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The use of systems of differential equations in mathematical modeling in conjunc-
tion with epidemiology continues to be an area of focused research. This paper
briefly acquaints readers with epidemiology, cholera, and the need for effective
control strategies; discusses cholera dynamics through a variation on the SIR epi-
demiological model in which two separate age classes exist in a population; finds
the numeric value for R0 to be approximately 1.54 using estimated parameters
for Bangladesh; and employs an optimal control resulting in a suggestion that a
protection control be implemented at the end of the monsoon season.

1. Definition of epidemiology and cholera

The World Health Organization defines epidemiology as: “the study of the distribu-
tion and determinants of health-related states or events (including disease), and the
application of this study to the control of diseases and other health problems” [WHO
2012c]. Notice, this definition addresses two foundational questions regarding any
disease. The first question is simply, “How does this disease work?” Once that
question is adequately answered, epidemiologists ask the natural follow-up question,
“How can we control this disease?”

Diarrheal disease is the fifth most deadly disease category in the world claiming
more lives annually than HIV and the deadliest of cancers [WHO 2012d]. Cholera
is a fast-acting diarrheal disease capable of causing death within hours of the onset
of symptoms [WHO 2012b]. Again, we reference the expertise of the World Health
Organization to provide an excellent definition for cholera:
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Cholera is an acute intestinal infection caused by ingestion of food
or water contaminated with the bacterium Vibrio cholerae. It has a
short incubation period, from less than one day to five days, and
produces an enterotoxin that causes a copious, painless, watery
diarrhoea that can quickly lead to severe dehydration and death
if treatment is not promptly given. Vomiting also occurs in most
patients. [WHO 2012a]

Having been in existence since the time of Christ and still having no cure, cholera
is an excellent candidate for one of the longest-standing diseases in human history
[Barua and Greenough 1992]. Cholera and similar diseases have been virtually
eliminated in modernized nations through rigorous sanitation and waste treatment
infrastructure [WHO 2012b]. Treatment of cholera continues to be challenging for
those nations unable to effectively implement these more cost-prohibitive strategies.

2. Introduction to the two-compartment model

Among the most common epidemiological models is the standard SIR model, so
named for the classifications within the model. S represents the susceptible class
defined to be all of those people in a population that are not transmitting and have
no immunity to the disease. I represents the infected class and is comprised of
those who are transmitting the disease. Infecteds may or may not exhibit symptoms.
R represents the recovered class of people who have some immunity to the disease.
See Figure 1 for a depiction of this model.

One connection between the biological study of diseases and mathematics comes
through differential equations. One may recall the foundational idea of calculus to
be the derivative. Knowing about the derivative and how it relates to the original
equation allows us to determine a representation of the original equation. Thus, if
we can design a set of equations around the interaction of classes and how they are
changing at any given time, we may use methods of solving differential equations
to determine the number of individuals in each class at any given time.

In an attempt to analyze the effects of age on cholera dynamics, we begin with
the two-compartment SIR model. This is a variation of the standard SIR model

β g

susceptible infectious recovered

Figure 1. A pictorial representation of the standard SIR model.
One may observe the nervousness of the susceptible class in antici-
pation of infection.
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Figure 2. A pictorial representation of our two-compartment
model. Dashed lines indicate an interaction between compartments,
whereas solid lines indicate movement to and from compartments
with N = S1+ S2+ I1+ I2+ R1+ R2.

common to biological epidemiology in which we assign classes based on age.
Children under five are assigned to classes with a subscript of one. Population
members at or above five years of age — henceforth referred to as matured — are
assigned to the remaining classes with a subscript of two (the significance of age
five is covered later in the paper). We assume that both age classes move through
distinct SIR models independently except in regards to social interaction and aging.
See Figure 2 for a pictorial representation of this model.

Susceptibles (denoted Si ) are defined as members of the population capable of
contracting the disease (becoming infected) which implies that members of this
class have no immunity to the disease. It is worth noting the underlying assumption
that prior to the introduction of the disease, the entire host population is susceptible.

