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Benford’s law states that many data sets have a bias towards lower leading digits
(about 30% are 1s). It has numerous applications, from designing efficient
computers to detecting tax, voter and image fraud. It’s important to know which
common probability distributions are almost Benford. We show that the Weibull
distribution, for many values of its parameters, is close to Benford’s law, quantify-
ing the deviations. As the Weibull distribution arises in many problems, especially
survival analysis, our results provide additional arguments for the prevalence of
Benford behavior. The proof is by Poisson summation, a powerful technique to
attack such problems.

1. Introduction to and applications of Benford’s law

For any positive number x and base B, we can represent x in scientific notation as
x D SB.x/ �B

k.x/, where SB.x/ 2 Œ1;B/ is called the significand1 of x and the
integer k.x/ represents the exponent. Benford’s law of leading digits proposes a
distribution for the significands which holds for many data sets, and states that the
proportion of values beginning with digit d is approximately

Prob.first digit is d base B/D logB

�
d C 1

d

�
: (1-1)

More generally, the proportion with significand at most s base B is

Prob.1� SB � s/D logB s: (1-2)
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1The significand is sometimes called the mantissa; however, such usage is discouraged by the
IEEE and others, as mantissa is used for the fractional part of the logarithm, a quantity which is also
important in studying Benford’s law.
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In particular, in base 10 the probability that the first digit is a 1 is about 30.1% (and
not the 11% one would expect if each digit from 1 to 9 were equally likely).

This leading digit irregularity was first discovered by Newcomb [1881], who
noticed that the earlier pages in the logarithmic books were more worn than other
pages. Fifty years later, Benford [1938] observed the same digit bias in a variety of
data sets. Benford studied the distribution of the first digits of 20 sets of data with
over 20,000 total observations, including river lengths, populations, and mathemat-
ical sequences. For a full history and description of the law, see [Hill 1998; Raimi
1976], or go to [Berger and Hill 2012] or [Miller 2015] for additional reading.

One of the most fascinating aspects of Benford’s law is the large and diverse list
of fields studying it (auditing, computer science, dynamical systems, engineering,
number theory, and statistics, to list a few). There are numerous applications, espe-
cially in fraud and data integrity. Two of the more famous are detecting tax and voter
fraud [Cho and Gaines 2007; Mebane 2006; Nigrini 1996; 1997], but there are also
applications in many other fields, ranging from round-off errors in computer science
[Knuth 1997] to detecting image fraud and compression in engineering [Abdallah
et al. 2015]. Already Benford’s law has led to a variety of tests, either to detect fraud
(in everything from corporate returns to medical studies) or to test data integrity; see,
for example, [Judge and Schechter 2009; Nigrini 1997; Miller and Nigrini 2009].

In the next section we discuss attempts to explain the prevalence of Benford’s law;
unfortunately, some of these approaches are flawed, and have been incorrectly used
for decades. Our purpose in this article is to highlight techniques from Fourier analy-
sis that may not be widely known to the diverse group of researchers and aficionados
in the field, emphasizing how Poisson summation provides a clean and correct way
to quantify deviations from Benford’s law for a variety of phenomena. Our main
result is to quantify how close Weibull distributions are to Benford (we state these in
Theorem 4.1 in Section 4, after first reviewing the needed prerequisites in Section 3;
the proof is given in Section 5). For certain values of the scale and shape parameter,
these distributions are almost Benford; this is quite important, as many survival distri-
butions are modeled by Weibull distributions, and thus Benford tests are applicable.

2. Explanations of Benford’s law

There have been numerous attempts to pass from observing the prevalence of
Benford’s law to explaining its occurrence in different and diverse systems. Such
knowledge gives us a deeper understanding of which natural data sets should
follow Benford’s law. One of the earliest and most popular is due to Feller [1966],
and has been the subject of many articles and papers since (a very good, recent
description of this approach is given in [Fewster 2009]). It suggests that Benford
behavior arises when a probability distribution is spread out over several orders of
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magnitude. Unfortunately, while some distributions satisfying this condition are
close to Benford, others are not, and the method is sadly fundamentally flawed.
See [Berger and Hill 2010; 2011b; Hill 2011] for detailed critiques of this method.
The first rigorous explanation of Benford’s law is due to Hill [1995] through scale
invariance and measure theory (essentially, the distribution of leading digits should
be invariant if we change scale); see also [Berger and Hill 2011a].

