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We study the Patlak–Keller–Segel (PKS) equations in 2D that describe chemotaxis
with an additional advection term. We show that solutions are globally regular
for smooth initial data with subcritical mass as long as the flow has nonpositive
divergence. For initial data with supercritical mass, numerical simulations sug-
gest that blow-up might be prevented by imposing some strong incompressible
advection term.

1. Introduction

In this paper, we study the effect of adding an advective flow term in the Patlak–
Keller–Segel (PKS) equations that model chemotaxis. Chemotaxis is the means by
which small organisms such as bacteria and somatic cells direct their movements
towards or against the gradient of some chemical concentration.

For such organisms, which often swim in low Reynold’s numbers settings,
movement is a huge challenge for many reasons. The organism’s small size relative
to the fluid it inhabits means that it has to overcome the effects of diffusion. Fur-
thermore, organisms at this level typically do not have any sort of neural system,
and thus cannot process the large amounts of information that would be needed to
purposefully move from one place to another. The available information is also
limited to whatever chemicals can bind to ligands on the cell membranes. For these
reasons, chemotaxis is a very simple mechanism. The organism simply measures
the gradient of a relevant chemical concentration (such as glucose, cAMP, bicoid,
etc.) and moves in that direction. Its motion can be modeled by combining the
diffusive and chemotactic components of its trajectory into an evolution equation

ρt =1ρ+∇ · (ρ∇c), (1-1)
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where ρ is the density of the organism and c represents the concentration of the
chemical. The PKS equation arises by assuming that the chemical is produced by
the organism itself. In this case, the chemical diffuses like

εct −1c = ρ.

In the physically relevant regime, the diffusion of the chemical is much faster than
the diffusion of the organism. Hence the ε→ 0 limit is often taken, and the equation
above becomes

−1c = ρ. (1-2)

The PKS equation [Patlak 1953; Keller and Segel 1970; 1971] is then obtained by
combining (1-1) and (1-2):

ρt =1ρ+∇ · (ρ∇(N ∗ ρ)), (1-3)

where ∗ denotes convolution and N (x)= 1/(2π) log |x | is the Newtonian potential
in 2D.

This equation has been studied extensively (see [Horstmann 2003] and the
references therein). In particular, it is well known that solutions with different mass
sizes exhibit different behaviors: For nonnegative initial data with L1-norm greater
than 8π (i.e., solutions with supercritical mass), solutions blow up in finite time
[Patlak 1953; Perthame 2007]. On the other hand, if the L1-norm is less than 8π (i.e.,
subcritical mass), the diffusive term dominates the dynamics of the equation, where
the solutions are globally regular, and indeed the L∞-norm goes to 0 as t→∞.

In this paper, we incorporate an extra advection term into the PKS equation,
which then becomes

ρt =1ρ+∇ · (ρ∇(N ∗ ρ))−∇ · (ρ Eu). (1-4)

The motivation of this extra term is that the fluid medium the organisms inhabit may
have its own current, which we denote by Eu. Throughout this paper, we assume that
the underlying flow Eu(x, y) is an a priori given velocity field and does not depend
on ρ. We are particularly interested in the case where the flow Eu is incompressible,
since this is the physically relevant case. The goal of this paper is to investigate the
effect of the advection term on the behavior of the solution. In particular, we would
like to answer the following questions:

(1) For smooth initial data with subcritical mass (i.e., ‖ρ0‖L1 < 8π) and any
incompressible flow Eu, does the solution to (1-4) always have global regularity?

(2) For initial data with supercritical mass (i.e., ‖ρ0‖L1 > 8π), is it possible to
prevent a finite-time blow-up by imposing a strong incompressible advection
term in (1-4)?

In Section 2, we give a positive answer to the first question. More precisely,
we prove that as long as the velocity field Eu has nonpositive divergence (which
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includes incompressible velocity fields as a special case), any solution to (1-4) with
subcritical mass remains regular for all time. The main ingredients of our proof are
a comparison principle and symmetric decreasing rearrangements.

