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SET is a very popular card game with strong mathematical structure. In this paper,
we describe “anti-SET”, a variation on SET in which we reverse the objective of
the game by trying to avoid drawing “sets”. In anti-SET, two players take turns
selecting cards from the SET deck into their hands. The first player to hold a set
loses the game.

By examining the geometric structure behind SET, we determine a winning
strategy for the first player. We extend this winning strategy to all nontrivial affine
geometries over F3, of which SET is only one example. Thus we find a winning
strategy for an infinite class of games and prove this winning strategy in geometric
terms. We also describe a strategy for the second player which allows her to
lengthen the game. This strategy demonstrates a connection between strategies in
anti-SET and maximal caps in affine geometries.

1. Introduction

The card game SET is very popular among mathematics students. In addition
to being an enjoyable pastime, it has a large amount of mathematical structure,
including links to finite geometry, linear algebra, and combinatorics. This paper
will focus on a particular variation of the game and the mathematics relevant to that
variation. For much more information about the mathematics of SET, as well as
positional games that are similar to the game in this paper, see [Davis and Maclagan
2003; Carroll and Dougherty 2004] and the citations contained therein.

SET consists of a deck of cards. Each card is printed with several figures which
have four attributes: number, color, filling, and shape. For example, the card in
Figure 1 would be described as “two green striped ovals”. The complete list of
attributes is given in Table 1.

There are four attributes with three values each, and every possible combination
appears exactly once. Thus there are 34

= 81 cards in a complete SET deck.
The game requires players to find a set: three cards such that, for each attribute,

all three cards are the same, or all three are different. Phrased differently, a set
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Figure 1. A SET card.

consists of three cards for which no attribute has two cards with one value, and
another card with a different value. An example of a set is given in Figure 2: the
number of the cards is all the same (1), but the colors are all different. The shading
is all the same (solid), and the shapes are all different. A nonexample appears in
Figure 3: two cards have solid shading, while the other is open. There are several
other reasons why these cards are not a set as well. Note that, although the cards
have three different colors, this alone is not enough to make a set.

Throughout this paper, we will use the notation SET to refer to the game, set
to refer to a collection of cards as defined above, and “set” (without any special
styling) to refer to the mathematical object consisting of an unordered collection of
objects without repeated elements.

In the original game of SET, twelve cards are laid out at a time. Players compete
to identify sets first, winning by collecting more sets than their opponents.

In this paper, we study a variation on SET which turns the usual goal upside down.
Our game, anti-SET, is a two-player game played with a generalized SET deck in
which each card has d different attributes (traditional SET has d = 4). This situation
corresponds to a d-dimensional affine geometry over F3, which will be described
later. The players, who we will call Xavier and Olivia, begin with the entire SET

deck laid out in front of them. Xavier and Olivia then take turns selecting cards
from these cards and take them into their hands. The first player to have a set in his
or her hand loses the game. Thus, players are faced both with the challenge of trying

attribute values

number 1 2 3
color red green purple
filling open striped solid
shape oval diamond squiggle

Table 1. Attributes of a SET card.
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Figure 2. A set.

Figure 3. Not a set.

to avoid taking sets themselves but also trying to force the other player to take a set.
As each player collects more cards in their hand, it becomes increasingly difficult
to not take a set, as there are many more combinations of cards that can be made.

This game was inspired by a result of Pellegrino [1970]. Translated into the
language of SET (which did not exist at the time of Pellegrino’s writing), we have
the result1:

Proposition 1 [Pellegrino 1970]. Every set of 21 SET cards contains a set.

Thus, anti-SET will always end once one player takes their 21st card, if not
sooner. We initially created the game of anti-SET to explore the consequences of
Pellegrino’s result in the context of a game.

In the following sections, we will analyze this game, provide a winning strategy
for the first player that applies to all nontrivial generalized SET decks (that is,
nontrivial affine geometries over F3), and examine the maximum and minimum
number of turns required to win. Along the way, we will demonstrate some
unexpected links between Pellegrino’s result and the losing player’s strategy.

2. Example of gameplay

Before we give precise mathematical background for SET, we present an extended
example of gameplay for anti-SET. For simplicity, we use a reduced version of

1We acknowledge that the three different uses of the word “set” in this result may make the reader’s
head spin.
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Figure 4. The nine-card reduced anti-SET deck.

anti-SET as played with the nine SET cards which are solid and have only one
symbol per card. Later, we will justify this simplification geometrically and examine
how it forms an important foundation for studying general anti-SET.

Let Xavier be the first player. He may choose any of the cards shown in Figure 4.
We will mark Xavier’s hand of cards with an “X” and Olivia’s with an “O”.

The moves are denoted as follows:

X1: Xavier first arbitrarily chooses the red diamond.

O1: Olivia, recognizing that every pair of cards determines a unique set, arbitrarily
chooses the purple diamond.

The players hands at this point are represented in Figure 5(a).

X2: Xavier chooses the green diamond, knowing that it is part of a set (the three
cards in the top row) from which Olivia already owns one card. Thus, he
avoids at least one set.

O2: Olivia chooses the purple squiggle, again knowing that any pair of cards
contains a set and thus all of her remaining choices are equally bad.

The players hands at this point are represented in Figure 5(b).

X3: Xavier again chooses a card, the green oval, which he knows is part of at
least one set which he cannot obtain.

O3: Olivia chooses the red squiggle, leaving Xavier with at least one possibility
(the green squiggle) which could complete a set.

