether the edge points towards or away from the
vertex (and 0 otherwise). Since half-edges and negative loops have the same effect
on the chromatic polynomial of 6, we may assume that 6 has no half-edge. See
Figure 3 for an example.

Deletion-contraction can be easily managed by incidence matrices: deletion of an
edge simply means deletion of the corresponding column; contraction of a positive
edge vw means replacing the rows corresponding to v and w by their sum and then
deleting the column corresponding to the edge vw (it is sufficient to only consider
contraction of positive edges, since we can always switch one of its endpoints if
necessary, which means negating the corresponding row). Note that this process
works for both links and half-edges. Note also that we will constantly look for
multiple edges (with the same sign) and replace them with a single edge.

c

b

d

a

c

b

d

a

ab ac ad bc bd cd
a −1 −1 1 0 0 0
b −1 0 0 1 1 0
c 0 1 0 −1 0 −1
d 0 0 −1 0 −1 −1

Figure 3. K (3)
4 with one of its bidirections and corresponding

incidence matrix.
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Thus we can keep track of incidence matrices as we recursively apply deletion-
contraction, leading to empty signed graphs or signed graphs that only have half-
edges; both have easy chromatic polynomials.
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