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The pressing game on black-and-white graphs is the following: given a graph
G(V, E) with its vertices colored with black and white, any black vertex v can
be pressed, which has the following effect: (1) all neighbors of v change color;
i.e., white neighbors become black and vice versa; (2) all pairs of neighbors of v
change adjacency; i.e., adjacent pairs become nonadjacent and nonadjacent ones
become adjacent; and (3) v becomes a separated white vertex. The aim of the
game is to transform G into an all-white, empty graph. It is a known result that
the all-white empty graph is reachable in the pressing game if each component
of G contains at least one black vertex, and for a fixed graph, any successful
transformation has the same number of pressed vertices.

The pressing game conjecture states that any successful pressing sequence can
be transformed into any other successful pressing sequence with small alterations.
Here we prove the conjecture for linear graphs, also known as paths. The connec-
tion to genome rearrangement and sorting signed permutations with reversals is
also discussed.

1. Introduction

Sorting signed permutations by reversals (or inversions as biologists call it) is
the first genome rearrangement model introduced in the scientific literature. The
hypothesis that reversals change the order and orientation of genes — called genetic
factors at the time — arose in [Sturtevant 1921] and was implicitly verified upon
the discovery of chromosomes [Sturtevant and Novitski 1941]. At the same time,
geneticists realized that “the mathematical properties of series of letters subjected to
the operation of successive inversions do not appear to be worked out” [Sturtevant
and Tan 1937]. In constructing phylogenies, maximum parsimony — supposing the

MSC2010: primary 05A05; secondary 05CXX.
Keywords: bioinformatics, sorting by reversals, pressing game, irreducible Markov chain.
This paper presents the results of the undergraduate research of E. Bixby and T. Flint in the 2012 Fall
semester at the Budapest Semesters in Mathematics.

41

http://msp.org
http://msp.org/involve/
http://dx.doi.org/10.2140/involve.2016.9-1


42 ELIOT BIXBY, TOBY FLINT AND ISTVÁN MIKLÓS

least evolutionary change as the most likely explanation — is a desirable character-
istic. As such, the construction of minimum length sorting by reversals is both a
biologically and mathematically interesting problem. This computational problem
was rediscovered at the end of the 20th century, and its solution is known as the
Hannenhalli–Pevzner theorem [1995; 1999].

The Hannenhalli–Pevzner theorem gives a polynomial running time algorithm
that finds one such minimum length sorting sequence, that is, a series of reversals
that transforms one signed permutation into another. However, there might be
multiple solutions, and the number of solutions typically grows exponentially with
the length of the permutation. Therefore, a(n almost) uniform sampler is required
which gives a set of solutions from which statistical properties of the solutions
can be calculated. The Markov chain Monte Carlo method (MCMC) is a typical
approach to such sampling. MCMC starts with an arbitrary solution, and applies
random perturbations on it, thus exploring the solution space. In the case of most
parsimonious reversal sorting sequences, two distinct methods of perturbation have
been considered:

(1) The first approach encodes the most parsimonious reversal sorting sequences
with the intermediate permutations which appear as the result of the pertur-
bations: πstart = π1 is transformed into π2, which is transformed into π3, . . . ,
which is transformed into πn = πend. Then it cuts out a random interval from
this sequence, πi , πi+i , . . . , π j and gives a new, random sorting sequence
between the permutations at the beginning and end of the window, namely,
between πi and π j .

(2) The second approach encodes the scenarios with the series of mutations applied,
and perturbs them in a sophisticated way, described in detail later in this paper.

As random perturbations are applied, the Markov chain randomly explores the
solution space and will be at a random state after some number of steps. This
random state is described by its distribution over the state space. A Markov chain
is said to converge to a distribution φ if the distribution of its random state after
some number of steps converges to φ as the number of steps tends to infinity.

A Markov chain for sampling purposes should fulfill two conditions: (a) it must
converge to the uniform distribution, and as such must be irreducible, namely, from
any solution the chain must be able to get to any another solution, and (b) the
convergence must be fast.

Unfortunately, the first approach has been shown to be slowly mixing [Miklós
et al. 2010]. This means that the necessary number of steps in the Markov chain
to sufficiently approximate the uniform distribution grows exponentially with the
length of the permutation. Therefore this approach is not applicable in practice.
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Unfortunately, it is not known whether or not the second approach is irreducible,
let alone whether or not it is rapidly mixing. In this paper, we take a step towards
proving that this method is, in fact, irreducible.