We define infected population members (denoted I j ) to be those capable of
transmitting the disease — not necessarily those who show symptoms. Logically,
these classes are assumed to be empty before the introduction of the disease.

Finally, the recovered class (denoted Rk) represents the population that has
obtained, by some means, immunity to the disease. The movement of population
members between these classes is discussed in the following section.

3. Two-compartment model differential equations

Our goal in studying this model is to discuss the dynamics and control of age-
structured models of cholera. To this end we will translate our conceptual model
from picture to ordinary differential equations as follows. A discussion of the
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meaning of the terms occurs in Section 3.1.

d S1

dt
= bN −

β11S1 I1

N
−
β12S1 I2

N
− β̂1S1− f S1− d1S1+ω1 R1, (3-1)

d S2

dt
= f S1−

β21S2 I1

N
−
β22S2 I2

N
− β̂2S2− d2S2+ω2 R2, (3-2)

d I1

dt
=
β11S1 I1

N
+
β12S1 I2

N
+ β̂1S1− f I1− g1 I1− e1 I1, (3-3)

d I2

dt
=
β21S2 I1

N
+
β22S2 I2

N
+ β̂2S2+ f I1− g2 I2− e2 I2, (3-4)

d R1

dt
= g1 I1− f R1−ω1 R1− d1 R1, (3-5)

d R2

dt
= g2 I2+ f R1−ω2 R2− d2 R2, (3-6)

subject to initial conditions S1(0) = S10, S2(0) = S20, I1(0) = I10, I2(0) = I20,
R1(0)= R10, R2(0)= R20.

3.1. Equation descriptions. The equations are generally easy to generate by inter-
preting the pictorial model as a flow chart. As intuition would suggest, positive
terms indicate entrance into a class, and negative terms indicate removal. It is
worth noting that every term that enters a class must, at some point, be removed
from another class (with the exception of the population growth term b). It would
seem logical to assume the converse, but the introduction of death rates limits this
assumption as each class has a death-rate term that does not enter any other class.

The βi j Si I j terms — the subscript of β is derived from the subscripts of the S
and I classes respectively between whom the interaction is taking place — have a
denominator of N , which is defined to be the total number of people in the system.
These “mass action” (or frequency dependent) transmission terms come from the
research of Keeling and Rohani [2008] and have been introduced to model the
heterogeneous interaction tendencies of human populations. Every other class
transfer rate is dependent solely upon the class from which it originates. Thus,
every other term in the equations consists of a rate multiplied by its associated class.
With this in mind, let us now consider our individual equations.

From the model, we expect that the only inputs (positive terms) for the S1

class will come from population growth rate (represented by b) multiplied by the
population size (recall that this term is defined as N ) and, less intuitively, the loss of
a recovered child’s immunity to cholera over the course of time shown by rate ω1.

Turning our attention to (3-1), we expect that some proportion (β1 j ) of interac-
tions of susceptible children with infecteds — two distinct terms representing interac-
tions with both matured infecteds I2 and children I1 — will produce a new infected
child. Data for Bangladesh, where cholera is endemic, suggests that vibrios may be
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reintroduced to a system periodically by environmental factors [Ryan and Charles
2011]. To accommodate this information, an environmental forcing term (β̂1) is
introduced. We also must account for a natural death rate (d1) of children in our
model population being removed from our S1 class by inserting a term d1S1. Lastly,
we assume that children become matured at rate f , and thus move from S1 to S2.

Let us discuss (3-2) by collecting the positive terms first. We assume that the
S2 class has only two inputs: one from the advancement of children to matured
individuals (rate f ) and the second from matured recovereds losing immunity to the
disease (rate ω2). Looking at outputs, we should expect to see similar interaction
terms as appeared in the d S1/dt equation. One infection term accounts for new
infections resulting from the interaction of matured individuals with children, a
second term accounts for those resulting from interactions among matured individ-
uals, and a final term models infection of matured population due to environmental
factors. The introduction of a natural death rate for adults in our population (rate d2)
provides the mortality term for our equation.