Rather than trying to prove why so many different phenomena are almost Benford,
another approach is to study specific, important instances. In particular, there is
an extensive literature on the leading digits of random variables and products of
random variables of specific distributions (see for example [Miller and Nigrini
2008a]). While these arguments cannot be as general, the systems described arise
in many important applications, making the importance of these researches clear.

The starting point of this work is the paper by Leemis, Schmeiser, and Evans
[Leemis et al. 2000], who champion this viewpoint. They ran numerical simulations
on a variety of parametric survival distributions to examine conformity to Benford’s
law. Among these distributions was the Weibull distribution, whose density is

f .xI˛;  /D

�
.=˛/.x=˛/.�1/ exp.�.x=˛/ / if x � 0;

0 otherwise;
(2-1)

where ˛;  > 0. Note that ˛ adjusts the scale of the data and only  affects the shape
of the distribution.2 Special cases of the Weibull distribution include the exponential
distribution ( D 1) and the Rayleigh distribution ( D 2). The most common
use of the Weibull distribution is in survival analysis, where a random variable X

modeled by the Weibull distribution represents the “time-to-failure”, resulting in
a distribution where the failure rate is modeled relative to a power of time.

The Weibull distribution arises in problems in such diverse fields as food contents,
engineering, medical data, politics, pollution and sabermetrics, along with many
others; see [Carroll 2003; Corzo and Bracho 2008; Fry 2004; McShane et al. 2008;
Mikolaj 1972; Miller 2007; Terawaki et al. 2006; Weibull 1951; Yiannoutsos 2009;
Zhao et al. 2011] to name just a few. As the extensiveness of this list indicates, many
data sets follow a Weibull distribution, and thus if we are going test for fraud or
data integrity, it is essential to quantify how close these distributions are to Benford.
Our goal in this work is to provide proofs of the observations of Leemis, Schmeiser,
and Evans [Leemis et al. 2000] that Weibull distributions are often close to Benford,
emphasizing the ideas behind the method, as these are applicable to a variety of
other problems (see, for example, [Jang et al. 2009; Kontorovich and Miller 2005;
Miller and Nigrini 2008b]).

2One could introduce another parameter, ˇ, which would represent a translation of the data. Doing
so replaces x with x�ˇ, and the condition x � 0 becomes x � ˇ. In this paper we concentrate on
the case ˇ D 0.
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3. Mathematical preliminaries

Our analysis generalizes the work of [Miller and Nigrini 2008b], where the expo-
nential case was studied in detail (see also [Dümbgen and Leuenberger 2008] for
another approach to analyzing exponential random variables). The main ingredients
come from Fourier analysis, in particular, applying Poisson summation to the
derivative of the cumulative distribution function of the logarithms modulo 1, FB .
We first review some needed definitions, then describe why it is so useful to study
the logarithms modulo 1, and conclude with a quick review of Poisson summation.

(1) The gamma function�.s/ generalizes the factorial function; for n a nonnegative
integer, we have �.nC 1/D n!, and for <.s/ > 0, we have

�.s/D

Z 1
0

e�xxs�1 dx

(we will need to evaluate the gamma function at complex arguments in our
analysis); here <.z/ denotes the real part of z. See [Whittaker and Watson
1996] for an introduction and proofs of needed properties.

(2) We say a is congruent to b modulo 1 if a� b is an integer; we denote this by
aD b mod 1.

(3) A sequence fang
1
nD1
� Œ0; 1� is equidistributed if

lim
N!1

#fn W n�N; an 2 Œa; b�g

N
D b� a

for all Œa; b�� Œ0; 1�. Similarly a continuous random variable on Œ0;1/ whose
probability density function is p is equidistributed modulo 1 if

lim
T!1

R T
0 �a;b.x/p.x/ dxR T

0 p.x/ dx
D b� a

for any Œa; b�� Œ0; 1�, where �a;b.x/D 1 for x mod 1 2 Œa; b� and 0 otherwise.