The players hands at this point are represented in Figure 5(c).

X4: Finally, Xavier chooses the red oval. This leaves Olivia with two options,
both of which complete a set. Thus, Xavier will win. (See Figure 6.)
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X1 O1 X1 O1 X2

O2

X1 O1 X2

O2

X3

O3

(a) X1 and O1. (b) X2 and O2. (c) X3 and O3.

Figure 5. The first few steps of the anti-SET game.

X1 O1 X2

O2

X3

O3

X4

Figure 6. X4 and Olivia’s remaining options.

This nine-card example demonstrates the general flow of the game. In order to
make valid conclusions about the game on a larger scale, we first need to describe
the game mathematically, which we will do in the next section.

We also note that the board and style of play is similar to a backwards tic-tac-toe
game, with players trying to avoid getting three in a row. Indeed, SET as played
with the nine cards in this example can be thought of as playing tic-tac-toe on a
torus, a concept which is explored in depth in [Carroll and Dougherty 2004]. Our
names “Xavier” and “Olivia”, and the idea of marking their cards with Xs and Os,
were inspired by this interpretation.

3. Background

In this section, we will define the notation and concepts which will be used
throughout the rest of the paper. Let Xn be the n-th card Xavier picks, and let
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entry 0 1 2

n (number) 3 1 2
c (color) red green purple
f (filling) open stripe solid
s (shape) squiggle oval diamond

Table 2. Correspondence between vectors (n, c, f, s) in F4
3 and

characteristics of SET cards.

X (n)= {X1, X2, . . . , Xn} denote the collection of Xavier’s first n cards. Similarly,
let On denote the n-th card Olivia picks, and let O(n)={O1, O2, . . . , On} denote the
collection of Olivia’s first n cards. Note that X (n)⊂X (n+1) and O(n)⊂O(n+1).

Xavier is the first player. The game proceeds with all cards in a SET deck available
to both players. The players alternately take cards into their hands in the order
X1, O1, X2, O2, . . . until either X (n) or O(n) contains a set. The corresponding
player loses on his or her n-th turn. We call a pair of choices (Xn, On) a round
of anti-SET.

The mathematical structure of SET is an example of an affine geometry. For our
purposes, we will define affine geometries from a coordinatized (vector-based) per-
spective, as described in [Beth et al. 1986; Dembowski 1997]. It is possible to do this
from a purely axiomatic viewpoint as well (see [Dembowski 1997]). For more details
about affine geometry in the context of SET, see [Carroll and Dougherty 2004].

The affine geometry AG(d, q) is an incidence structure whose points are
d-dimensional vectors with entries in Fq . That is, the points are the elements
of Fd

q . The k-dimensional subspaces of AG(d, q), referred to as k-flats, are the
k-dimensional linear subspaces of Fd

q together with their cosets. We note that for
a given k-dimensional linear subspace L , the coset of L by the vector Eh ∈ Fd

q is
defined as L + Eh = {Ex + Eh : Ex ∈ L}.

The cards of SET correspond to the points of AG(4, 3), and the sets are the
1-flats (usually called lines). More specifically, the points are all vectors of the form
(x1, x2, x3, x4), where xi ∈ {0, 1, 2}, with all arithmetic done modulo 3. The 1-flats
correspond to the 1-dimensional subspaces of F4

3 and their cosets. Each such 1-flat
contains three points, corresponding to the three cards in a set.

To give a more concrete interpretation of SET in this context, we note that
each card corresponds to a unique vector, with each coordinate corresponding to a
characteristic of the cards. We arbitrarily identify the coordinates with characteristics
of the SET cards as shown in Table 2. There are many equivalent ways to map
between attributes of SET cards and the entries of F3.

Example 2. Consider the set in Figure 7. Using the correspondence from Table 2,
these three cards, in order, form the vectors (0, 0, 0, 0), (2, 1, 1, 1), and (1, 2, 2, 2).
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Figure 7. A set.

We will make extensive use of the following result about affine geometries:

Proposition 3 (affine collinearity rule). Three points Ea, Eb and Ec in AG(d, 3) form
a line if and only if Ea+ Eb+ Ec = E0.

Proof. A set ` in AG(d, 3) is a line if and only if ` is a 1-dimensional subspace
of Fd

3 or a coset thereof. Thus ` is a line if and only if there exist a nonzero vector Ex
and a vector Eh, both in Fd

3 , such that ` = {Eh, Ex + Eh, 2Ex + Eh}. (Note that Eh = E0 is
possible.) In particular, all lines in AG(d, 3) contain three points. Then the sum of
the elements in ` is 3Eh+ 3Ex = E0, since we are working in F3.

Conversely, suppose `= {Ea, Eb, Ec} such that Ea+ Eb+ Ec = E0. Then

E0+ (Eb− Ea)+ (Ec− Ea)= E0− 3Ea = E0

as well. Thus Ec−Ea = 2(Eb−Ea), and so m = {E0, Eb−Ea, 2(Eb−Ea)} is a linear subspace
of Fd

3 . Thus `= m+ Ea is a line. �

In the context of SET, three cards {A, B,C} form a set if and only if their corre-
sponding vectors Ea, Eb and Ec (respectively) satisfy Ea+Eb+Ec= E0. To see this, consider
three vectors whose associated cards form a set. The collection of three values
in a given coordinate is limited to the following possibilities: {0, 0, 0}, {1, 1, 1},
{2, 2, 2}, or {0, 1, 2}. These collections of values constitute all possibilities for “all
the same” or “all different”. The sum of the numbers in each of these collections
is 0 (mod 3). Furthermore, no other collection of three values sums to 0 (mod 3).