When considering the infected classes, we expect to see positive terms represent-
ing interactions between susceptibles and infecteds as well as terms representing
environmental factors that result in new infections. Because cholera has no direct
effect on the process of aging, we still expect children to become adults in the in-
fected classes at the same rate ( f ) as in the susceptible classes. A certain proportion
of those infected with cholera will recover and retain some immunity to the disease
(at rates g1 and g2) moving them out of the infected class into the recovered class.
We introduce a term for the death rate of infected individuals (rates e1 and e2) that
includes the risk of cholera-related death.

In this model, the only way in which children may enter the recovered class R1 is
to survive the disease — which we have defined to happen at rate g1. This is a lim-
iting assumption that ignores the possibility of inoculation. Field research seems to
indicate that surviving cholera infection does confer some degree of immunity; how-
ever, this immunity does not persist for the survivor’s lifetime. For our purposes, the
loss of immunity is modeled by a waning immunity rate (ω1) that moves the popula-
tion out of the recovered class back into the susceptible class. In addition, King et al.
[2008] have found a variety of estimates of the time for which immunity persists.

The death rate for the recovered population is assumed to be the natural rate (d1),
and children continue to move into the matured class at the rate f . This means that
the matured recovered population may be increased by either mature population
members surviving the disease (rate g2) or children surviving the disease and matur-
ing during the period in which they have some degree of immunity (represented by
the familiar age-class-advancement term f ). We assume that recovered individuals
die at the natural rate (d2) and that they lose immunity and return to the susceptible
population at a rate of ω2.
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3.2. Parameter estimates. The following subsections contain a discussion of our
parameter estimates for the selected population in Bangladesh. During our re-
search, we became particularly interested in endemic cholera, and found data from
Bangladesh readily available. However, it is worth noting that the appropriate
selection of parameters would allow this system to model cholera for two age
classes in any population.

After exploration of the Wolfram Alpha information database [2010], we con-
cluded that a natural death rate for Bangladesh should be 0.0092 people per person
per year, and the birth rate should be 0.0247 people per person per year. Because
our model analyzes the system in days, it is expedient for us to ensure that the units
on all of our rates are also in days. The result of these and the remaining parameter
calculations may be seen in Table 1.

The dissertation work of Peng Zhong [2011] seems to indicate a relatively low
death rate as compared to the rate of deaths caused by cholera — .0014 people
per person per year. This estimation would include a number of control tactics
actually being used in the field. As our intention is to develop a system that
accurately models real-world data in Bangladesh, the use of this parameter estimate
is warranted. However, we must again convert into the proper unit of measure and
account for naturally occurring deaths.

The research of Harris et al. [2008] among others, [Ryan 2011; Ryan and Charles
2011], posits statistical significance of increased risk of infection for children under
five. Thus, we have chosen five years as our significant age for class advancement.
Calculating a rate of advancement of the first age class to the second seems to be a
simple matter of arithmetic, dividing the birth rate by the number of days in five
years to find an appropriate rate.

Again, Harris et al. [2008] gave us a significant clue as to what parameter values
to use in modeling the interaction between infected and susceptible classes. Their
conclusion was that twenty-one percent of household contacts “. . . develop definite
V. cholerae infections. . . ” and “. . . children 5 years of age or younger . . . were 2.7
times. . . ” as likely to develop infections as were “older individuals”. Thus, a bit of
algebra gives us estimates for our interaction parameters.

The forcing term used is a randomized Heaviside function, which we sought
to use to model the monsoon season in Bangladesh and east India where cholera
outbreaks are common. We used Bangladesh’s monsoon data [Sack et al. 2003],
and concluded that the monsoon season lasts from the beginning of June through
the end of September. With this information, we “turned on” our Heaviside function
on the 152nd day of the year (corresponding with June 1) and “turned off” our
Heaviside function on the 254th day of the year (corresponding with September 30).
During monsoon season, the Heaviside function assigns β̂i , a random proportion,
for each day. This allows us to account for the randomness of nature in that the
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symbol description rate

b birth rate of the entire population 1 6.8× 10−5 day−1

d1 natural death rate of children 1 2.5× 10−5 day−1

d2 natural death rate of matured individuals 1 2.5× 10−5 day−1

f proportion of children maturing 2 7.8× 10−7 day−1

β11 child infections resulting from interactions between
susceptible children and infected children 2

