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We apply classical quartet techniques to the problem of phylogenetic decisiveness
and find a value k such that all collections of at least k quartets are decisive.
Moreover, we prove that this bound is optimal and give a lower bound on the
probability that a collection of quartets is decisive.

1. Overview

Evolutionary biologists represent relationships between groups of organisms with
phylogenetic trees. Supertree methods were designed to handle the computationally
difficult problem of reconstructing such trees for large data sets. Those methods
generate a group of accurate, smaller input trees and combine them into a single
supertree. Four-taxa trees, known as quartet trees, are commonly used as inputs in
supertree methods.

Most quartet amalgamation algorithms use all quartet trees generated from
sequencing data or only remove quartet trees that appear to be incorrect. As quartet
trees may contain overlapping information, it is possible that a smaller number of
trees may provide sufficient information for accurate reconstruction.

Böcker et al. [1999] developed a sufficient condition for a set of quartet trees to
be definitive. For any tree on a taxon set [n] = {1, 2, . . . , n}, we develop a system
of quartet trees that meets the criteria of Böcker et al., known as a linked system.
Additionally, we develop collections of linked systems known as meshed systems.

Recently, Steel and Sanderson asked for which collections of sets of taxa do the
corresponding induced subtrees determine a unique supertree. They called such
collections decisive. The notion of decisiveness can be viewed as a generalization
of definitiveness where no information is required about the particular subtrees
that the subsets of taxa induce. This notion plays an important role in supertree
reconstruction since it a priori addresses the question about which subsets of taxa
must be analyzed to ensure that a unique supertree can be reconstructed.
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We use the term quartet to refer to any four-element taxon subset, and the term
quartet tree when referencing a resolved four-taxa tree. Using meshed systems,
we find a minimal number k(n) such that every collection of at least k quartets
is decisive. We use this number to find a lower bound on the probability that an
arbitrary collection of quartets is decisive.

Finally, we find that meshed systems may be useful in amalgamation algorithms,
such as maxcut [Snir and Rao 2008], that do not always find the correct supertree
when given a definitive system of quartet trees.

2. Linked systems

We adopt the terminology in [Dress et al. 2012], except in noted instances when we
follow [Semple and Steel 2003] or [Steel and Sanderson 2010]. Phylogenetic trees
display relationships among a finite set of taxonomic units.

Definition 2.1. A binary phylogenetic tree, T = (V, E, ϕ) on a finite set of taxa X ,
is a triple consisting of a finite set of vertices V , a set E of edges between vertices,
and a labeling map ϕ : X→ L , where L ⊂ V contains all vertices of degree one, or
leaves, such that the graph (V, E) is an unrooted binary tree and the map ϕ induces
a bijection between X and the set L of leaves of T .

An edge that contains a leaf is an exterior edge. The nonleaf vertex of an exterior
edge is the internal vertex of e, denoted vint(e). Two exterior edges sharing an inter-
nal vertex form a cherry. Any edge that is not an exterior edge is an interior edge.

While edge length plays an important role in phylogenetics, we do not take it
into account, and adopt instead a topological definition of tree isomorphism.

Definition 2.2. Phylogenetic trees, T1 = (V1, E1, ϕ1) and T2 = (V2, E2, ϕ2) on a
taxon set X , are isomorphic if there exists a bijective map f : V1→ V2, called an
isomorphism, such that if {u, v} ∈ E1 then { f (u), f (v)} ∈ E2 and for every x ∈ X ,
we have ϕ2(x)= f (ϕ1(x)).

It is impossible to distinguish phylogenetic relationships from unrooted trees
with fewer than four taxa; thus, supertree reconstruction algorithms frequently use
four-taxa trees or quartets trees as inputs [Snir and Rao 2008; Snir et al. 2008;
Strimmer and von Haeseler 1996]. Quartet trees are binary phylogenetic trees on
four leaves. Such trees are in one-to-one correspondence with two-element subsets
of X , such as {{a, b}, {c, d}}, according to the separation of the four leaves by the
interior edge. The union of all four taxa is the support of q, denoted supp(q).

Quartet trees contain an interior edge which separates the taxa into two pairs.
Similarly, removing an interior edge of a tree separates the graph into two connected
components. An edge e separates taxa a and b from c and d if {a, b} and {c, d}
are subsets of the vertex sets of different connected components of T −{e}. This
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separation points to a relationship between edges of a tree and quartet trees. A
quartet tree ab |cd is displayed by a binary phylogenetic tree T if there exists an
edge e ∈ E that separates a and b from c and d .