This paper is organized in the following way. In Section 2, we define the problem
of sorting by reversals, and the combinatorial tools necessary: the graph of desire
and reality and the overlap graph. Then we introduce the pressing game on black-
and-white graphs, and show that they correspond to the shortest reversal scenarios
in a subset of permutations that typically appear in biology. We finish the section
by stating the pressing game conjecture, a proof of which would imply the second
method is irreducible. In Section 3, we prove the conjecture for linear graphs, also
known as paths. The paper is finished with a discussion and conclusions.

2. Preliminaries

Definition. A signed permutation is a permutation of numbers from 1 to n, where
each number has a + or − sign.

While the number of length n permutations is n!, the number of length n signed
permutations is 2n

× n!.

Definition. A reversal takes any contiguous piece of a signed permutation and
reverses both the order of the numbers and the sign of each number. It is also
allowed that a reversal takes only a single number from the signed permutations; in
that case, it changes the sign of this number.

For example, the following reversal flips the −3 +6 −5 +4 +7 segment:

+8 −1 −3 +6 −5 +4 +7 −9 +2 ⇒ +8 −1 −7 −4 +5 −6 +3 −9 +2.

The sorting by reversals problem asks for the minimum number of reversals
necessary to transform a signed permutation into the identity permutation, i.e., the
signed permutation +1 +2 · · · +n. This number is called the reversal distance,
and the reversal distance of a signed permutation π is denoted by dREV(π). To
solve this problem, we have to introduce two discrete mathematical objects, the
graph of desire and reality and the overlap graph. The graph of desire and reality is
a drawn graph, meaning both edges and vertex locations affect the properties of the
graph. The overlap graph is a graph in terms of standard graph theory.

The graph of desire and reality for a signed permutation can be constructed in
the following way. Each signed number is replaced with two unsigned numbers; +i
becomes 2i − 1, 2i , and similarly, −i becomes 2i, 2i − 1. The resulting length 2n
permutation is framed between 0 and 2n+ 1. Each number including 0 and 2n+ 1
will represent one vertex in the graph of desire and reality. They are drawn in the
same order along a line as they appear in the permutation.
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Figure 1. The graph of desire and reality and the overlap graph of
the signed permutation +4 −1 −6 +3 +2 +5.

We index the positions of the vertices starting with 1, and each pair of vertices
in positions 2i − 1 and 2i are connected with an edge drawn as a straight line. We
call these edges the reality edges. Each pair of vertices for numbers 2i and 2i + 1,
i = 0, 1, . . . , n are connected with an edge drawn as an arc above the line of the
vertices, and they are named the desire edges. The explanation for these names is
that the reality edges describe what we see in the current permutation, and the desire
edges describe the desired adjacencies in the final graph (the identity permutation):
we would like 1 to be next to 0, 3 to be next to 2, etc.

Each desire edge is incident to two reality edges. We will call these edges the
legs of the desire edge. A desire edge is called oriented if it spans an odd number
of vertices. The rationale of this naming is that its legs point in the same direction;
see, for example, the desire edge connecting 0 and 1 in Figure 1. A desire edge is
called unoriented if it spans an even number of vertices and in this case, its legs
indeed point in different directions; see, for example, the desire edge connecting 4
and 5 or the desire edge connecting 8 and 9 in Figure 1.

The overlap graph is constructed from the graph of desire and reality in the
following way. The vertices of the overlap graph are the desire edges in the graph
of desire and reality. The vertices are colored either black or white. A vertex in the
overlap graph is black if it corresponds to an oriented desire edge. A vertex is white if
it corresponds to an unoriented desire edge. Two vertices are adjacent if the intervals
spanned by the corresponding desire edges overlap but neither contains the other. In
Figure 1, we give an example for the graph of desire and reality and overlap graph.

The overlap graph might be disconnected. A component is called oriented if it
contains at least one black vertex. If the component contains only white vertices, it
is called unoriented. A component is nontrivial if it contains more than one vertex.