1.5× 10−1 day−1

β12 child infections resulting from interactions between
susceptible children and matured infecteds 2

1.5× 10−1 day−1

β21 matured infections resulting from interactions between
matured susceptibles and infected children 2

5.7× 10−2 day−1

β22 matured infections resulting from interactions between
matured susceptibles and matured infecteds 2

5.7× 10−2 day−1

β̂1 environmental forcing term for children Heaviside

β̂2 environmental forcing term for mature individuals Heaviside
e1 death rate of child-aged infected population 1 2.9× 10−5 day−1

e2 death rate of matured infected population 1 2.9× 10−5 day−1

g1 infected children to recovered children transition 3,4 6.7× 10−2 day−1

g2 infected adults to recovered adults transition 3,4 6.7× 10−2 day−1

ω1 waning immunity rate of children 5 2.2× 10−3 day−1

ω2 waning immunity rate of matured individuals 5 2.2× 10−3 day−1

Table 1. Two-compartment parameter estimates. Key: 1
= [Wolfram

Alpha 2010]; 2
= [Harris et al. 2008]; 3

= [Nelson et al. 2009];
4
= [WHO 2012b]; 5

= [Zhong 2011].

effects of rain and floods could vary significantly day by day. It is important to
note that, although the forcing terms obtain new values for each time step, they are
considered constant for each time step.

Here we define

β̂i =

{
rand if 152≤ t mod 365≤ 254,
0 elsewhere,

where i = 1, 2 and rand is the MATLAB function reference that generates random
numbers whose elements are uniformly distributed in the interval (0, 1).

As noted previously, the rate at which recovered members of the population
lose immunity is difficult to accurately estimate. We elected to use estimates from
[Zhong 2011] in our model; however, we wish to note that in [Nelson et al. 2009],
they observe that these rates assume almost entirely asymptomatic infections within
the population which is not supported by recent studies.



90 K. R. FISTER, H. GAFF, E. SCHAEFER, G. BUFORD AND B. C. NORRIS

We determined an appropriate estimation of the length of a cholera infection to
be fifteen days. As such, we are easily able to calculate the rate of recovery of the
infected classes.

Table 1 contains estimates for parameters used in the two-compartment model,
short descriptions of the parameters, and the source references for our estimates.

4. R0 calculation

R0, or the basic reproductive ratio, is commonly defined to be the mean number
of secondary cases resulting from a single primary infection within a population.
This is a useful measure of the epidemicity, or speed of spread, of a disease. In
calculating R0, we used the methods outlined by van den Driessche and Watmough
[2002]. In order to carefully calculate R0, we recognize that if there is no disease
present initially, then the population remains disease-free for all time. The β̂i

coefficients for i = 1, 2 cause a challenge. Therefore, we analyze the system with
the β̂i values for i = 1, 2 equal to zero. If the disease is spread in this case, it would
also spread with nonzero β̂i coefficients. Using this assumption within the system
(3-1)–(3-6), we use the next generation matrix technique as follows.

F is formed by compiling the terms that bring new infections into an infected
class. For the sake of convenience and clarity, we rearranged the differential
equations in such a way that the infected classes are at the top (i.e., I1, I2, S1,
S2, R1, R2). This operation is permitted by common linear algebra operations;
however, its application must be consistent through the calculation. The vector V is
constructed by compiling the additive inverse of the remaining terms such that our
state equations can be determined by taking F −V .

It is important to note that only new infections are considered in F . Movement
between infected classes is shown in V:

F =



β11S1 I1 N−1
+β12S1 I2 N−1

β21S2 I1 N−1
+β22S2 I2 N−1

0
0
0
0


, (4-1)

V =



f I1+g1 I1+e1 I1

− f I1+g2 I2+e2 I2

−bN+β11S1 I1 N−1
+β12S1 I2 N−1

+β̄1S1+ f S1+d1S1−ω1 R1

− f S1+β21S2 I1 N−1
+β22S2 I2 N−1

+β̄2S2+d2S2−ω2 R2

−g1+ f R1+ω1 R1+d1 R1

−g2 I2− f R1+ω2 R2+d2 R2


. (4-2)
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We then calculate the disease-free equilibrium (henceforth DFE) — mathemat-
ically denoted Ex0 — by setting the state equations equal to zero and I1 = I2 =