As an attempt to address the second question, we perform some numerical
simulations in Section 3. Using a stochastic particle simulation based on [Haškovec
and Schmeiser 2009], we experiment with a variety of flows on solutions with
supercritical mass. Our numerical results suggest that the answer might be positive.
Namely, some incompressible flows, such as the shear flow and the strain flow,
seem to be good candidates for preventing solutions with supercritical mass from
blowing up, as long as the flow strength is sufficiently large. A rigorous proof of
this phenomenon remains a very interesting open question.

2. Global regularity for solutions with subcritical mass

In this section, we consider velocity fields Eu with nonpositive divergence, and our
goal is to prove global regularity for (1-4) with subcritical initial data.

Radially symmetric case. We first deal with the PKS equation without advection
(1-3), and we prove some results for radially symmetric solutions. Although these
results are known (e.g., see [Perthame 2007]), we sketch their proofs below for the
sake of completeness, since some of these techniques will be useful for the PKS
equation with advection as well.

For convenience, we define the mass function, which will be used throughout
this section, as follows.

Definition 2.1. For a function f ∈ L1(R2), we say that M f (r) :=
∫

B0(r)
f dx is the

mass function associated with f .

Making use of the mass function, we identify all the radially symmetric steady
state solutions for the PKS equation (without advection) in the next theorem.

Theorem 2.2. Consider the PKS equation (without advection)

ρt =1ρ+∇ · (ρ∇(N ∗ ρ)). (2-1)

All nonzero radially symmetric steady state solutions of (2-1) are of the form

ρλ(r)=
8λ

(λ+ r2)2
(2-2)

for some λ > 0.

Proof. When ρ(x, t) satisfies the PKS equation, one can check by direct computation
that the mass function Mρ(r, t) (which we denote by M(r, t) for simplicity) solves
the equation

Mt = Mrr −
1
r

Mr +
MMr

2πr
, (2-3)



122 SAAD KHAN, JAY JOHNSON, ELLIOT CARTEE AND YAO YAO

and hence the mass function of a radial steady state solution satisfies

Mrr −
1
r

Mr +
MMr

2πr
= 0. (2-4)

Although this ODE is nonlinear, we can multiply it by r , then rewrite r Mrr as
(r Mr )r −Mr and MMr as 1

2(M
2)r to obtain

(r Mr )r − 2Mr +
1

4π
(M2)r = 0, (2-5)

which yields

r Mr − 2M +
M2

4π
= c (2-6)

for some constant c. Since M(r) is the mass contained in a disk of radius r , we
have M(0)= 0 by definition, which implies that c = 0. Hence the equation above
becomes separable and can be written as

Mr

M(2−M/(4π))
=

1
r
, (2-7)

and by integrating it, we obtain the following family of steady state solutions labeled
by a parameter λ > 0:

Mλ(r)=
8πr2

λ+ r2 . (2-8)

Lastly, observe that ρλ(r)= M ′λ(r)/(2πr), which gives (2-2). �

Now we want to show that all radially symmetric solutions with subcritical mass
are controlled by (2-2) for some λ. Even though there is no comparison principle
for ρ in (2-1), a comparison principle does hold for the mass function M for (2-3),
which we describe below.

Theorem 2.3. Assume ρ1(x, t) and ρ2(x, t) are two radially symmetric solutions
to (2-1), where they satisfy M2(r, 0) ≥ M1(r, 0) for all r ≥ 0. (Here M1 and M2

are the mass functions for ρ1 and ρ2 respectively.) Then for every t , we have
M2(r, t)≥ M1(r, t).

The proof can be found in [Kim and Yao 2012] and will be omitted here.
Making use of this comparison principle, we can now show global regularity

for radially decreasing initial data. Here we say ρ0 is radially decreasing if it is
radially symmetric, and ρ0(r) is nonincreasing in r .

Corollary 2.4. Let ρ0(r) be a nonnegative smooth radially decreasing function,
with ‖ρ0‖L1 < 8π . Let ρ(x, t) be the solution to (2-1) with initial data ρ0. Then
ρ(x, t) is globally regular and bounded.
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Proof. We find a sufficiently small λ > 0 such that Mλ(r) > Mρ0
(r) for all r ≥ 0.