Any reversal changes the topology of the graph of desire and reality on two reality
edges. Any desire edge is incident to two reality edges, and we say that the reversal
acts on this desire edge if it changes the topology on the two incident reality edges.
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Figure 2. This picture shows how a reversal can change the overlap
of two desire edges. The reversed fragment is indicated with a
thick black line.

Any reversal in the underlying permutation also has the effect of reversing some
segment of vertices in the graph of desire and reality. How do reversals acting on
oriented desire edges change the graph of desire and reality and thus the overlap
graph? We present a lemma below explaining this.

Lemma 1. Fix a reversal, and let v be an oriented desire edge on which the reversal
acts. Then the reversal

(1) changes whether any desire edge crossing v is oriented,

(2) changes whether any pair of desire edges crossing v overlaps, and

(3) causes the desire edge itself to become an unoriented edge without any over-
lapping edges (that is, neighbors in the overlap graph).

Proof. (1) The reversal flips one of the legs of each overlapping desire edge.
Therefore it changes the parity of the number of vertices below the desire edge and
thus whether or not it is oriented.

(2) If two edges both overlap with v but not with each other because the intersection
of their interval is empty, then the two edges must come from the two ends of v;
see also Figure 2, case I. A reversal acting on v will change the order of one of the
endpoints of their interval, so they will indeed overlap. If two edges overlap with v,
but not with each other, since the interval of one of them contains the interval of
the other, then they come from one end of v. It is easy to see that after the reversal
they will overlap by definition; see Figure 2, case II. It is also easy to see that any
overlapping pairs of edges which also overlap with each other are the two cases
illustrated on the right-hand side of Figure 2, so after the reversal, they will not
overlap.

(3) Finally, the oriented edge on which the reversal acts becomes an unoriented
edge forming a small cycle with a reality edge, and thus it cannot overlap with any
other desire edge. �
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This lemma also shows the connection between sorting by reversals and the
pressing game on black-and-white graphs: pressing a black vertex in an overlap
graph is equivalent to reversing the corresponding desire edge. Below we define
the pressing game on black-and-white graphs:

Definition. Given a graph G(V, E) with its vertices colored with black and white,
any black vertex v can be pressed, which has the following effect: (a) all neighbors
of v change color, meaning that white neighbors become black and vice versa; (b) all
pairs of neighbors of v change adjacency, meaning that adjacent pairs become non-
adjacent and nonadjacent ones become adjacent; (c) finally, v becomes a separated
white vertex. The aim of the game is to transform G into an all-white, empty graph.

If each component of G contains at least one black vertex, then the pressing game
always has at least one solution, as it turns out, by the Hannenhalli–Pevzner theorem:

Theorem 2 [Hannenhalli and Pevzner 1999]. Let π be a permutation whose overlap
graph does not contain any nontrivial unoriented component. Then the reversal
distance dREV(π), namely, the minimum number of reversals necessary to sort the
permutation is

dREV(π)= n+ 1− c(π),

where n is the length of the permutation π and c(π) is the number of cycles in the
graph of desire and reality.

If the permutation π ′ contains a nontrivial unoriented component, then

dREV(π
′) > n+ 1− c(π ′).

It is easy to see that any reversal can increase the number of cycles in the graph
of desire and reality at most by 1, and the identity permutation contains n+1 cycles;
hence the Hannenhalli–Pevzner theorem also says that if a permutation does not
contain any nontrivial unoriented components, then any optimal reversal sorting
sequence increases the number of cycles to n+ 1 without creating any nontrivial
unoriented components. It is also true that these reversals can be chosen to act on
oriented desire edges. Below we state this theorem.

Theorem 3. Let π be a permutation which is not the identity permutation and
whose overlap graph does not contain any nontrivial unoriented component. Then
a reversal exists that acts on an oriented desire edge, increases c(π) by 1, and does
not create any nontrivial unoriented components.

Furthermore, if G is an arbitrary black-and-white graph such that each compo-
nent contains at least one black vertex, then at least one black vertex can be pressed
without making a nontrivial unoriented component.
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The proof can be found in [Bergeron 2001], and we skip it here. The proof
considers only the overlap graph, and in fact, it indeed works for every black-and-
white graph. A clear consequence is the following theorem.

Theorem 4. Let G be a black-and-white graph such that each component contains
at least one black vertex. Then G can be transformed into the all-white empty graph
in the pressing game.