0 = R1 = R2. This comes from the assumption that the DFE is the state of our
population before the introduction of the disease. From this assumption, we get

Ex0 =
(
0, 0, S1(0), S2(0), 0, 0

)
. (4-3)

Following [van den Driessche and Watmough 2002], the square matrix F is
calculated by taking the partial derivatives of F with respect to I1 and I2, evaluating
at the DFE, and placing the resulting column vector into corresponding columns
of F . Symbolically, we have

F =
[
∂F
∂ I1

(Ex0)
∂F
∂ I2

(Ex0)

]
=


β11S10

S10+S20

β12S10
S10+S20

β21S20
S10+S20

β22S20
S10+S20

 , (4-4)

where S10 and S20 are the initial populations of the S1 and S2 classes respectively.
A similar process is used in calculating the square matrix V :

V =
[
∂V
∂ I1

(Ex0)
∂V
∂ I2

(Ex0)

]
=

[
f + g1+ e1 0
− f e2+ g2

]
⇒ V−1

=
1
αγ

[
γ 0
f α

]
,

where α = f + e1+ g1 and γ = e2+ g2.
Generally, R0≡ρ(FV−1), where ρ is the spectral radius, or maximum magnitude

of the spectrum of a square matrix [van den Driessche and Watmough 2002].
Thus, R0 is calculated by finding the spectrum of FV−1, namely eig(FV−1), and
determining the largest value in terms of absolute value. For our model,

FV−1
=

1
αγ (S10+S20)

[
β11S10 β12S10

β21S20 β22S20

] [
γ 0
f α

]
=

1
αγ (S10+S20)

[
β11S10γ +β12S10 f β12S10α

β21S20γ +β22S20 f β22S20α

]
.

We consider

λI − FV−1
=

λ−
β11S10γ+β12S10 f
αγ (S10+S20)

−
β12S10α

αγ (S10+S20)

−
β21S20γ+β22S20 f
αγ (S10+S20)

λ−
β22S20α

αγ (S10+S20)

 .
We find the determinant of λI − FV−1 and obtain
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0= λ2
− λ

(
β11S10γ +β12S10 f +β22S20α

αγ (S10+ S20)

)
+
β22S20α(β11S10γ +β12S10 f )−β12S10α(β21S20γ +β22S20 f )

(αγ (S10+ S20))2
,

0= (αγ (S10+ S20))
2λ2
− λ(αγ (S10+ S20))(β11S10γ +β12S10 f +β22S20α)

+αγ S10S20(β22β11−β12β21).

Let
ω = αγ (S10+ S20),

η = β11S10γ +β12S10 f +β22S20α,

ψ = αγ S10S20(β11β22−β12β21).

Then we have

0= ω2λ2
−ωηλ+ψ or λ=

η±
√
η2− 4ψ
2ω

.

Here, our parameters allow some useful simplification. Because β11 = β12 and
β21 = β22, we can say ψ = αγ S10S20(β11β22 − β12β21) = 0. This gives us an
abbreviated representation of our basic reproductive ratio,

λ= 0 or λ=
η

ω
.

We are looking for the largest absolute value; therefore,

R0 ≡
β11S10γ +β12S10 f +β22S20α

αγ (S10+ S20)
. (4-5)

From the general equation for R0 and the estimates listed previously, we find
the numeric value of R0 to be approximately 1.54. Since the R0 value is greater
than 1, the disease spreads. Consequently, with the disease spreading in this case,
it would also spread with nonzero β̂i for i = 1, 2. These coefficients do have an
impact on the behavior of the model denoted in the graphics. With this R0 value,
this indicates that each primary cholera infection introduces the disease to a portion
of the remaining susceptible population. In consideration of this fact, we employed
a control discussed in Section 6.