We will also use the following well-known proposition:

Proposition 4. In AG(d, q), every pair of points appears in exactly one line.

This can be seen as follows: A line is a 1-dimensional subspace or a coset of
such a subspace. Let x and y be distinct points in AG(d, q). If x = αy for some
α ∈ Fq , then x and y appear together only in the 1-dimensional linear subspace
defined by x . If x and y are not scalar multiples, then 0 and y− x appear together
only in the 1-dimensional linear subspace ` defined by y− x , and therefore x and y
appear together only in the coset `+ x .
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This corresponds to the well-known fact that every pair of SET cards is part
of a unique set. Algebraically, given two points Ea and Eb, there exists a unique
vector Ec ∈ Fd

q such that Ea+ Eb+ Ec = E0.
Because affine lines include both linear subspaces of Fd

q and their cosets, affine
geometries naturally include parallel lines. All cosets of a given line ` are parallel
to `, and together this collection of cosets partitions the points of the geometry. Thus,
for any set {A, B,C} in the traditional 81 card SET game, there are 81/3= 27 sets
(including {A, B,C} itself) which are parallel to the original set. These 27 sets
contain all 81 cards in the SET deck.

Example 5. In Example 2, we saw a set consisting of the vectors

S = {(0, 0, 0, 0), (2, 1, 1, 1), (1, 2, 2, 2)}.

The coset S+ (1, 0, 1, 2) is

S+ (1, 0, 1, 2)= {(1, 0, 1, 2), (0, 1, 2, 0), (2, 2, 0, 1)},

which can be verified to be a set sharing no points with S.

In addition to points and lines, affine geometries contain other substructures with
geometric interpretation. Of particular interest to us is the affine plane AG(2, q),
which can be viewed as a 2-dimensional subspace of a larger affine geometry. Affine
planes are very well studied. In the case of SET, the set of vectors obtained by
fixing any two coordinates of the vectors in F4

3 is isomorphic to an affine plane.
With only two coordinates “free” to change, a plane contains 32

= 9 points.

Example 6. The nine cards in Figure 4 form an affine plane. Here, the coordinate
corresponding to “number” is fixed at 1, and the coordinate corresponding to
“filling” is fixed at 2 (solid). Thus there are two free coordinates, giving a 2-
dimensional plane.

An affine plane is spanned by two nonparallel lines. In the affine plane AG(2, 3),
each line is part of a parallel class of three parallel lines.

Notice that there are twelve lines (that is, sets) in AG(2, 3). As represented in
Example 6, there are three horizontal lines, three vertical lines, and then three lines
in each diagonal direction. (For example, the set containing the red squiggle, purple
diamond, and green oval is one of these diagonal sets.)

The last substructure of special interest to us is a hyperplane, a (d−1)-dimensional
subspace within AG(d, q). Equivalently, a hyperplane is a subspace of maximal
size, or of codimension 1. In SET, a hyperplane corresponds to a set of 27 cards
with a single attribute fixed.

The remainder of this paper will primarily use geometric language when dis-
cussing SET. In particular, we will use “point” and “line” to refer to cards and sets,
respectively, except when interpreting our results in terms of the original SET game.
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We note that the results of this paper apply to AG(d, 3) for all d ≥ 2. That is,
they apply not only to SET (which lives in AG(d, 3)) but also to “general” SET

as played in AG(d, 3). For example, a version of SET could be created in which
each card has five attributes: the four usual ones, plus a scratch-and-sniff scent
attribute with three different values. The game of anti-SET could be played with
these 35

= 243 cards without change. When d = 1, the geometry AG(1, 3) consists
of a single line, in which no win or loss of anti-SET is possible.

4. Results

In this section, we prove that Xavier has a winning strategy in anti-SET, as played
on any affine geometry AG(d, 3), d ≥ 2. We first reformulate anti-SET in purely
geometric terms:

Anti-SET is a two-player game played on AG(d, 3). The players, Xavier and
Olivia, take turns (beginning with Xavier) selecting points from the geometry. The
first player to have a line contained entirely in his or her hand loses the game.

Theorem 7 (winning strategy). Suppose Xavier and Olivia play anti-SET using
the points in AG(d, 3), d ≥ 2. Moves X1 and O1 may be chosen arbitrarily. After
those moves, Xavier will always win by following this strategy: for each move n ≥ 2,
Xavier chooses Xn to be the unique third point on the unique line containing X1

and On−1.

Xavier’s strategy depends on him following Olivia’s moves. The first two moves
are arbitrary, after which Xavier begins to follow Olivia by completing lines which
are not completely contained in either player’s hands. The worked example in
Section 2 implements exactly this strategy on a nine-card affine plane.

We note that we require d ≥ 2 only because d = 1 is a degenerate case: AG(1, 3)
consists of three points on a single line. Thus, every game ends in a tie, as neither
player can fully collect the line. However, the condition that q = 3 is essential. Our
strategy is highly dependent on the fact that each line contains exactly three points,
a fact that is lost for q 6= 3.

The following lemmas are necessary to establish the correctness of this strategy.

Lemma 8 (Xavier can play). If Xavier consistently follows the strategy in Theorem 7,
then Xavier can always choose the required point.