Then, since Mλ(r) is a steady state solution, the comparison principle in Theorem 2.3
ensures that Mρ(r, t)≤ Mλ(r) for all time during the existence of ρ, which implies
that ρ(0, t)≤ ρλ(0) for all time. Note that the radially decreasing property of ρ is
preserved by the PKS equation (see Theorem 4.2 of [Kim and Yao 2012]), so its
maximum occurs at the origin for all time. Combining these two facts, we have
‖ρ( · , t)‖L∞ ≤ ρλ(0) for all time during the existence of ρ. Once we have this
global L∞-bound, one can proceed as in [Kiselev and Ryzhik 2012] to show that
the solution is indeed smooth for all time. �

General, advective case with nonpositive divergence. Using the previous results,
we aim to study the regularity properties of the advective chemotaxis equation (1-4)
with a nonpositive divergence flow, where the initial data are not necessarily radially
symmetric. To do this we will utilize symmetric decreasing rearrangements, which
can map arbitrary measurable functions to symmetric decreasing functions for which
the above results hold. Using this transformation and some inequalities, we can
show that the symmetric case is a “supersolution” of the general case in some sense.

The symmetric decreasing rearrangement of a function is defined as follows.

Definition 2.5. For a measurable set�⊂R2, we define its symmetric rearrangement
�∗ as �∗ := B(0, r), where r is chosen such that |B(0, r)| = |�|.

For a nonnegative f ∈ L1(R2), its symmetric decreasing rearrangement f ∗ is
given by

f ∗(x) :=
∫
∞

0
χ
{ f>t}∗(x) dt, (2-9)

where χ denotes the characteristic function.

Below we list a couple of properties on the symmetric decreasing rearrangement.

Lemma 2.6. Let ρ ∈ L1(R2) be nonnegative and let � = {ρ > s} for some s ≥ 0.
Then the following hold:

(1)
∫
�
ρ dx =

∫
�∗
ρ∗ dx.

(2)
∫
�
1ρ dx ≤

∫
�∗
1ρ∗ dx.

(3)
∫
�

f dx ≤
∫
�∗

f ∗ dx for any nonnegative f ∈ L1(R2).

(4)
∫
�
∇ · (ρ∇(N ∗ f )) dx = s

∫
�

f dx for any nonnegative f ∈ L1(R2).

Proof. The proofs for (1)–(3) can be found in [Burchard 2009]. Next we will
prove (4). Apply the divergence theorem to get∫

�

∇ · (ρ∇(N ∗ f )) dx =
∫
∂�

ρ∇(N ∗ f ) · n̂ dx, (2-10)
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where n̂ is the unit normal vector of �. Observe that ∂�= {ρ = s}, which, when
applied to the right-hand side of (2-10), gives∫

∂�

ρ∇(N ∗ f ) · n̂ dx = s
∫
�

∇ ·∇(N ∗ f ) dx = s
∫
�

f dx, (2-11)

where in the last equality we used the fact that N ∗ f inverts the Laplacian. We
thus obtain (4) by combining the above two equations. �

Definition 2.7. Given any two functions f, g ∈ L1(R2), we say f ≺ g if M f (r)≤
Mg(r) for all r ≥ 0.

With these tools in hand, we can show that solutions of (1-4) with subcritical
mass are globally regular by showing that ρ∗( · , t) ≺ ρ ′ for all time during the
existence of ρ, where ρ ′ is some radially symmetric steady state in (2-2). This
implies that ρ has an L∞-bound that is uniform in time, which finally gives the
global regularity of ρ. To do so, we proceed in stages, and construct a sequence
converging to the appropriate solution. The method of this proof follows very
closely the approach used in [Kim and Yao 2012].

Theorem 2.8. Assume ∇ · Eu ≤ 0. Let ρ and ρ ′ solve

ρt =1ρ+∇ · (ρ∇(N ∗ f ))+∇ · (Euρ), (2-12)

ρ ′t =1ρ
′
+∇ · (ρ ′∇(N ∗ f ′)), (2-13)

respectively, with ρ( · , 0)=ρ0, ρ ′( · , 0)=ρ∗0 , and f ≺ f ′. Then we have ρ∗( · , t)≺
ρ ′( · , t) for all t ≥ 0.