Denote the set of all quartet trees on a taxon set X by Q(X). Any subset Q
of Q(X) is called a system of quartet trees on X with the support defined by
supp(Q) =

⋃
q∈Q supp(q). Additionally, we denote the set of all quartet trees

displayed by a tree T by QT . A system of quartet trees Q is compatible if there
exists a tree T such that Q ⊆ QT .

Definition 2.3 [Semple and Steel 2003]. Let T = (V, E, ϕ) be a binary phylogenetic
tree and let ab |cd ∈ QT . An interior edge e of T is distinguished by ab |cd if e is
the only edge that separates a and b from c and d .

Quartet trees which distinguish edges are a powerful input to quartet amalgama-
tion algorithms. These algorithms must handle noncompatible systems of quartet
trees. However, even compatible systems may be difficult to resolve as multiple
trees may display a particular collection of quartet trees.

Definition 2.4 [Steel and Sanderson 2010]. A system of quartet trees Q is definitive
if up to isomorphism, there is a unique binary phylogenetic tree T for which Q⊆QT .

Böcker et al. [1999] described various criteria for a system of quartet trees of
size n − 3 to be definitive. We construct systems of quartet trees that meet this
criteria and make note of some useful applications of these systems.

Proposition 2.5 [Böcker et al. 1999, Example 3.7]. If T is a binary tree such that
the interior edges of T are labeled E = {e1, . . . , en−3}, and Q is a system of quartet
trees such that each qi ∈ Q distinguishes a unique edge ei in T with∣∣∣∣supp(qi )

∖⋃
j<i

supp(q j )

∣∣∣∣= 1

for i = 2, . . . , n− 3, then Q is definitive.

We create a system of quartet trees that satisfies the hypotheses of Proposition 2.5,
known as a linked system, by imposing an ordering on the interior edges of a tree
and the quartet trees which distinguish those edges. We define linked systems in
terms of the associated graph.

Definition 2.6. For a compatible system of n− 3 quartet trees Q on a taxon set X ,
define the associated graph GT (Q) with vertex set V and edge set E as follows:

• The vertex set V is the set of all quartet trees q ∈ Q which distinguish a unique
edge in T .

• Vertex pairs {qi , q j } are connected by an edge e∈ E if the edge ei that qi distin-
guishes is adjacent to the edge e j that q j distinguishes and | supp({qi , q j })|= 5.
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Figure 1. A binary phylogenetic tree T and the associated graph
GT (Q) for the quartet trees q1 = 12|35, q2 = 34|15, q3 = 57|13
and q4 = 56|71.

Definition 2.7. Two quartet trees are linked if their vertices are connected in GT (Q).
The system of quartet trees Q is a linked system if GT (Q) is connected. See Figure 1
for an example.

In Section 3 we prove that linked systems are definitive. Linked systems also help
illuminate the broader concept of phylogenetic decisiveness, which we review here.

For a binary phylogenetic tree T and a subset Y of X , let T |Y denote the induced
binary phylogenetic tree on leaf set Y (the tree obtained from the minimal subtree
connecting Y by suppressing any vertices of degree 2). Let S be the collection of
subsets of a set X of size four; we refer to all such subsets as quartets [Steel and
Sanderson 2010].

Definition 2.8 [Steel and Sanderson 2010]. We say that S is phylogenetically
decisive if it satisfies the following property: if T and T ′ are binary phylogenetic
trees, with T |Y = T ′ |Y for all Y ∈ S, then T = T ′.

We will use collections of linked systems to find the minimal number k(n) such
that a collection of at least k quartets is phylogenetically decisive.

3. Applications of linked systems

We first show that linked systems meet the criteria of [Böcker et al. 1999] for
defining a unique tree.

Theorem 3.1. Every linked system of quartet trees is definitive.

Proof. Let Q be a linked system of quartet trees on a tree T on a taxon set X .
Linked systems are of size n − 3 and each quartet tree distinguishes a unique
edge in T . Let T be a binary phylogenetic tree on a taxon set X and let e1 be an
interior edge adjacent to a cherry. The tree is connected, which implies we can
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label the remaining interior edges {e2, . . . , en−3} such that e j is adjacent to some ei

with i < j . Moreover, because the support of each pair of quartet trees {qi , q j } that
distinguishes adjacent edges {ei , e j } is five, each pair of quartet trees shares three
taxa and each additional quartet tree in Q adds one new taxon to the support of Q.
Thus, linked systems meet the criteria in Proposition 2.5 and are definitive. �

Though all linked systems are definitive, we find that not all definitive systems
of size n− 3 are linked.