Proof. Consider the n-th round of the game. In the previous round, Olivia selected
point On−1, and now Xavier wishes to choose as Xn the unique point C completing
the line ` containing points {X1, On−1}. Note that point C exists and is unique by
Proposition 4. If C is unavailable, it must be in either O(n− 2) (because Olivia’s
move On−1 was not C) or X (n− 1).
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X1

Oj

X j+1

Ok

Xk+1

O

X

Figure 8. Diagram for proof of Lemma 9.

If Olivia previously chose C , then by following the strategy Xavier would have
immediately chosen the other point on `. If Xavier previously chose C , then he
must have done so immediately after Olivia chose the other point on `.

In either case, all points on ` appear in O(n− 2)∪X (n− 1), and thus it was
impossible for Olivia to choose any point on ` as On−1. Therefore we obtain a
contradiction, and C must be available for Xavier to choose. �

Lemma 9 (Xavier cannot lose). If Xavier consistently follows the strategy in
Theorem 7, then Xavier cannot lose.

Proof. Without loss of generality, assume that at least two rounds have occurred.
In round j ≥ 1, Olivia chooses Oj . In round k > j , Olivia chooses Ok . Fol-
lowing the winning strategy, Xavier chooses X j+1 and Xk+1, respectively. Thus
{X1, Oj , X j+1} and {X1, Ok, Xk+1} are lines. This is represented geometrically by
solid lines connecting the points in Figure 8. Algebraically, X1+Oj+X j+1=E0 and
X1+Ok+Xk+1= E0.

Suppose that at some future round m, while following the winning strategy,
Xavier chooses point X which completes a line {X j+1, Xk+1, X} ⊆ X (m), causing
him to lose. Thus X j+1+ Xk+1+ X = E0.

Xavier chose X in response to some move O by Olivia. Thus X is the unique
third point on the line containing {X1, O}. Therefore X1+ O + X = E0. Beginning
with this fact and applying algebra, we have

0= X1+O+X

= X1+O+(−X j+1−Xk+1) ({X j+1, Xk+1, X} is a line)

= X1+O+(X1+Oj )+(X1+Ok) ({X1,Oj , X j+1}, {X1,Ok, Xk+1} are lines)

= 3X1+O+Oj+Ok

= O+Oj+Ok (3X1≡ 0 (mod 3)).

Therefore {O, Oj , Ok} is a line. Because Olivia chose O before Xavier was
forced to chose X , Olivia would have immediately lost with a line in O(m− 1).
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Thus, it is impossible for Xavier to have a line in X (m), since Olivia would
immediately lose before he could choose to complete such a line. Therefore, Xavier
cannot lose when following the strategy. �

Lemma 10 (there are no ties). If Xavier consistently follows the strategy in
Theorem 7, then the game cannot end in a tie.

Proof. We first note that there are no ties in any nine-card plane AG(2, 3). That is,
it is impossible to partition the nine points into two sets, neither of which contains
a line. In particular, any set of at least five points from a nine-card plane must
contain a line. This may be demonstrated by brute force, or with an elegant counting
argument such as that in [Carroll and Dougherty 2004].

After Xavier’s third turn, the set of points selected is S = {X1, O1, X2, O2, X3}.
Note that, by following the strategy, S contains two nonparallel lines: {X1, O1, X2}

and {X1, O2, X3}. These two lines span an affine plane P .
The game may proceed in two ways:

(1) Olivia may choose to only select points in P . There are no ties in P and by
Lemma 9, Xavier cannot lose. Thus Olivia must eventually lose.

(2) Olivia may choose to select some point outside of P . If Olivia does not lose,
she will eventually run out of points outside of P , and therefore must choose
a point from within P . As argued above, Olivia must then lose. Note that the
points in P remain available for Olivia to choose, because Xavier will only
choose a point in P if Olivia also chooses a point in P . This is because no line
of AG(d, 3) contains two points in a plane and one point outside of a plane.

Either way, Olivia loses. �

Together, these lemmas provide a proof of Theorem 7:

Proof of Theorem 7. By Lemma 8, Xavier can follow the strategy. By Lemma 9,
Xavier can never lose when following the strategy. Finally, by Lemma 10, the game
cannot end in a tie. Therefore, Xavier (the first player) wins. �

5. Length of the game

Now that we know that Xavier will always win, a reasonable question is “how many
moves are required for Xavier to win?” Without assuming rational play, a game
could be as short as three rounds: Olivia could choose three cards which form a set
and lose after move O3. But assuming rational play, Olivia can survive much longer.

In this section, we seek to answer the question “how long can Olivia force the
game to continue?” Because there is some room for ambiguity, we provide the
following precise definition:
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d 1 2 3 4 5 6

m2(AG(d, 3)) 2 4 9 20 45 112

Table 3. Sizes of maximal caps for some small affine geometries.

Definition 11. The length of a game of anti-SET is the lowest index n such that
O(n) contains a line.

Thus, for example, the game played in Section 2 has length 4. Note that, because
Olivia plays second, length can be interpreted as the number of complete rounds
played before the game ends.

We also require the concept of a cap:

Definition 12. A cap in AG(d, q) is a set of points which contains no lines. A
maximal cap is a cap with the largest possible size for a given set of parameters d , q ,
and its size is denoted m2(AG(d, q)).