Proof. It is sufficient to iteratively use Theorem 3. Indeed, according to Theorem 3,
we can find a black vertex v such that pressing it does not create a nontrivial all-
white component; on the other hand, v becomes a separated white vertex, and it
will remain a separated white vertex afterward. Hence, the number of vertices in
nontrivial components decreases at least by one, and in a finite number of steps, G
is transformed into the all-white, empty graph. �

Consider the set of vertices as an alphabet; any sequence over this alphabet is
called a pressing sequence. It is a valid pressing sequence when each vertex is
black when it is pressed, and it is successful if it is valid and leads to the all-white,
empty graph. The length of the pressing sequence is the number of vertices pressed
in it. The following theorem is also true.

Theorem 5. Let G be a black-and-white graph such that each component contains
at least one black vertex. Then every successful pressing sequence of G has the
same length.

The proof can be found in [Hartman and Verbin 2006]. We are ready to state the
pressing sequence conjecture.

Conjecture 6. Let G be a black-and-white graph such that each component con-
tains at least one black vertex. Construct a metagraph M whose vertices are the
successful pressing sequences on G. Connect two vertices if the length of the
longest common subsequence of the pressing sequences they represent is at least
the common length of the pressing sequences minus 4. The conjecture is that M
is connected.

The conjecture means that with small alterations, we can transform any pressing
sequence into any other pressing sequence, regardless of the underlying graph.
By “small alteration” we mean that we remove at most four (not necessarily
consecutive) vertices from a pressing sequence, and add at most four vertices,
not necessarily to the same places where vertices were removed, and not necessarily
to consecutive places.

It is important to note that there exist sorting sequences that are not pressing
sequences. Specifically, these sequences contain two reversals which act on the same
location in the permutation. These sequences also correspond to cycle-increasing
reversals in the graph of desire and reality. However, the infinite site model [Ma
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et al. 2008] corresponds to permutations whose sorting sequences are exactly the
pressing sequences, and restricting ourselves to this subset of permutations is a
biologically reasonable assumption.

In this paper, we prove the pressing game conjecture for linear graphs. In addition,
we can prove the metagraph will be already connected if we require that neighboring
vertices have a longest common subsequence at least the common length of their
pressing sequences minus 2.

3. Proof of the conjecture on linear graphs

The proof of our main theorem is recursive, and for this, we need the following
notations. Let G be a black-and-white graph, and v a black vertex in it. Then Gv
denotes the graph we get by pressing vertex v. Similarly, if P is a valid pressing
sequence of G (namely, each vertex is black when we want to press it, but P does
not necessarily yield the all-white, empty graph), then GP denotes the graph we
get after pressing all vertices in P in the indicated order. Finally, let Pk denote the
suffix of P starting in position k+ 1.

The convenience of linear graphs is their simple structure and furthermore, their
self-reducibility:

Observation. Let G be a linear black-and-white graph and v a black vertex in it.
Then Gv consists of a linear graph and the separated white vertex v.

Since any separated white vertex does not have to be pressed again, it is sufficient
to consider Gv \ {v}, which is a linear graph. We are ready to state and prove our
main theorem.

Theorem 7. Let G be an arbitrary, finite, linear black-and-white graph, and let M
be the following graph. The vertices of M are the successful pressing sequences
on G, and two vertices are adjacent if the length of the longest common subsequence
of the pressing sequences they represent is at least the common length of the pressing
sequences minus 2. Then M is connected.

Proof. It is sufficient to show that for any successful pressing sequences X and
Y = v1v2 · · · vk , there is a series X1, X2, . . . , Xm such that for any i=1,2, . . . ,m−1,
the length of the longest common subsequence of X i and X i+1 is at least the common
length of the sequences minus 2, and Xm starts with v1. Indeed, then both Xm

and Y start with v1, and both X1
m and Y 1 are successful pressing sequences on

Gv1 \ {v1}. We can use induction to transform Xm into a pressing sequence which
starts with v2; then we consider its suffix, which is a successful pressing sequence
on Gv1v2 \ {v1, v2}, etc.