Example. The system of quartet trees Q={12|36, 23|45, 24|56}meets the criteria
established in Proposition 2.5, and is thus definitive. The graph GT (Q) contains
the three vertices q1, q2, and q3, where q2 and q3 are connected by an edge and q1

is an isolated vertex. Thus, Q is not a linked system.

Since a system satisfying Proposition 2.5 and linked systems both contain n− 3
quartet trees, one might surmise that all compatible systems of quartet trees of a
modest size would be definitive. However, there are large systems of compatible
quartet trees which are not definitive and large collections of quartets which are
not decisive. A collection of quartets and the induced quartet trees on a caterpillar
tree provides one such example.

Definition 3.2 [Semple and Steel 2003]. A caterpillar on n leaves is a binary
phylogenetic tree for which there exists an induced subtree on a sequence of distinct
interior vertices v1, v2, . . . , vk such that, for all i ∈ {1, 2, . . . , k − 1}, vi and vi+1

are adjacent.

The ordering of vertices in a caterpillar tree induces an ordering of interior
edges ei , where ei connects vi with vi+1. We use this ordering to construct large
families of quartet trees shared by several caterpillar trees.

Theorem 3.3. The minimal number k(n) such that every collection of quartets S
with |S| ≥ k is decisive is greater than

(n
4

)
− (n− 3).

Proof. Let {a, b, c} be a subset of X . We define T1, T2, and T3 to be three distinct
caterpillar trees of size n ≥ 4 that differ only in the placement of three taxa a, b,
and c such that for each tree, vint(a), vint(b) and vint(c) are incident to e1. Denote
by S the set of n− 3 sets

n−3⋃
i=1

Yi = {a, b, c, y | y ∈ X −{a, b, c}}

and let S ′ be the complement of S. We observe that for all Y ∈ S ′, we have
T1 |Y = T2 |Y = T3 |Y , but T1 6= T2 6= T3. Therefore, S′ is not decisive. Since
|S ′| =

(n
4

)
− (n − 3), the minimal number k(n) such that every collection S of

quartets with |S| ≥ k is decisive is greater than
(n

4

)
− (n− 3). �
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To show that sets of quartets of size
(n

4

)
− (n−3) are decisive, we prove that QT

contains at least n− 3 disjoint linked systems, ensuring the removal of any n− 4
quartet trees from a compatible system would leave at least one linked system. We
introduce a process for building such systems by using a seed quartet tree which
distinguishes an edge of a tree, and systematically constructing additional quartet
trees which distinguish the same edge.

In a phylogenetic tree, each interior edge e = (vl, vr ) is adjacent to four edges
ei , e j , eh , and ek , which divide the tree into four components and partition the set
of taxa X into four distinct sets Ai , A j , Ak , and Ah , with x ∈ An if the unique path
from x to vl contains the edge en .

Definition 3.4. Let q= i j |kh be a quartet tree that distinguishes an edge e and let i ∈
Ai , j ∈ A j , k∈ Ak , and h∈ Ah , where Ai , A j , Ak , and Ah are partitions of X induced
by e. For x ∈ X−supp(q), define the quartet-tree substitution q(x) to be the unique
quartet tree in which the taxon x ∈ An replaces the taxon in q that is in supp(q)∩An .

Notice q(x) and q must distinguish the same edge of the tree.

Definition 3.5. Let the quartet tree q distinguish an edge e of a tree. Define the
vine of q by v(q)= {q} ∪

⋃
x∈X−supp(q) q(x). We refer to q as the seed of the vine.

The following shows that if two quartet trees are linked, then so are their vines.

Definition 3.6. Two vines v(qi ) and v(q j ) are linked if for each qi ∈ v(qi ) there
exists a unique q j ∈ v(q j ) such that qi and q j are linked.

Theorem 3.7. If qi and q j are linked quartet trees, then the associated vines v(qi )

and v(q j ) are linked.

Proof. Assume that {qi , q j } are the seeds of the adjacent edges ei and e j and are
linked in T . Let v(qi ) and v(q j ) be the associated vines.