Proof. We prove this theorem by first discretely approximating ρt as (ρn+1−ρn)/h.
Set g=ρn . We will show that ρ∗n+1≺ρ

′

n+1 for every positive h. Since the Laplacian
is an m-accretive operator [Barbu 2010], we can then let h go to 0 and recover
Theorem 2.8. Therefore it suffices to prove the following lemma for each discrete
time step. �

Lemma 2.9. Assume ∇ · Eu ≤ 0. Let ρ and ρ ′ solve

ρ = h1ρ+ h∇ · (ρ∇(N ∗ f ))+∇ · (ρ Eu)+ g, (2-14)

ρ ′ = h1ρ ′+ h∇ · (ρ ′∇(N ∗ f ′))+ g′, (2-15)

respectively, and assume that ρ ′, f ′ and g′ are all radially symmetric. If f ∗ ≺ f ′

and g∗ ≺ g′, then we have ρ∗ ≺ ρ ′.

Proof. For any r > 0, one can choose s > 0 such that |{ρ > s}| = |B(0, r)|. Thus,
let � := {ρ > s} and it follows that �∗ = B(0, r). Integrate (2-15) over B(0, r),
which gives

Mρ′(r)= hM1ρ′(r)+ hρ ′(r)M f ′(r)+Mg′(r). (2-16)
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We also integrate (2-14) over �= {ρ > s}. Using Lemma 2.6 and Definition 2.1,
we have

Mρ∗(r)=
∫
�

ρ(x) dx (by Lemma 2.6(a))

= h
∫
�

1ρ dx + h∇ · (ρ∇(N ∗ f ))+
∫
�

∇ · (ρ Eu) dx +
∫
�

g dx

≤ hM1ρ∗(r)+ hρ(r)M∗f (r)+M∗g (r) (by Lemma 2.6(2)–(4)). (2-17)

In the last inequality, we also used
∫
�
∇·(ρ Eu)dx =

∫
∂�

n̂·(ρ Eu)dσ = s
∫
�
∇·Eu dx ≤ 0,

where our assumption ∇ · Eu ≤ 0 is applied.
In order to show that ρ∗ ≺ ρ ′, first notice that by sending r→∞ in (2-16) and

(2-17) and using the assumption that g∗≺ g′, we have limr→∞ Mρ∗(r)−Mρ′(r)≤ 0.
Therefore, if ρ∗ ≺ ρ ′ does not hold, there must exist some finite r0 > 0, such that
Mρ∗(r)−Mρ′(r) attains a positive maximum at r0. Note that we have ρ ′(r0)=ρ

∗(r0)

since ∂r (Mρ∗ −Mρ′)(r0)= 0.
Subtracting (2-17) and (2-16) at r0 gives

Mρ∗−ρ′(r0)≤ hM1(ρ∗−ρ′)(r0)+ hρ ′(r0)M f ∗− f ′(r0)+Mg∗−g′(r0)

≤ hM1(ρ∗−ρ′)(r0), (2-18)

where in the last step we use the assumptions that f ∗ ≺ f ′ and g∗ ≺ g′. Since ρ∗

and ρ ′ are radially symmetric, we can simplify M1(ρ∗−ρ′) as

M1(ρ∗−ρ′) = ∂rr Mρ∗−ρ′ −
∂r Mρ∗−ρ′

r
. (2-19)

Since Mρ∗−ρ′ achieves a maximum at r0, it follows from the above expression that
M1(ρ∗−ρ′)(r0)≤ 0, and combining it with (2-18), we have Mρ∗−ρ′(r0)≤ 0, leading
to a contradiction. This yields ρ∗ ≺ ρ ′. �

Once we have Theorem 2.8, our global regularity result follows from the same
iteration argument as in [Kim and Yao 2012], which we sketch below.

Theorem 2.10. Let ρ solve (1-4) with smooth, subcritical initial data ρ0. Then ρ is
globally regular and bounded for all time.