Furthermore, it is sufficient to show that v1 can be moved to some earlier position
in some series of small alterations of the sequence, provided the intermediaries are
also valid pressing sequences.
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We first show that if v1 is not in X , there exists some valid X ′ containing v1, and
X ′ differs from X by exactly one vertex. This is true for any arbitrary vertex in G
and we state it in a separate lemma since we are going to use it again later.

Lemma 8. Assume that X is a successful pressing sequence on G and that vertex v
is not a separated vertex in G. Then either v is in X or there exists some valid X ′

containing v, and X ′ differs from X by exactly one vertex.

Proof. Let X = u1u2 · · · uk . Assume that v is not in X . Vertex v has at least one
neighbor in G and none in GX ; therefore there exists at least one vertex in X which,
when pressed, is adjacent to v. Consider the last such vertex, which is in position i ,
and call it ui ; by definition, none of the vertex pressings in X i affect the adjacencies
or color of v, so after pressing ui , v must be a white disconnected vertex. It follows
that in Gu1 · · · ui−1, the vertices v and ui have exactly the same neighbors, and as
such u1 · · · ui−1vui+1 · · · uk is a valid pressing sequence. �

We now assume that v1 is part of the current pressing sequence, which we denote
by P1w1v1 P2, where both P1 and P2 might be empty.

Case 1. If w1 and v1 are not neighbors in GP1, then P1v1w1 P2 is also a valid
pressing sequence, and one of the longest common subsequences of P1w1v1 P2 and
P1v1w1 P2 is P1w1 P2, one vertex less than the original pressing sequences. In this
way, we can move v1 to a smaller index position in the pressing sequence, and this
is what we want to prove.

Case 2. If w1 and v1 are neighbors in GP1, then v1 is white in GP1, and then
pressing w1 makes it black again. However, v1 is black in G, since it is the first
vertex in the valid pressing sequence Y . As such there must exist at least one vertex
in P1 which was adjacent to a black v1 when pressed. Let w2 be the last such vertex
in P1, and let us denote P1 = P1aw2 P1b.

We claim that none of the vertices in P1b are neighbors of w2 in GP1a . Indeed
if there were such a neighbor, call it w3, after pressing w2, w3 would be adjacent
to v1. Note that w3 cannot have already been adjacent to v1 by linearity of GP1a .
As such, pressing w3 would change the color of v1, meaning either v1 was black
prior to pressing w1 — a contradiction — or there were further vertices in P1b which
were adjacent to a black v1 when pressed, another contradiction.

Since P1b does not contain a vertex which is a neighbor of w2 in GP1a , we
move w2 next to w1. The new pressing sequence P1a P1bw2w1v1 P2 is still a valid
and successful pressing sequence and the longest common subsequence of P and
P1a P1bw2w1v1 P2 is P1a P1bw1v1 P2, one vertex less than the common length of
the sequences.

For sake of simplicity, we denote P1a P1b by P ′1 and now we can assume the
pressing sequence is of the form P ′1w2w1v1 P2, with P ′1 and P2 both potentially
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Figure 3. In the indicated two configurations, the neighbors of the
{w1, w2, v1} triplet, u1 and u2, change color in the same way by
pressing only v1 and pressing w2w1v1. The color change on u1

and u2 is indicated with the flipping of their crossing line.

empty. Since after pressing w2, the vertices w1 and v1 become neighbors with w1

being black and v1 being white, the topology and colors of w2, w1 and v1 in GP ′1
is one of the following:
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Case 2a. Assume that P2 is not empty. The {w1, w2, v1} triplet has at least one
neighbor (and at most two) in GP ′1; call them u1 and u2. Furthermore, either (1) one
of u1 and u2 is pressed in P2, or (2) we can replace some vertex in P2 with u1 or u2

such that the resulting sequence is still valid, and successful on GP ′1w2w1v1, due
to Lemma 8. As such, we can assume that at least one neighbor of the {w1, w2, v1}

triplet is pressed in P2.
Without loss of generality, say u1 is pressed before u2 in P2 and let P2= P2au1 P2b.