5. Graphics with environmental forcing term

From the graph presented in Figure 3, we can see the disease-free equilibrium,
or DFE, for our model is followed by a dramatic decrease in the susceptible
population and a corresponding increase in the infected population (this may be
clearer in Figure 4). The infected population quickly dwindles giving rise to
a recovered population with some immunity. Perhaps unexpectedly, we see a
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Figure 3. This represents a simulation over five years with initial
data S1(0)= S2(0)=400, I1(0)= I2(0)=1 and R1(0)= R2(0)=0.
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Figure 4. For the sake of clarity, this is the first 9 months of the
previous simulation for children in Figure 3.

cyclical pattern representing seasonal spikes in infecteds and subsequent increases
in recovered individuals. This is a result of the environmental forcing terms, β̂i ,
which were chosen to display the effects of the Bangladeshi monsoon season on
cholera dynamics.

Notice, population growth still occurs over the course of time. Since this model
does not assume a closed population, we would expect population growth to be a
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function of the country chosen for analysis. This conclusion seems to be in line with
demographic data that indicates continued population growth despite the existence
of endemic cholera in Bangladesh.

6. Optimal control

Before we consider control of the disease, we must establish the kind of control we
will use. This selection has significant effect on the derivation of our new differential
equations (those that include the dynamics of the control) and every subsequent
step in the process of optimization. For the sake of this paper, we consider the
effects of what may be called a protection control in which we limit the interaction
of susceptible children with both infected classes. Our optimization process is an
application addressed in the work of Lenhart and Workman [2007].

For this model we are interested in the effect of a simple control, one in which
we limit the interactions of susceptible children. Symbolically, this is shown by
inserting the control (1− u(t)) as a coefficient of the interaction terms β11S1 I1/N
and β12S1 I2/N . That is, the control allows only part of the I1 and I2 classes to
interact with the S1 class. Our system of differential equations becomes

d S1

dt
= bN−

(1−u)β11S1 I1

N
−
(1−u)β12S1 I2

N
−β̂1S1− f S1−d1S1+ω1 R1, (6-1)

d S2

dt
= f S1−

β21S2 I1

N
−β̂2S2−

β22S2 I2

N
−d2S2+ω2 R2, (6-2)

d I1

dt
=
(1−u)β11S1 I1

N
+
(1−u)β12S1 I2

N
+β̂1S1− f I1−g1 I1−e1 I1, (6-3)

d I2

dt
=
β21S2 I1

N
+
β22S2 I2

N
+β̂2S2+ f I1−g2 I2−e2 I2, (6-4)

d R1

dt
= g1 I1− f R1−ω1 R1−d1 R1, (6-5)

d R2

dt
= g2 I2+ f R1−ω2 R2−d2 R2, (6-6)

subject to initial conditions S1(0) = S10, S2(0) = S20, I1(0) = I10, I2(0) = I20,
R1(0)= R10, R2(0)= R20.

We wish to minimize an objective functional that represents the members of each
infected class and the cost of control implementation. Perhaps put more simply, we
minimize the numbers of infected children and mature adults as well as the cost of
the protection control. Having a goal and method in mind, we may write

J (u)=
∫ T

0

(
AI1(t)+ B I2(t)+Cu2(t)

)
dt. (6-7)



INVESTIGATING CHOLERA USING AN SIR MODEL 95

Note that if the protection control is at 0, then the cost to the population is the
least in the objective functional. If the control u(t) is low, then this means a small
impact on transmission. Hence, this represents a small cost to the system.

We must define our control set U , which is the set of all possible control outcomes.
This set is restricted to measurable functions and must be bounded. Thus,

U = {u(t) measurable | 0≤ u(t)≤ umax}. (6-8)

In consideration of our goal, we will attempt to minimize J (u) over the class of
controls U subject to equations (6-1)–(6-6).