Proof. Let ρ1( · , t) := ρ∗( · , t). For any n ≥ 1, we iteratively define ρn+1( · , t) by

∂tρn+1 =1ρn+1+∇ · (ρn+1∇(N ∗ ρn)), (2-20)

with initial data ρ∗0 .
By Lemma 2.9, ρ1 ≺ ρ2. Once we have this, one can then iteratively apply

Lemma 2.9 (with zero velocity field) to obtain ρn ≺ ρn+1 for all n ≥ 1. Thus,
we have an increasing sequence of mass functions. Finally, along a subsequence,
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ρn→ ρ̄ (hence ρ∗ = ρ1 ≺ ρ̄ too), where ρ̄ solves

∂t ρ̄ =1ρ̄+∇ · (ρ̄∇(N ∗ ρ̄)). (2-21)

Details for this can be found in [Kim and Yao 2012]. Since ρ̄ solves the PKS
equation without advection, Corollary 2.4 gives that ρ̄( · , t) is bounded and regular
globally in time. Since ρ( · , t)≺ ρ̄( · , t) for all t ≥ 0, the same holds for ρ( · , t)
as desired. �

3. Numerical study of solutions with supercritical mass

Numerical methods. We follow the Euler–Maruyama stochastic particle approxi-
mation to the 2D Keller–Segel equation that is explained in detail in [Haškovec and
Schmeiser 2009], henceforth abbreviated [HS]. The key benefit of this approach,
as opposed to using finite element or finite volume, is that the system can still be
analyzed after a singularity blow-up forms. It is also relatively simple to code,
which was our main concern for this investigation. The only significant difference
between our method and the one described in detail in [HS] is the addition of a
deterministic advection step at every time interval. Below we lay out the basic
aspects of the numerical method from [HS] and the added advection term.

For all of the simulations, we use a system of N = 1000 particles located at
x1, . . . , xN with mass sizes M1, . . . ,MN respectively. The “light” particles, with
mass less than or equal to 8π , approximate the smooth part of the solution, and the
“heavy” particles, with mass greater than 8π , approximate delta functions when the
solution has blown up.

Step 1: Advection. To model the extra advection term at every time step, the
particles move according to advection, which gives dxn = Eu(xn) dt .

Step 2: Aggregation. Using the stochastic particle approximation from [HS], the
nonlocal, chemotactic interaction term of the PDE is

dxn =−
1

2π

∑
m 6=n

Mm
xn − xm

|xn − xm |
2 dt.

Then our set of particles undergoes the processes of collision and splitting. This
part is the same as in [HS], which is explained further in the next subsection for the
sake of completeness.

Step 3: Diffusion. After the aggregation step, each light particle undergoes a
random-walk step, giving dxn =

√
2 dtN(0,1), where N(0,1) denotes the Gaussian

distribution with mean 0 and variance 1.

Particle collisions and splitting. In our method, particle collisions and splitting
are handled in the same way as in [HS], which we describe below for the sake of



GLOBAL REGULARITY OF CHEMOTAXIS EQUATIONS WITH ADVECTION 127

completeness. In the aggregation step, it is easy to see that as the distance between
two particles goes to zero, the interaction kernel grows to infinity. Hence we allow
two sufficiently close particles {x1, x2} to collide and form one new particle, with
the new mass M ′ = M1+M2. The criterion, from [HS], for two particles to collide
during a time interval (0,1T ) is given by

‖x1− x2‖
2
≤

M1+M2

π
1T .

At each discrete time step, this inequality is evaluated for each particle pair and the
particles satisfying this condition are fused. This inevitably leads to single particles
accumulating more and more mass as they pull in other particles towards them.

The main issue with fusing particles is that as particles collide, the effective
grid spacing coarsens, as there are fewer and fewer particles in the domain. To
compensate for the particles lost to collisions, particles are randomly split at each
time step so that the total number of particles remains constant. This helps maintain
a proper discretization of the space and helps more accurately model the desired
effects. The exact method of particle collisions and splitting is explained in detail
in [HS]. The random-walk step is evaluated after the splitting occurs so that when
two particles are split, they remain at the same position but are then redistributed
by Brownian motion.