Since supp(qi , q j )=5, each quartet tree contains one taxon that the other does not.
Let z be the taxon in supp(q j )−supp(qi ) and y be the taxon in supp(qi )− supp(q j ).
Use quartet-tree substitution to construct the quartet trees qi (z) and q j (y). By
construction, supp(qi , q j )= supp(qi (z), q j (y)) and qi (z) and q j (y) are linked.

Use quartet-tree substitution with each remaining taxon x ∈ X − supp(qi , q j )

on qi and q j to construct the remaining quartet trees in v(qi ) and v(q j ). In the
construction of each {qi (x), q j (x)}, one taxon (Case 1) or two taxa (Case 2) are
removed and one taxon x is introduced. Thus, for x ∈ X − (supp(qi , q j )), we have
4≤ | supp(qi (x), q j (x))| ≤ 6.

In Case 1, x replaces the same taxon in qi and q j and supp(qi , q j ) remains
the same.

In Case 2, x replaces one taxon in qi and a different taxon in q j .
Assume that x replaces two different taxa in supp(qi , q j ) − supp(qi ∩ q j ).

Then, | supp(qi (x), q j (x))| = 4 and qi (x) = q j (x). This is not possible since
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qi and q j distinguish different edges. Thus, x does not replace two different taxa
in supp(qi , q j )− supp(qi ∩ q j ) and | supp(qi (x), q j (x))| 6= 4.

Now assume that x replaces two different taxa in supp(qi ∩ q j ). Then, we have
that | supp(qi (x), q j (x))| = 6. Recall that qi and q j distinguish the edges ei and e j .
Thus, in order for x to replace two different taxa in supp(qi ∩ q j ), x would have
to be in two different sets of the partition that ei induces on X . This is not possible
because x cannot be in two different sets of a partition. Thus, x does not replace
two different taxa in supp(qi ∩ q j ) and | supp(qi (x), q j (x))| 6= 6.

Thus, in this case, x replaces one taxon in supp(qi ∩ q j ) and one taxon in
supp(qi , q j )− supp(qi ∩ q j ) and | supp({qi (x), q j (x)})| = 5. Therefore the vines
v(qi ) and v(q j ) are linked. �

A linking between vines allows us to construct multiple disjoint linked systems
of quartet trees. We refer to these systems as meshed systems and use them to show
that any set of quartets of sufficient size is decisive.

Definition 3.8. A meshed system on a tree T with taxon set X is an (n−3) by (n−3)

array of quartet trees, where each row is a linked system and each column is a vine.

Note that the existence of a meshed system ensures that the removal of up to
n− 4 quartet trees from QT must leave at least one definitive set.

Theorem 3.9. For any binary phylogenetic tree T on a taxon set X , the system QT

of all quartet trees displayed by T contains a meshed system.

Proof. Let T be a binary phylogenetic tree on a taxon set X and let e1 be an interior
edge adjacent to a cherry. The tree is connected, which implies we can label the
remaining interior edges {e2, . . . , en−3} such that e j is adjacent to some ei with i < j .

Let e j be adjacent to ei with i < j . We know that ei separates T into two
connected components T a

i and T b
i . Moreover, e j separates T into two connected

components T a
j and T b

j . Since ei and e j are adjacent, supp(T b
i )∩ supp(T a

j ) 6=∅.
Let qi = ab |cd and q j = ac |de such that a ∈ supp(T a

i ), c ∈ supp(T b
j ), and

d ∈ supp(T b
i )∩ supp(T a

j ). Thus, qi and q j are linked for all ei and e j in T , and we
have a linked system that makes up the first row of our matrix.

Using quartet-tree substitution, construct vines v(qi ) and v(q j ). By Theorem 3.7
the vines v(q j ) and v(qi ) are linked. Thus, we have n − 3 disjoint columns of
quartet trees in our matrix. Additionally, for each pair of linked quartet trees {qi , q j }

in row one, there exists a pair {qi (x), q j (x)} in the remaining rows of the matrix
that are linked. Thus, we have n− 3 rows of linked systems.

Therefore, QT contains a meshed system. �

The existence of a meshed system allows us to find the minimal number, k(n),
such that every collection S of quartets with |S| ≥ k is decisive.
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Theorem 3.10. The number k(n)=
(n

4

)
− (n− 4) is the smallest number such that

every collection of quartets S on a taxon set X = [n] with S ≥ k is decisive.