By determining the Hamiltonian for our system, we are able to determine the
necessary conditions for optimality and transversality [Lenhart and Workman 2007].
This also allows us to determine the form of the adjoint equations by taking the
negative derivative of the Hamiltonian with respect to each of the state variables.
The Hamiltonian is

H = AI1(t)+B I2(t)+Cu2(t)

+λS1

(
bN−

(1−u)β11S1 I1

N
−
(1−u)β12S1 I2

N
− f S1−d1S1+ω1 R1−β̂1S1

)
+λS2

(
f S1−

β21S2 I1

N
−
β22S2 I2

N
−d2S2+ω2 R2−β̂2S2

)
+λI 1

(
(1−u)β11S1 I1

N
+
(1−u)β12S1 I2

N
− f I1−g1 I1−e1 I1+β̂1S1

)
+λI 2

(
β21S2 I1

N
+
β22S2 I2

N
+ f I1−g2 I2−e2 I2+β̂2S2

)
+λR1(g1 I1− f R1−ω1 R1−d1 R1)

+λR2(g2 I2+ f R1−ω2 R2−d2 R2). (6-9)

Because the state system is bounded, the work of Fleming and Rishel [1975]
allows us to obtain the existence of an optimal control for our problem. Moreover,
we can formulate the adjoint equations and the optimal control representation
associated with the minimization of J (u) subject to equations (6-1)–(6-6). We state
the following theorem to do so and reference Lenhart and Workman [2007] for the
details of the complementary proof.

Theorem. Given an optimal control u∗ ∈U and corresponding states

(S∗1 , S∗2 , I ∗1 , I ∗2 , R∗1 , R∗2),

there exist adjoint functions (λS1, λS2, λI1, λI2, λR1, λR2) satisfying
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dλS1

dt
=−λS1

(
b− f−d1+(1−u)

(
β11S1 I1

N 2 −
β11 I1

N
+
β12S1 I2

N 2 −
β12 I1

N

)
−β̂1

)
−λS2

(
f+
β21S2 I1

N 2 +
β22S2 I2

N 2

)
−λI1

(
−
(1−u)β11S1 I1

N 2 +
(1−u)β11 I1

N
−
(1−u)β12S1 I2

N 2

+
(1−u)β12 I1

N
+β̂1

)
−λI2

(
−
β21S2 I1

N 2 −
β22S2 I2

N 2

)
, (6-10)

dλS2

dt
=−λS1

(
b+

(1−u)β11S1 I1

N 2 +
(1−u)β12S1 I2

N 2

)
−λS2

(
−d2+

β21S2 I1

N 2 −
β21 I1

N
+
β22S2 I2

N 2 −
β22 I2

N
−β̂2

)
−λI1

(
−
(1−u)β11S1 I1

N 2 −
(1−u)β12S1 I2

N 2

)
−λI2

(
−
β21S2 I1

N 2 +
β21 I1

N
−
β22S2 I2

N 2 +
β22 I2

N
+β̂2

)
, (6-11)

dλI1

dt
=−λS1

(
b+

(1−u)β11S1 I1

N 2 −
(1−u)β11S1

N
+
(1−u)β12S1 I2

N 2

)
−λS2

(
β21S2 I1

N 2 −
β21S2

N
+
β22S2 I2

N 2

)
−λI1

(
− f−e1−g1−

(1−u)β11S1 I1

N 2 +
(1−u)β11S1

N
−
(1−u)β12S1 I2

N 2

)
−λI2

(
f−
β21S2 I1

N 2 +
β21S2

N
−
β22S2 I2

N 2

)
−λR1 g1, (6-12)

dλI2

dt
=−λS1

(
b+

(1−u)β11S1 I1

N 2 +
(1−u)β12S1 I2

N 2 −
(1−u)β12S1

N

)
−λS2

(
β21S2 I1

N 2 +
β22S2 I2

N 2 −
β22S2

N

)
−λI1

(
−
(1−u)β11S1 I1

N 2 −
(1−u)β12S1 I2

N 2 +
(1−u)β12S1

N

)
−λI2

(
−e2−g2−

β21S2 I1

N 2 −
β22S2 I2

N 2 +
β22S2

N

)
−λR2 g2, (6-13)
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dλR1

dt
=−λS1

(
b+

(1−u)β11S1 I1

N 2 +
(1−u)β12S1 I2

N 2 +ω1

)
−λS2

(
β21S2 I1

N 2 +
β22S2 I2

N 2

)
−λI1

(
−
(1−u)β11S1 I1

N 2 −
(1−u)β12S1 I2

N 2

)
−λI2

(
−
β21S2 I1

N 2 −
β22S2 I2

N 2

)
−λR1(− f−d1−ω1)− f λR2, (6-14)