(4) If f is an integrable function (so
R1
�1
jf .x/j dx <1) then its Fourier trans-

form, denoted Of , is given by

Of .y/D

Z 1
�1

f .x/e�2�ixy dx; where eiu
D cos uC i sin u:

Note if X is a random variable with density f then this is a rescaled version
of its characteristic function, E ŒeitX �.

(5) Let � > 0. We say f decays like x�.1C�/ if there are constants x0;C� > 0

such that jf .x/j � C�jxj
�.1C�/ for all jxj> x0.
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One of the most common ways to prove a system is Benford is to show that
its logarithms modulo 1 are equidistributed. We quickly sketch the proof of this
equivalence; see [Diaconis 1977; Miller and Nigrini 2008b; Miller and Takloo-
Bighash 2006] for details. If yn D logB xn mod 1 (thus yn is the fractional part
of the logarithm of xn), then the significands of Byn and xn D BlogB xn are equal,
as these two numbers differ by a factor of Bk for some integer k. If now fyng

is equidistributed modulo 1, then by definition for any Œa; b� � Œ0; 1�, we have
limN!1 #fn � N W yn 2 Œa; b�g=N D b � a. Taking Œa; b� D Œ0; logB s� implies
that as N ! 1, the probability that yn 2 Œ0; logB s� tends to logB s, which by
exponentiating implies that the probability that the significand of xn is in Œ1; s� tends
to logB s, the Benford probability.

Given a random variable X , let FB denote the cumulative distribution function
of logB X mod 1. The above discussion shows that Benford’s law is equivalent to
FB.z/Dz, or our original random variable X is Benford if F 0

B
.z/D1. This suggests

that a natural way to investigate deviations from Benford behavior is to compare
the deviation of F 0

B
.z/ from 1, which would represent a uniform distribution.

Fourier analysis is ideally suited for these computations. The reason is that
in general one cannot throw away part of a mathematical expression and still
maintain equality. For example, note

p
.x mod 1/C .y mod 1/ is neither equal to

nor congruent modulo 1 to
p

xCy; however, e2�ix does equal e2�i.x mod 1/. By
using the complex exponentials, it is harmless to drop modulo 1 restrictions. As
these restrictions naturally arise in investigating the first digit, it is natural to attack
the problem with Fourier techniques.

The last ingredient we need is Poisson summation. We don’t state it in its
most general form, as the following weak version typically suffices for Benford
investigations due to the smoothness of the underlying densities. See [Miller and
Takloo-Bighash 2006] or [Stein and Shakarchi 2003] for a proof.

Theorem 3.1 (Poisson summation). Let f; f 0 and f 00 be continuous functions
which decay like x�.1C�/ for some � > 0. Then

1X
nD�1

f .n/D

1X
nD�1

Of .n/:

Our assumptions about f imply that Of decays rapidly. The power of Poisson
summation is that it typically allows us to exchange a slowly converging sum with
a rapidly converging sum. In many applications only the nD 0 term matters; if f
is a probability density then it integrates to 1, and hence Of .0/D 1. For us, this is
important as it implies a sum over nonzero n can measure a deviation.

For example, consider the density of a normal random variable Y with mean 0
and variance N=2� ; this example is very important in showing Brownian motions
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and many products of independent random variables become Benford (see [Miller
and Takloo-Bighash 2006; Miller and Nigrini 2008a]). If we want to see how often
Y mod 1 is in an interval Œa; b�� Œ0; 1�, we need to study Prob.Y mod 12 Œa; b�/DP1

nD�1 Prob.Y 2 ŒaC n; bC n�/. We sketch how Poisson summation enters, and
provide full details when we prove our main result. The latter probabilities are
integrals of the density over the intervals ŒaC n; b C n�, and if N is large each
of these is approximately b � a times the density at n. By Poisson summation,
summing the density over n is the same as summing the Fourier transform at n:

1X
nD�1

1
p

N
e��n2=N

D

1X
nD�1

e��n2N :

Note the sharp contrast between the two sums. For the first sum, all n with jnj�
p

N

contribute the same order of magnitude, while for the second sum, the nD 0 term
contributes 1 and the next term is immensely smaller (by a factor of e��N ). This
example illustrates how Poisson summation allows us to replace a slowly decaying
sum of a density with a rapidly decaying one.