Example 13. Every set of five points in AG(2, 3) contains a line. Consider the
result of the sample game from Section 2, shown in Figure 6. The set of four points
marked X contains no line and therefore forms a maximal cap in AG(2, 3). The
three marked O form a cap which is not maximal. Thus m2(AG(2, 3))= 4.

A long-standing question in finite geometry is to determine the size of a maximal
cap. While a variety of bounds are known, no exact formula is known in general.
For q = 3, some currently known values for m2(AG(d, 3)) are summarized in
Table 3. For more information, see [Potechin 2008] and references therein.

In the language of affine geometry, Proposition 1 can be restated:

Proposition 1 [Pellegrino 1970]. In AG(4, 3), we have m2(AG(4, 3))= 20.

In other words, every set of 21 SET cards must contain a set.

Theorem 15. The maximum possible length of a game of anti-SET played on
AG(d, 3) is m2(AG(d, 3)).

Proof. Let m = m2(AG(d, 3)). Xavier is always the first to have k points in hand
for any k, and thus X (m+1) (if the game lasts so long) must contain a set. However,
by Theorem 7, Xavier cannot lose. Thus, Olivia’s previous move, Om , must have
ended with O(m) containing a set. Thus the length of the game is at most m. �

As a corollary, the length of anti-SET played on AG(4, 3) is at most 20. Compu-
tational simulations for small d suggest that Olivia can always achieve this bound,
but we are unable to prove this.

Next, we determine a lower bound on the length of the game. We do this by
demonstrating a strategy for Olivia which guarantees the game to last for a certain
number of moves.
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Lemma 16. Let S1, S2, S3 be three parallel hyperplanes in AG(d, 3). Then any
line which intersects S1 and S2 also intersects S3.

Proof. This is a direct consequence of the structure of the underlying vector space.
Note that S1, S2, S3 partition the points of AG(d, 3), and also note that a line
`= {x, y, z} contains exactly three points. Because ` and each Si are cosets of a
linear subspace, Si ∩` must be a linear subspace (or coset) as well. In Fd

3 , each such
subspace contains 3k points for some k ≥ 0. Thus ` must intersect each hyperplane
in zero, one, or three points. If ` intersects both S1 and S2 in at least one point, then
` cannot intersect either in all three points. Thus ` intersects each of S1 and S2 in
exactly one point, and so its third point must be in the remaining point set, S3. �

Theorem 17. Suppose Xavier and Olivia play anti-SET on AG(d, 3), d ≥ 1. Then
Olivia can force the game to have length at least 2+

∑d−1
i=1 m2(AG(i, 3)).

Proof. We proceed by induction. As a basis, consider anti-SET played on AG(2, 3).
This is a nine-point plane. We saw in Section 2 that Olivia may extend the game
to four rounds simply by not choosing her third point to be on the line defined by
the first two. Furthermore, 2+m2(AG(1, 3))= 4 since a cap in AG(1, 3) consists
of any two points on the only line. (Recall that the fourth round ends with Olivia
choosing her fourth card, which must complete a line in O(4).)

Assume, for anti-SET played in AG(d − 1, 3), that Olivia has a strategy which
makes the length of the game 2 +

∑d−2
i=1 m2(AG(i, 3)). Then she can play on

AG(d − 1, 3) for 1+
∑d−2

i=1 m2(AG(i, 3)) rounds without losing. Let S1 be a copy
of AG(d − 1, 3) embedded as a hyperplane in AG(d, 3), and let S1, S2, S3 be the
three hyperplanes parallel to S1 in AG(d, 3). Olivia proceeds as follows:

(1) Inductively, Olivia plays for 1 +
∑d−2

i=1 m2(AG(i, 3)) moves entirely in S1

without losing. Note that Xavier’s moves also fall entirely in S1.

(2) Olivia then chooses the m2(AG(d − 1, 3)) points of a maximal cap entirely
in S2. Note that Olivia is free to choose these points, because Xavier’s moves
must now fall entirely in S3 by Lemma 16.

This strategy describes Olivia’s moves for n = 1+
∑d−1

i=1 m2(AG(i, 3)) rounds.
Olivia never completes a line in O(n) by following this strategy. By our inductive
assumption, no line exists within the subset of her moves falling in S1. Because
Olivia chooses the points of a cap in S2, no line exists within her points in S2. Finally,
no line in O(n) can exist with one point in S1 and another in S2: By Lemma 16,
the third point of such a line would be in S3, but Olivia chooses no points in S3.

Thus, Olivia does not lose by following the above strategy, and therefore Olivia
can play for at least 2+

∑n−1
i=1 m2(AG(i, 3)) rounds. �
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X1 O1 X2 X1 O1 X2

O2

X3

O3

X4

(a) Play in AG(1, 3). (b) Play expanded to AG(2, 3).

Figure 9. Visualization of Olivia’s strategy from Theorem 17.

Intuitively, Olivia’s strategy works as follows: Olivia “fills up” a line with a cap,
jumping up to a plane which she also fills with a cap. She continues jumping up to
the next structure until she eventually runs out of room.

Example 18. Theorem 17 is demonstrated in Figures 9 and 10. In Figure 9(a), play
begins on a line (that is, AG(1, 3)). In Figure 9(b), the line expands to a full plane
(that is, AG(2, 3)). Note that Olivia’s play occurs only in the second row, which
is one coset of the original line. Her two plays form a cap on this line. Similarly,
Xavier’s plays all occur in the third row, another coset of the original line.