dλR2

dt
=−λS1

(
b+

(1−u)β11S1 I1

N 2 +
(1−u)β12S1 I2

N 2

)
−λS2

(
β21S2 I1

N 2 +
β22S2 I2

N 2 +ω2

)
−λI1

(
−
(1−u)β11S1 I1

N 2 −
(1−u)β12S1 I2

N 2

)
−λI2

(
−
β21S2 I1

N 2 −
β22S2 I2

N 2

)
−λR2(−d2−ω2), (6-15)

with transversality conditions

λS1(T )= λS2(T )= λI1(T )= λI2(T )= λR1(T )= λR2(T )= 0,

and the optimal control is characterized by

u∗ =min
(

umax,max
(

0, 1
2NC

(λI1 − λS1)(β11S1 I1+β12S1 I2)
))
.

6.1. Discussion of control and infected classes graphics. In an attempt to see the
effects of various weights on our optimal control, we ran the model with A, B,
C at various orders of magnitude. Also, due to possible imperfections of human
protection implementation, we tested various control levels ranging from to 0.1
to 0.9. This was achieved reasonably quickly since our MATLAB code allows the
bounds on the control to be specified as an input. Each of these maximum control
variations displayed structurally similar results. It is worth noting that for the sake
of clarity, Figures 5–7 have the control weights set to A= 1, B = 1, C = 10, where
the cost of the control receives ten times as much emphasis.

For a time span of four years (see Figure 5), we see that our treatment should start
with maximum implementation decreasing around the start of the first monsoon
season. Control potency decreases dramatically through the two-hundred day mark
and spikes again around the same time that we would expect the monsoon season to
return. This pattern seems to be repeated with milder and shorter implementation
through the remainder of the treatment period. The resulting effects on the infected
classes are shown in Figures 6 and 7 and are discussed below.
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Figure 5. Our model with a forcing term and control implemented;
this simulation covers a time span of 4 years with S1(0)= S2(0)=
400, I1(0)= I2(0)= 1 and R1(0)= R2(0)= 0.
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Figure 6. The effects of a five-year control on the I1 class.
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Figure 7. The effects of a five-year control on the I2 class.



INVESTIGATING CHOLERA USING AN SIR MODEL 99

Toward the end of the first monsoon season, the model indicates that the protec-
tion control be implemented at approximately one-third efficacy. This increased
protection control at the end of (or immediately following) the monsoon season,
reflects data from Sack et al. [2003] which says the highest correlation seen be-
tween monsoon data and cholera outbreaks is a spike in outbreaks at the very end,
immediately following the monsoon season.

In each infected class, we see a spike of infecteds at the beginning of the first
monsoon season and decreasing immediately following. Notice that both classes
continue to see yearly spikes, but the maximum number of infected individuals
stabilizes and is limited to about 150 people per year.

7. Conclusions

Based on this specific model, it would seem advantageous to extend a protection
control at the inception of each monsoon season. This would minimize the portion
of the population in the infected classes over time. Additionally, it has the potential
to be very cost-effective and practical. Lengthy protections would only be necessary
the first year of the treatment process and this model could allow governments
to schedule national protection or isolation days in advance, thus increasing the
possibility of widespread compliance. One interesting insight offered by our data
follows from the small increase in control around the end of the first monsoon
season. It would seem that a small increase in protection control the first year is
enough to disrupt the cycle of sickness and immunity loss in future years.

The results of our optimal control could have implications for consideration in
future policy decisions in Bangladesh. With regard to the general strategy of an-
alyzing treatments using nonhomogeneous age classes, benefits may be recognized
through practical consideration. Social dynamics often vary greatly by age causing
incongruencies between the assumptions of social homogeneity common to many
epidemiological models and the actual practices of most cultures. For this reason,
this work may offer clearer and more functional results for policy implementation.
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