4. Main results

Our main result is the following extension of results for the exponential distribution,
which measures the deviation of the logarithm modulo 1 of the Weibull distribution
and the uniform distribution. It’s thus not surprising that for  close to 1, the digits
are close to Benford, as  D 1 corresponds to the exponential distribution. The main
contribution below is quantifying how the fit worsens as  grows. The larger  is, the
worse the fit. The effect of ˛ is easier to explain. As the result of replacing ˛ by ˛B is
simply to rescale our random variable by a factor of B, the significand is unaffected.
Thus it suffices to study ˛ in the window Œ1;B/, but  may be any real value.

Theorem 4.1. Let Z˛; be a random variable whose density is Weibull with pa-
rameters ˛;  > 0 arbitrary. For z 2 Œ0; 1�, let FB.z/ be the cumulative distribution
function of logB Z˛; mod 1; thus FB.z/ WD Prob.logB Z˛; mod 12 Œ0; z�/. Then
the density of logB Z˛; mod 1, F 0

B
.z/, is given by

F 0B.z/D 1C 2

1X
mD1

<

�
e�2�im.z�log˛=log B/�

�
1C

2� im

 log B

��
: (4-1)

In particular, the densities of logB Z˛; mod 1 and logB Z˛B; mod 1 are equal,
and thus it suffices to consider only ˛ in an interval of the form Œa; aB/ for any a> 0.

From the fundamental equivalence, a straightforward integration immediately
translates (4-1) into quantifying differences in the distribution of leading digits of
Weibull random variables and Benford’s law. Specifically, the probability of a first
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digit of d is obtained by integrating F 0
B
.z/ from logB d to logB.d C 1/. The main

term comes from the constant 1, and is logB..d C 1/=d/, the Benford probability;
we discuss the size of the error in Theorem 4.2.

The above theorem is proved in the next section. As in [Miller and Nigrini
2008b], the proof involves applying Poisson summation to the derivative of the
cumulative distribution function of the logarithms modulo 1, which as discussed
in the previous section is a natural way to compare deviations from the resulting
distribution and the uniform distribution. The key idea is that if a data set satisfies
Benford’s law, then the distribution of its logarithms will be uniform. Our series
expansions are obtained by applying properties of the gamma function.

As the deviations of F 0
B
.z/ from being identically 1 measure the deviations

from Benford behavior, it is important to have good estimates for the sum over m

in (4-1). The bounds below have not been optimized, but instead have been chosen
to simplify the algebra in the proofs (given in the Appendix). Thus we assume k

below is at least 6, which is essentially equivalent to only investigating the case
where the error � is required to be of at most modest size (which is reasonable, as a
series expansion with a large error is useless).

Theorem 4.2. Let F 0
B
.z/ be as in (4-1).

(1) For M � . log B log 2/=4�2, the error from dropping the m �M terms in
F 0

B
.z/ is at most

2
p

2.�2C  log B/
p
 log B

�3
Me��

2M=. log B/:

(2) In order to have an error of at most � in evaluating F 0
B
.z/, it suffices to take the

first M terms, where M D .kC ln kC1=2/=a, with k Dmax.6;� ln.a�=C //,
aD �2=. log B/, and

C D
2
p

2.�2C  log B/
p
 log B

�3
:

For further analysis, we compared our series expansion for the derivative to
the uniform distribution through a Kolmogorov–Smirnov test; see Figure 1 for a
contour plot of the discrepancy. This statistic measures the absolute value of the
greatest difference in cumulative distribution functions of two densities. Thus the
larger the value, the further apart they are. Note the good fit observed between the
two distributions when  D 1 (representing the exponential distribution), which has
already been proven to be a close fit to the Benford distribution ([Dümbgen and
Leuenberger 2008; Leemis et al. 2000; Miller and Nigrini 2008b]).