In Figure 10, play expands to cover the cosets of the plane. Figure 10 shows the
original plane from Figure 9, now considered to be a subspace S1. The other two
planes in this figure are the cosets S2 and S3 of S1. Note that Olivia plays only in
coset S2, and that her plays form a cap in AG(2, 3). Xavier’s plays are forced into
coset S3.

X1 O1 X2

O2

X3

O3

X4

X5 X6

X7 X8

O4 O5

O6 O7

S1

S2

S3

Figure 10. Continued visualization of Olivia’s strategy from Theorem 17.
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6. Open problems

Naturally, a variation on SET, such as anti-SET, leaves many open questions. The
game SET has been widely studied, and several of the open problems below are
based on generalizations and extensions already proposed for SET.

A more general category of games to which anti-SET belongs could be named
“anti-tic-tac-toe on a design.” A t-(v, k, λ) design (or t-design) is a set of v points P
together with a collection B of k-subsets of the points, called blocks, such that every
t-subset of P appears in exactly λ blocks. The points and lines of AG(d, 3) form an
example of an affine geometry design. See [Beth et al. 1986] for more details. To play
anti-tic-tac-toe on a given t-(v, k, λ) design, two players alternate selecting points of
the design. The first player to select all points in any block of the design loses. Thus
the general question is “is there a winning strategy for anti-tic-tac-toe on a design?”

Specific instances of this general game will likely prove to be more tractable.
For example:

• Play on nonternary affine geometries, which are also examples of affine geom-
etry designs. The winning strategy described in this paper depends heavily on
working in AG(d, 3). Is it possible to have q > 3? The largest difference is that
lines now have more than three points, opening the possibility that Olivia plays
on a point which completes a line, leaving Xavier unable to “follow” Olivia.

• Play on a projective geometry. It is possible to play anti-SET on a projective ge-
ometry PG(d, q)? The set of points and k-dimensional subspaces of PG(d, q)
form a projective geometry design. (For information about “projective SET”,
see [Davis and Maclagan 2003].)

• Play on Steiner triple systems. This is a name given to the category of
2-(v, 3, 1) designs. In this category, every pair of points determines a unique
line, and every line has three points. This includes two key geometric features
that figures in the strategy for anti-SET.

Other open problems involve changing the parameters of play for anti-SET:

• Play with three or more players. This must considerably change the strategy.
Under the winning strategy described here, it would be possible for one player
to “block” another player’s necessary move.

• Recovering from an error. If Xavier does not follow the winning strategy, when
is it possible for Olivia to win? Is it possible for Xavier to recover from this
error, and if so, under what conditions?

Finally, we believe that Theorem 17 can be improved:

• Determine a strategy for Olivia which always forces a game length of
m2(AG(d, 3)) rounds, thus improving on Theorem 17.



264 DAVID CLARK, GEORGE FISK AND NURULLAH GOREN

Acknowledgments

The authors would like to thank the Mathematics Center for Educational Programs
(MathCEP) at the University of Minnesota for supporting this research. This work
was completed as part of the University of Minnesota Talented Youth in Mathematics
(UMTYMP) undergraduate research program in summer 2013.

We would also like to thank the anonymous referee for very helpful comments
and suggestions.

References

[Beth et al. 1986] T. Beth, D. Jungnickel, and H. Lenz, Design theory, Cambridge University Press,
1986. MR 88b:05021 Zbl 0602.05001

[Carroll and Dougherty 2004] M. T. Carroll and S. T. Dougherty, “Tic-tac-toe on a finite plane”, Math.
Mag. 77:4 (2004), 260–274. MR 2087313 Zbl 1213.05023

[Davis and Maclagan 2003] B. L. Davis and D. Maclagan, “The card game SET”, Math. Intelligencer
25:3 (2003), 33–40. MR 2004i:91042 Zbl 1109.91013

[Dembowski 1997] P. Dembowski, Finite geometries, Classics in Mathematics 44, Springer, Berlin,
1997. MR 97i:51005 Zbl 0865.51004

[Pellegrino 1970] G. Pellegrino, “Sul massimo ordine delle calotte in S4,3”, Matematiche (Catania)
25 (1970), 149–157. MR 51 #207

[Potechin 2008] A. Potechin, “Maximal caps in AG(6, 3)”, Des. Codes Cryptogr. 46:3 (2008), 243–
259. MR 2008m:51030 Zbl 1187.51010

Received: 2014-10-13 Revised: 2015-01-29 Accepted: 2015-02-06

clarkdav@gvsu.edu Department of Mathematics, Grand Valley State University,
1 Campus Drive, Allendale, MI 49401, United States

geomfisk@gmail.com Department of Mathematics, University of Minnesota,
Minneapolis, MN 55455, United States

nurrygoren@gmail.com Department of Mathematics, Pomona College,
Claremont, CA 91711, United States

mathematical sciences publishers msp

http://msp.org/idx/mr/88b:05021
http://msp.org/idx/zbl/0602.05001
http://dx.doi.org/10.2307/3219284
http://msp.org/idx/mr/2087313
http://msp.org/idx/zbl/1213.05023
http://dx.doi.org/10.1007/BF02984846
http://msp.org/idx/mr/2004i:91042
http://msp.org/idx/zbl/1109.91013
http://dx.doi.org/10.1007/978-3-642-62012-6
http://msp.org/idx/mr/97i:51005
http://msp.org/idx/zbl/0865.51004
http://msp.org/idx/mr/51:207
http://dx.doi.org/10.1007/s10623-007-9132-z
http://msp.org/idx/mr/2008m:51030
http://msp.org/idx/zbl/1187.51010
mailto:clarkdav@gvsu.edu
mailto:geomfisk@gmail.com
mailto:nurrygoren@gmail.com
http://msp.org


involve
msp.org/involve

MANAGING EDITOR
Kenneth S. Berenhaut, Wake Forest University, USA, berenhks@wfu.edu