Note that we can press v1 instead of w2w1v1, and the resulting sequence GP ′1v1 P2a

will be valid, as none of the vertices in P2a are neighbors of w2, w1, or v1. Next
note from Figure 3 that the colors of u1 and u2 are identically altered in the pressing
of either v1 or w2w1v1, and so we can press u1. Figure 4 shows that the color
of u2 and a possible second neighbor of u1 denoted by u3 will be the same in
GP ′1w2w1v1 P2au1 and GP ′1v1 P2au1w1w2. Therefore P ′1v1 P2au1w1w2 P2b will also
be a successful pressing sequence on G, since no more vertices are affected by the
given alteration of the pressing sequence. One of the longest common subsequences
of P ′1w2w1v1 P2au1 P2b and P ′1v1 P2au1w1w2 P2b is P ′1v1 P2au1 P2b, two vertices less
than the entire pressing sequences. As intended, we have shown that v1 is in a
smaller index position of the pressing sequence.
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Figure 4. The color of u2 and u3 changes in the same way on the
two indicated configurations.

Case 2b. Finally, assume that P2 is empty. Then GP ′1w2w1v1 is the all-white empty
graph, and thus, GP ′1w2w1 contains the separated black v1 and all separated white
vertices, or contains a black v1 connected to another black vertex and all separated
and white vertices.

What follows is that GP ′1 contains at most four nonisolated vertices, three of
which are w2, w1, and v1. Call the fourth u. If u exists, it must be black and
adjacent to v1 when v1 is pressed. There are only four such cases, given the possible
topologies for w2, w1, and v1. If w1 and w2 are adjacent, then u is either black
and adjacent to v1 in GP ′1 or it is adjacent to w2 and is white. If w2 and w1 are
not adjacent, then u can be adjacent to either w2 or w1, and must be white in both
cases.

Note that all of these topologies can be described as follows; all neighbors of v1

are black, v1 is black, and all other vertices are white. This motivates the following
lemma:

Lemma 9. If GP is such that all neighbors of v1 are black, v1 is black, and all
other vertices are white, and furthermore, there is a successful pressing sequence
on G that starts with v1, then there exists at least one vertex u in P such that when u
is pressed u is not adjacent to v1.

Proof. Suppose instead that every vertex in P is adjacent to v1 when pressed.
P cannot be empty since then GP would be G and pressing v1 in G would create
an all-white nontrivial graph, contradicting that there exists a successful pressing
sequence starting with pressing v1. Furthermore, if all vertices in P are neighbors
of v1 when pressed, then P must contain an even number of vertices since v1 is
black both in G and GP .
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Let P = P ′1u2u1. In order for u1 and u2 to be adjacent to v1 when pressed, and
for GP to fit the given criteria, GP ′1 must also have v1 and all neighbors black,
and all other vertices white. By repeated application, we see that G must also fit
these criteria. By assumption then, there are no black vertices not adjacent to v1,
and as such, pressing v1 results in an all-white nontrivial graph. However, this is a
contradiction, as there exists a successful pressing sequence for G in which v1 is
pressed first. �

From the above lemma, we have that there exists some vertex in P ′1 not adjacent
to v1 when pressed, and there are vertices which are adjacent to v1 when pressed.
For technical reasons, we have to separate them in the pressing sequence, which is
doable due to the following lemma.

Lemma 10. Let Pxu be a valid pressing sequence on G such that x is a neighbor
of some v in GP and u is not a neighbor of v in GPx. Then Pux is a valid pressing
sequence on G and GPxu = GPux.

Proof. It is sufficient to show that x and u are not neighbors in GP . If x and u
were neighbors, then the two neighbors of x would be u and v, causing u and v to
become neighbors in GPx , a contradiction. �

Due to Lemma 10 it is possible to “bubble up” vertices that are not neighbors
of v1 in the pressing sequence so that the pressing sequence becomes Pu Pnv1,
where Pu contains the vertices that are not neighbors of v1 when pressed and Pu

contains the vertices that are neighbors of v1 when pressed. Each bubbling-up step
is allowed since the length of the longest common subsequence of two consecutive
sorting sequences is their common length minus 1. We know that neither Pu nor Pn

is empty due to Lemma 9 and due to the fact that w1 and w2 are in Pn .
Let u be the last vertex in Pu and let Pu = P ′uu. Without loss of generality, we

can assume that u is on the left-hand side of v1 in GP ′u and then GP ′u is

v
1
y
1

xi+1 x
1

x
2

xi-1xiuxk

... ... ...

y
2

yl

The vertices on the left-hand side of v1 are denoted by x1, x2, . . . , xk and we
distinguish u amongst them. The vertices on the right-hand side of v1 are denoted
by y1, y2, . . . , yl .