The Kolmogorov–Smirnov metric gives a good comparison because it allows us
to compare the distributions in terms of both parameters,  and ˛. We also look
at two other measures of closeness, the L1-norm and the L2-norm, both of which
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Figure 1. Kolmogorov–Smirnov test. Left:  2 Œ0; 15�. Right:
 2 Œ:5; 2�. As  (the shape parameter on the horizontal axis)
increases, the Weibull distribution is no longer a good fit compared
to the uniform. Note that ˛ (the scale parameter on the vertical
axis) has less of an effect on the overall conformance.

also test the differences between (4-1) and the uniform distribution; see Figure 2.
The L1-norm of f �g is

R 1
0 jf .t/�g.t/j dt , which puts equal weights on the all

deviations, while the L2-norm is given by
R 1

0 jf .t/�g.t/j2 dt , which unlike the
L1-norm puts more weight on larger differences. The closer  is to zero the better
the fit. As  increases, the cumulative Weibull distribution is no longer a good fit
compared to 1. The L1- and L2-norms are independent of ˛.

The combination of the Kolmogorov–Smirnov tests and the L1- and L2-norms
show us that the Weibull distribution almost exhibits Benford behavior when 
is modest; as  increases, the Weibull distribution no longer conforms to the
expected leading digit probabilities. The scale parameter ˛ does have a small
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Figure 2. Left: L1-norm of F 0
B
.z/� 1 for  2 Œ0:5; 10�. Right:

L2-norm of F 0
B
.z/� 1 for  2 Œ0:5; 10�.
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effect on the conformance as well, but not nearly to the same extreme as the shape
parameter  . Fortunately in many applications the scale parameter  is not too large
(it is frequently less than 2 in the Weibull distribution references cited earlier), and
thus our work provides additional support for the prevalence of Benford behavior.

5. Proof of main result

To prove Theorem 4.1, we study the distribution of logB Z˛; mod 1 when Z˛;

has the Weibull distribution with parameters ˛ and  . The analysis is aided by the
fact that the cumulative distribution function for a Weibull random variable has
a nice closed form expression; for Z˛; , the cumulative distribution function is
F˛; .x/D 1� exp.�.x=a/ /. Let Œa; b�� Œ0; 1�. Then

Prob
�
logB Z˛; mod 12 Œa;b�

�
D

1X
kD�1

Prob
�
logB Z˛; mod 12 ŒaCk;bCk�

�
D

1X
kD�1

Prob
�
Z˛; 2 ŒB

aCk ;BbCk �
�

D

1X
kD�1

exp
�
�

�
BaCk

˛

� �
�exp

�
�

�
BbCk

˛

� �
:

(5-1)

Proof of Theorem 4.1. It suffices to investigate (5-1) in the special case when aD 0

and b D z, since for any other interval Œa; b�, we may determine its probability
by subtracting the probability of Œ0; a� from Œ0; b�. Thus, we study the cumulative
distribution function of logB Z˛; mod 1 for z 2 Œ0; 1�, which we denote by FB.z/:

FB.z/ WD Prob
�
logB Z˛; mod 1 2 Œ0; z�

�
D

1X
kD�1

exp
�
�

�
Bk

˛

� �
� exp

�
�

�
BzCk

˛

� �
: (5-2)

This series expansion is rapidly converging, and the closeness of Z˛; to the Benford
distribution is equivalent to the rapidly converging series in (5-2) for FB.z/ being
close to z for all z.