BOARD OF EDITORS
Colin Adams Williams College, USA

colin.c.adams@williams.edu
John V. Baxley Wake Forest University, NC, USA

baxley@wfu.edu
Arthur T. Benjamin Harvey Mudd College, USA

benjamin@hmc.edu
Martin Bohner Missouri U of Science and Technology, USA

bohner@mst.edu
Nigel Boston University of Wisconsin, USA

boston@math.wisc.edu
Amarjit S. Budhiraja U of North Carolina, Chapel Hill, USA

budhiraj@email.unc.edu
Pietro Cerone La Trobe University, Australia

P.Cerone@latrobe.edu.au
Scott Chapman Sam Houston State University, USA

scott.chapman@shsu.edu
Joshua N. Cooper University of South Carolina, USA

cooper@math.sc.edu
Jem N. Corcoran University of Colorado, USA

corcoran@colorado.edu
Toka Diagana Howard University, USA

tdiagana@howard.edu
Michael Dorff Brigham Young University, USA

mdorff@math.byu.edu
Sever S. Dragomir Victoria University, Australia

sever@matilda.vu.edu.au
Behrouz Emamizadeh The Petroleum Institute, UAE

bemamizadeh@pi.ac.ae
Joel Foisy SUNY Potsdam

foisyjs@potsdam.edu
Errin W. Fulp Wake Forest University, USA

fulp@wfu.edu
Joseph Gallian University of Minnesota Duluth, USA

jgallian@d.umn.edu
Stephan R. Garcia Pomona College, USA

stephan.garcia@pomona.edu
Anant Godbole East Tennessee State University, USA

godbole@etsu.edu
Ron Gould Emory University, USA

rg@mathcs.emory.edu
Andrew Granville Université Montréal, Canada

andrew@dms.umontreal.ca
Jerrold Griggs University of South Carolina, USA

griggs@math.sc.edu
Sat Gupta U of North Carolina, Greensboro, USA

sngupta@uncg.edu
Jim Haglund University of Pennsylvania, USA

jhaglund@math.upenn.edu
Johnny Henderson Baylor University, USA

johnny_henderson@baylor.edu
Jim Hoste Pitzer College

jhoste@pitzer.edu
Natalia Hritonenko Prairie View A&M University, USA

nahritonenko@pvamu.edu
Glenn H. Hurlbert Arizona State University,USA

hurlbert@asu.edu
Charles R. Johnson College of William and Mary, USA

crjohnso@math.wm.edu
K. B. Kulasekera Clemson University, USA

kk@ces.clemson.edu
Gerry Ladas University of Rhode Island, USA

gladas@math.uri.edu

David Larson Texas A&M University, USA
larson@math.tamu.edu

Suzanne Lenhart University of Tennessee, USA
lenhart@math.utk.edu

Chi-Kwong Li College of William and Mary, USA
ckli@math.wm.edu

Robert B. Lund Clemson University, USA
lund@clemson.edu

Gaven J. Martin Massey University, New Zealand
g.j.martin@massey.ac.nz

Mary Meyer Colorado State University, USA
meyer@stat.colostate.edu

Emil Minchev Ruse, Bulgaria
eminchev@hotmail.com

Frank Morgan Williams College, USA
frank.morgan@williams.edu

Mohammad Sal Moslehian Ferdowsi University of Mashhad, Iran
moslehian@ferdowsi.um.ac.ir

Zuhair Nashed University of Central Florida, USA
znashed@mail.ucf.edu

Ken Ono Emory University, USA
ono@mathcs.emory.edu

Timothy E. O’Brien Loyola University Chicago, USA
tobrie1@luc.edu

Joseph O’Rourke Smith College, USA
orourke@cs.smith.edu

Yuval Peres Microsoft Research, USA
peres@microsoft.com

Y.-F. S. Pétermann Université de Genève, Switzerland
petermann@math.unige.ch

Robert J. Plemmons Wake Forest University, USA
plemmons@wfu.edu

Carl B. Pomerance Dartmouth College, USA
carl.pomerance@dartmouth.edu

Vadim Ponomarenko San Diego State University, USA
vadim@sciences.sdsu.edu

Bjorn Poonen UC Berkeley, USA
poonen@math.berkeley.edu

James Propp U Mass Lowell, USA
jpropp@cs.uml.edu

Józeph H. Przytycki George Washington University, USA
przytyck@gwu.edu

Richard Rebarber University of Nebraska, USA
rrebarbe@math.unl.edu

Robert W. Robinson University of Georgia, USA
rwr@cs.uga.edu

Filip Saidak U of North Carolina, Greensboro, USA
f_saidak@uncg.edu

James A. Sellers Penn State University, USA
sellersj@math.psu.edu

Andrew J. Sterge Honorary Editor
andy@ajsterge.com

Ann Trenk Wellesley College, USA
atrenk@wellesley.edu

Ravi Vakil Stanford University, USA
vakil@math.stanford.edu

Antonia Vecchio Consiglio Nazionale delle Ricerche, Italy
antonia.vecchio@cnr.it

Ram U. Verma University of Toledo, USA
verma99@msn.com

John C. Wierman Johns Hopkins University, USA
wierman@jhu.edu

Michael E. Zieve University of Michigan, USA
zieve@umich.edu

PRODUCTION
Silvio Levy, Scientific Editor

Cover: Alex Scorpan

See inside back cover or msp.org/involve for submission instructions. The subscription price for 2016 is US $160/year for the electronic version, and
$215/year (+$35, if shipping outside the US) for print and electronic. Subscriptions, requests for back issues from the last three years and changes
of subscribers address should be sent to MSP.