Numerical results. We run numerical simulations for a variety of different flows Eu
to find whether blow-up could be delayed or prevented with the presence of a flow.
The flows we investigate are

shear flow: Eu(x, y)= (e−y2
, 0), (3-1)

strain flow: Eu(x, y)= (−x, y), (3-2)

diverging flow: Eu(r, θ) = (1/r, θ), (3-3)

which are compared against the no-flow case. Note that the shear flow and strain
flow are both incompressible. Although the diverging flow is not incompressible, we
also test it and it turns out that it is effective at preventing blow-up with a relatively
weak flow strength. Velocity fields for these flows are illustrated in Figure 1.

We use 1000 particles in our simulations, which are initially randomly distributed
in a disk B(0,

√
0.5). An initial mass M=16π (twice the critical mass) is distributed

evenly across all the particles. We choose the time step as 1t = 5 · 10−5 and run
simulations for 2000 time steps until t = 0.1. With no flow, our simulation shows
that blow-up occurs at t = 0.0325, as shown in Figure 2.

In order to see how different flow strengths affect the result, we multiply the
flow Eu by a constant C , so that the stochastic particle approximation for the advection
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Figure 1. Illustration of the three types of flows tested in our
numerical study. Top left: shear flow (3-1). Top right: strain flow
(3-2). Bottom: diverging flow (3-3).

term is
dxn = C Eu(xn) dt.

Shear flow is tested with a flow strength, C , of 100 and 1000, strain flow with
strengths of 10 and 100, and diverging flow with strengths of 1 and 10. From now
on, we will refer to the smaller of the two flow strengths as “weak flow” and the
larger of the two as “strong flow” for each flow configuration. Our numerical results

t = 0.015 t = 0.0325

Figure 2. Numerical simulation for the PKS equation with no
advection term at different times. Blow-up occurs at t = 0.0325.
The red dot in the second picture indicates the location of blow-up,
where we have a mass concentration of more than 8π .
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t = 0.015 t = 0.0336

t = 0.005 t = 0.1

Figure 3. Shear flow (3-1) with strengths C = 100 (top row) and
1000 (bottom row). For C = 100, blow-up occurs at t = 0.0336 (the
red dot indicates the location of blow-up). For C = 1000, blow-up
does not occur before t = 0.1.

are shown in Figures 3–5. The results suggest that all of these three flows seem to
be able to prevent blow-up when the flow strength is chosen to be sufficiently large.

Remarks on possible future improvements. We now point out some possible im-
provements that can be made with our current numerical scheme. First, computation
time is an issue when many different flows need to be tested. Note that the most time-
consuming step is the aggregation step, where for N particles, one has to perform on
the order of N 2 calculations to compute their pairwise interactions. Haškovec and
Schmeiser [2009] comment on one potential heuristic for speeding up the chemotaxis
calculation, where the program, while calculating the step for a given particle,
averages the masses of many distant, but close together particles, and uses the
essential “center of mass”, instead of the contribution from each individual particle.

Currently, our numerical scheme is not sensitive enough to show a difference
between an initial mass that is only slightly above or below M = 8π . It also is not
able to show that for flows −d/rα, α < 1, with subcritical initial data, the flows
will not blow up. These insensitivities may be solved with trying smaller time steps
1t , but it is likely that another numerical method is needed. To help support these
claims, it might be better to implement a finite element or finite volume approach,
but this is outside the scope of this paper.
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t = 0.0188 t = 0.03755

t = 0.005 t = 0.1

Figure 4. Strain flow (3-2) with strengths C = 10 (top row) and
100 (bottom row). For C = 10, blow-up occurs at t = 0.03755. For
C = 100, blow-up does not occur before t = 0.1.

t = 0.0205 t = 0.049

t = 0.05 t = 0.1

Figure 5. Diverging flow (3-3) with strengths C = 1 (top row) and
10 (bottom row). For C = 1, blow-up occurs at t = 0.0490. For
C = 100, blow-up does not occur before t = 0.1.
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