A natural way to investigate the closeness of FB.z/ to z is to compare F 0.z/ to 1.
As in [Miller and Nigrini 2008b], studying the derivative F 0

B
.z/ is an easier way

to approach this problem because we obtain a simpler Fourier transform than the
Fourier transform of e�.B

k=˛/ � e�.B
zCk=˛/ . We then can analyze the obtained

Fourier transform by applying Poisson summation (Theorem 3.1).
We use the fact that the derivative of the infinite sum FB.z/ is the sum of the

derivatives of the individual summands. This is justified by the rapid decay of
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summands, yielding

F 0B.z/D

1X
kD�1

1

˛
exp

�
�

�
BzCk

˛

� �
BzCk

�
BzCk

˛

��1

 log B

D

1X
kD�1

1

˛
exp

�
�

�
�Bk

˛

� �
�Bk

�
�Bk

˛

��1

 log B; (5-3)

where for z 2 Œ0; 1�, we use the change of variables � D Bz .
We introduce

H.t/D
1

˛
exp

�
�

�
�Bt

˛

� �
�Bt

�
�Bt

˛

��1

 log B;

where � � 1 as � D Bz with z � 0. Since H.t/ is decaying rapidly we may apply
Poisson summation; thus

1X
kD�1

H.k/D

1X
kD�1

yH .k/; (5-4)

where yH is the Fourier Transform of H W yH .u/D
R1
�1

H.t/e�2� itu dt . Therefore

F 0B.z/D

1X
kD�1

H.k/D

1X
kD�1

yH .k/

D

1X
kD�1

Z 1
�1

1

˛
exp

�
�

�
�Bt

˛

� �
�Bt

�
�Bt

˛

��1

 e�2�itk log B dt:

(5-5)
We change variables again, setting w D .�Bt=˛/ , which implies

t D logB

�
˛w1=

�

�
and dw D

1

˛

�
�Bt

˛

��1

�Bt log B dt; (5-6)

so that

F 0B.z/D

1X
kD�1

Z 1
0

e�w exp
�
�2� ik logB

�
˛w1=

�

��
dw

D

1X
kD�1

�
˛

�

��2�ik= log B Z 1
0

e�ww�2�ik=. log B/ dw

D

1X
kD�1

�
˛

�

��2�ik= log B

�

�
1�

2� ik

. log B/

�
; (5-7)
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where we used the definition of the gamma function in the last line. As �.1/D 1,
we have

F 0B.z/D1C

1X
mD1

�
�

˛

�2�im=logB

�

�
1�

2� im

 logB

�
C

�
�

˛

��2� im=logB

�

�
1C

2� im

 logB

�
:

(5-8)
As in [Miller and Nigrini 2008b], the above series expansion is rapidly convergent.
As � D Bz , we have�
�

˛

�2�im= log B

D cos
�

2�mz�2�m

� log˛
log B

��
C i sin

�
2�mz�2�m

� log˛
log B

��
;

(5-9)
which gives a Fourier series expansion for F 0

B
.z/ with coefficients arising from

special values of the gamma function.
Using properties of the gamma function, we are able to improve (5-8). If y 2 R

then �.1� iy/D�.1C iy/ (where the bar denotes complex conjugation). Thus the
m-th summand in (5-8) is the sum of a number and its complex conjugate, which
is simply twice the real part. We use the following standard relationship (see, for
example, [Abramowitz and Stegun 1964]):ˇ̌

�.1C ix/
ˇ̌2
D

�x

sinh.�x/
D

2�x

e�x � e��x
: (5-10)

Writing the summands in (5-8) as

2<

�
e�2�im.z�log˛=log B/�

�
1C

2� im

 log B

��
;

(5-8) becomes

F 0B.z/D 1C 2

1X
mD1

<

�
e�2�im.z�log˛=log B/�

�
1C

2� im

 log B

��
: (5-11)

Finally, in the exponential argument above, there is no change in replacing ˛
with ˛B, as this changes the argument by 2� i . Thus it suffices to consider
˛ 2 Œa; aB/ for any a> 0. �

This proof demonstrates the power of using Poisson summation in Benford’s
law problems, as it allows us to convert a slowly convergent series expansion into a
rapidly converging one, with the main term corresponding to Benford behavior and
the other terms measuring the deviation.