Proof. Let S be a collection of quartets on a taxon set X =[n]with |S|≥
(n

4

)
−(n−4).

Let T and T ′ be two phylogenetic trees such that T |Y = T ′ |Y for all Y ∈ S. We
define Q ⊂ QT to be the collection of T |Y for all Y ∈ S. By Theorem 3.9, QT

contains a meshed system M . By the pigeon hole principle, if |Q| ≥
(n

4

)
− (n− 4)

then Q must contain one of the linked systems in M , and by Theorem 3.1, Q is
definitive. Thus, T is the unique tree which displays Q. However, since Q is also
T ′ |Y for all Y ∈ S, we must have T = T ′. Therefore, S is decisive. Moreover,
Theorem 3.3 shows that k ≥

(n
4

)
− (n− 4). Therefore k(n) =

(n
4

)
− (n− 4) is the

minimal number such that every collection of quartets with |S| ≥ k is decisive. �

In addition to establishing requirements for collections of subsets of [n] to be
decisive, [Steel and Sanderson 2010] provides a formula for the probability that
a particular collections of subsets of [n] will be decisive for an arbitrarily sampled
phylogenetic tree. In this section, we prove a similar result by finding a lower bound
for the probability that a collection of subsets of [n] of a particular size will be phy-
logenetically decisive. This bound is independent of the underlying tree topology.

Theorem 3.11. The probability p(X, k) that an arbitrary collection of k quartets
is decisive has the property

p(X, k)≥

n−3∑
i=1

(−1)i+1
(n−3

i

)(
|QT |−i(n−3)
|QT |−k

)
(
|QT |

k

) .

Proof. Let S be a collection of k quartets. Let T and T ′ be two phylogenetic trees
such that T |Y = T ′ |Y for all Y ∈ S. We define Q ⊂ QT to be the collection of
T |Y for all Y ∈ S. Following Theorem 3.10, if Q contains a definitive set of quartet
trees, then S is decisive. By Theorem 3.1, if a collection of compatible quartet
trees contains a linked system of quartets, then it is definitive. Thus, the probability
that a collection S is decisive is at least the probability that Q contains one of the
n − 3 disjoint linked systems constructed in Theorem 3.9. The formula follows
from applying the inclusion-exclusion principle to count the number of subsets of
size k which contain one of the disjoint systems of linked quartets. �

To illustrate the utility of the formula, we express the lower bound probability
versus the number of quartets selected in Figure 2. In Figure 3, we plot the number
of quartets required to ensure a fixed accuracy as a power of n. Notice the number
of quartets needed to ensure the sample is decisive with accuracy of 25% is on the
order of nc with c ∼ 3.3 and is almost indistinguishable from the number required
to ensure 99% accuracy.
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Figure 2. A lower bound on the probability that a set of nc quartets
is decisive.

3.0

2.5

2.0

1.5

1.0

0.5

0.0
0 20 40 60 80 100

c

n
25% accuracy 99% accuracy

Figure 3. For |S| = nc, this shows the size of compatible quartets
as a power of n required to ensure a decisive subset with fixed
probability.

4. Conclusion

Using the criteria established in [Böcker et al. 1999], we have developed a new type
of definitive system of quartet trees, linked systems. We have also developed groups
of linked systems, known as meshed systems. We have used meshed systems to
show that the number of quartets required to ensure decisiveness is on the order
of O(n4). Moreover, we have used meshed systems to show the probability that
an arbitrary collection of quartets contains a decisive system. These results lend
credence to sampling quartets on the order of n3.3.

It has been suggested that smaller sets of representative quartet trees will play
a crucial role in developing efficient scalable supertree methods, as the use of all
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quartet tree samples may be computationally inefficient [Swenson et al. 2011]. Thus,
linked systems may be useful inputs in such algorithms. However, some supertree
methods, such as quartets maxcut, do not always return a fully resolved tree even
when the input sets contain small definitive systems. For example, maxcut does
not return a fully resolved tree for the linked system Q1 = {12|35, 13|45, 14|56},
but returns the correct tree for the meshed system M = {Q1, Q2, Q3}, where
Q2 = {12|34, 23|45, 24|56} and Q3 = {12|36, 23|46, 34|56}. Therefore, we
anticipate that both linked and meshed systems will serve as efficient inputs for
future supertree algorithms, as these algorithms could be reformulated to emphasize
small definitive units.
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