Obviously, no x is a neighbor of any y when pressed, so we can bubble up the y
vertices in Pn such that first the y vertices are pressed and then the x vertices. After
a finite number of allowed alterations, Pn = y1 y2 · · · yl x1x2 · · · xk .

Similarly to the previous cases, we can move down vertex u in the pressing
sequence before xi . We know that v1 is black in GP ′uu since it is black in G and
neither of its neighbors is pressed in P ′uu. We are going to press some of the
vertices amongst the x and y vertices provided that v1 will be black after that
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Figure 5. Alternative pressing sequences for two cases.

series of pressing. We consider the graph GP ′u y1 · · · yl x1 · · · xi−1 if v1 is black
in it (the runs of x vertices might be empty if i = 1), and otherwise the graph
GP ′u y1 · · · yl x1 · · · xi−2 (also the runs of x vertices might be empty if i = 2) or
GP ′u y1 · · · yl−1 if i = 1 and the number of y vertices is odd (if i = 1 and the number
of y vertices is even, then v1 will be black in GP ′u y1 · · · yl). We have one of the
following graphs

v
1
ylx

2
x
1

uxk

...

v
1

xi+1 xiuxk

...

v
1

xi+1 xi-1uxk

...

xi

on which uxi · · · xkv1, uxi−1 · · · xkv1, ylux1 · · · xkv1 is the current successful press-
ing sequence, respectively.

A successful pressing sequence replacing uxi · · · xkv1 is v1xi · · · xku, as can
be seen on the left-hand side of Figure 5. The length of the longest common
subsequence of the two pressing sequences is 2 less than their common length, as
required. The pressing sequence ylux1 · · · xkv1 can be replaced by ux1 yl x2 · · · xkv1

since yl is a neighbor of neither u nor x1. Then this pressing sequence can be
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Figure 6. Changing the pressing sequence uxi−1 · · · xkv1 in two
steps such that v1 is in a smaller index position.

replaced by v1x1 yl x2 · · · xku, as can be seen on the right-hand side of Figure 5. The
length of the longest common subsequence of ux1 yl x2 · · · xkv1 and v1x1 yl x2 · · · xku
is again 2 less than their common length.

Finally, the pressing sequence uxi−1 · · · xkv1 can be replaced in two steps; first it
is changed to xi xi+1uxi−1xi+2 · · · xkv1, then to xi xi+1v1xi−1xi+2 · · · xku, as can be
checked in Figure 6. In both steps, the length of the longest common subsequences
of two consecutive pressing sequences is 2 less than their common length as required.

We proved that in any case, v1 can be moved into a smaller index position with
a finite series of allowed perturbations. Iterating this, we can move v1 to the first
position. Then we can do the same thing with v2 on the graph Gv1 \ {v1}, and
eventually transform X into Y with allowed perturbations. �

4. Discussion and conclusions

In this paper, we proved the pressing game conjecture for linear graphs. Although
the linear graphs are very simple, this proof technique provides a direction for
proving the general case. Indeed, it is generally true that if a vertex v is not in
a successful pressing sequence P , then a successful pressing sequence P ′ exists
which contains v and the length of the longest common subsequence of P and P ′

is only 1 less than their common length. Case 1 in the proof of Theorem 7 holds
for arbitrary graphs, and in a working manuscript, we were able to prove that the
conjecture is true for Case 2a using linear algebraic techniques similar to that used
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in [Hartman and Verbin 2006]. The only missing part is Case 2b, which seems to be
very complicated for general graphs; for example, Lemma 10 cannot be generalized
for arbitrary graphs.

A stronger theorem holds for the linear case than is conjectured for the general
case. One possible direction above proving the general conjecture is to study the
emerging Markov chain on the solution space of the pressing game on linear graphs.
We proved that a Markov chain that randomly removes two vertices from the current
pressing sequence, adds two random vertices to it, and accepts it if the result is a
successful pressing sequence is irreducible. It is easy to set the jumping probabilities
of the Markov chain such that it converges to the uniform distribution of the solutions.
The remaining question is the speed at which this Markov chain converges.
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