Appendix: Proofs of bounding estimates

We first estimate the contribution to F 0
B
.z/ from the tail, say from the terms with

m � M . We do not attempt to derive the sharpest bounds possible, but rather
highlight the method in a general enough case to provide useful estimates.
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Proof of Theorem 4.2(1). We must bound the truncation error

EB.z/ WD <

1X
mDM

e�2�im.z�log˛=log B/�

�
1C

2� im

 log B

�
; (A-1)

where �.1C iu/ D
R1

0 e�xxiu dx D
R1

0 e�xeiu log x dx. Note that in our case,
uD 2�m=. log B/. As u increases there is more oscillation and therefore more
cancellation, resulting in a smaller value for our integral. Since jei� j D 1, if we
take absolute values inside the sum, we have je�2� im.z�log˛=log B/j D 1, and thus
we may ignore this term in computing an upper bound.

Using standard properties of the gamma function, we haveˇ̌
�.1C ix/

ˇ̌2
D

�x

sinh.�x/
D

2�x

e�x � e��x
; where x D

2�m

 log B
: (A-2)

This yields

jEB.z/j �

1X
mDM

1

�
4�2m

 log B

1

e2�2m=. log B/� e�2�2m=. log B/

�1=2

: (A-3)

Let uD e2�2m=. log B/. We overestimate our error term by removing the differ-
ence of the exponentials in the denominator. Simple algebra shows that for

1

u� 1
u

�
2

u
;

we need u�
p

2. For us this means e2�2m=. log B/ �
p

2, allowing us to simplify
the denominator if m� . log B log 2/=4�2, which we may do as we assumed M

exceeds this value and m�M . We substitute this bound into (A-2), and replace
p

m with m to simplify the resulting integral:

jEB.z/j�

1X
mDM

�
4�2m

 logB

�1=2
p

2

e�
2m=. logB/

�
2
p

2�p
 logB

Z 1
M

me��
2m=. logB/dm:

(A-4)
Letting aD �2=. log B/, integrating by parts gives

jEB.z/j �
2
p

2�p
 log B

1

a2
.aMe�aM

C e�aM /�
2
p

2�p
 log B

aC 1

a2
Me�aM (A-5)

(since M � 1, aM C 1� .aC 1/M ), which after some algebra simplifies to

jEB.z/j �
2
p

2.�2C  log B/
p
 log B

�3
Me��

2M=. log B/; (A-6)

which is the error listed in Theorem 4.2(1). �
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Proof of Theorem 4.2(2). Given the estimation of the error term from above, we
now ask the related question: given an � > 0, how large must M be so that the first
M terms give F 0

B
.z/ accurately to within � of the true value? Let

C D
2
p

2.�2C  log B/
p
 log B

�3

and aD �2=. log B/. We must choose M so that CMe�aM � �, or equivalently

C

a
aMe�aM

� �: (A-7)

As this is a transcendental equation in M , we do not expect a nice closed form
solution, but we can obtain a closed form expression for a bound on M ; for any
specific choices of C and a, we can easily numerically approximate M . We let
uD aM , giving

ue�u
� a�=C: (A-8)

With a further change of variables, we let k D� ln.a�=C / and then expand u as
uD kCx (as the solution should be close to k). We find

ue�u
� e�k is equivalent to

kCx

ex
� 1: (A-9)

We try x D ln kC 1
2

and see

kCx

ex
� 1 is equivalent to

kC ln kC 1
2

ke1=2
� 1: (A-10)

From here, we want to determine the value of k such that ln k � 1
2
k, as this

ensures the needed inequality above holds. Exponentiating, we need k2 � ek . As
ek � k3=3! for k positive, it suffices to choose k so that k2 � k3=6, or k � 6; this
holds for � sufficiently small. For k � 6, we have

kC ln kC 1
2
� kC 1

2
kC 1

12
k D 19

12
k � 1:5833k; (A-11)

but
ke1=2

� 1:64872k: (A-12)

Therefore a correct cutoff value for M , in order to have an error of at most �, is

M D
kC ln kC 1

2

a
; (A-13)

where

k Dmax
�

k;� ln
a�

C

�
; aD

�2

 log B
; C D

2
p

2.�2C  log B/
p
 log B

�3
:

(A-14)
�
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