Involve (ISSN 1944-4184 electronic, 1944-4176 printed) at Mathematical Sciences Publishers, 798 Evans Hall #3840, c/o University of California,
Berkeley, CA 94720-3840, is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices.

Involve peer review and production are managed by EditFLOW® from Mathematical Sciences Publishers.

PUBLISHED BY

mathematical sciences publishers
nonprofit scientific publishing

http://msp.org/
© 2016 Mathematical Sciences Publishers

http://msp.org/involve
mailto:berenhks@wfu.edu
mailto:colin.c.adams@williams.edu
mailto:baxley@wfu.edu
mailto:benjamin@hmc.edu
mailto:bohner@mst.edu
mailto:boston@math.wisc.edu
mailto:budhiraj@email.unc.edu
mailto:P.Cerone@latrobe.edu.au
mailto:scott.chapman@shsu.edu
mailto:cooper@math.sc.edu
mailto:corcoran@colorado.edu
mailto:tdiagana@howard.edu
mailto:mdorff@math.byu.edu
mailto:sever@matilda.vu.edu.au
mailto:bemamizadeh@pi.ac.ae
mailto:foisyjs@potsdam.edu
mailto:fulp@wfu.edu
mailto:jgallian@d.umn.edu
mailto:stephan.garcia@pomona.edu
mailto:godbole@etsu.edu
mailto:rg@mathcs.emory.edu
mailto:andrew@dms.umontreal.ca
mailto:griggs@math.sc.edu
mailto:sngupta@uncg.edu
mailto:jhaglund@math.upenn.edu
mailto:johnny_henderson@baylor.edu
mailto:jhoste@pitzer.edu
mailto:nahritonenko@pvamu.edu
mailto:hurlbert@asu.edu
mailto:crjohnso@math.wm.edu
mailto:kk@ces.clemson.edu
mailto:gladas@math.uri.edu
mailto:larson@math.tamu.edu
mailto:lenhart@math.utk.edu
mailto:ckli@math.wm.edu
mailto:lund@clemson.edu
mailto:g.j.martin@massey.ac.nz
mailto:meyer@stat.colostate.edu
mailto:eminchev@hotmail.com
mailto:frank.morgan@williams.edu
mailto:moslehian@ferdowsi.um.ac.ir
mailto:znashed@mail.ucf.edu
mailto:ono@mathcs.emory.edu
mailto:tobrie1@luc.edu
mailto:orourke@cs.smith.edu
mailto:peres@microsoft.com
mailto:petermann@math.unige.ch
mailto:plemmons@wfu.edu
mailto:carl.pomerance@dartmouth.edu
mailto:vadim@sciences.sdsu.edu
mailto:poonen@math.berkeley.edu
mailto:jpropp@cs.uml.edu
mailto:przytyck@gwu.edu
mailto:rrebarbe@math.unl.edu
mailto:rwr@cs.uga.edu
mailto:f_saidak@uncg.edu
mailto:sellersj@math.psu.edu
mailto:andy@ajsterge.com
mailto:atrenk@wellesley.edu
mailto:vakil@math.stanford.edu
mailto:antonia.vecchio@cnr.it
mailto:verma99@msn.com
mailto:wierman@jhu.edu
mailto:zieve@umich.edu
http://msp.org/involve
http://msp.org/
http://msp.org/


inv lve
a journal of mathematics

involve
2016 vol. 9 no. 2

181On the independence and domination numbers of replacement product graphs
JAY CUMMINGS AND CHRISTINE A. KELLEY

195An optional unrelated question RRT model
JEONG S. SIHM, ANU CHHABRA AND SAT N. GUPTA

211On counting limited outdegree grid digraphs and greatest increase grid digraphs
JOSHUA CHESTER, LINNEA EDLIN, JONAH GALEOTA-SPRUNG, BRADLEY

ISOM, ALEXANDER MOORE, VIRGINIA PERKINS, A. MALCOLM

CAMPBELL, TODD T. ECKDAHL, LAURIE J. HEYER AND JEFFREY L. POET

223Polygonal dissections and reversions of series
ALISON SCHUETZ AND GWYN WHIELDON

237Factor posets of frames and dual frames in finite dimensions
KILEEN BERRY, MARTIN S. COPENHAVER, ERIC EVERT, YEON HYANG

KIM, TROY KLINGLER, SIVARAM K. NARAYAN AND SON T. NGHIEM

249A variation on the game SET

DAVID CLARK, GEORGE FISK AND NURULLAH GOREN

265The kernel of the matrix [i j (mod n)] when n is prime
MARIA I. BUENO, SUSANA FURTADO, JENNIFER KARKOSKA, KYANNE

MAYFIELD, ROBERT SAMALIS AND ADAM TELATOVICH

281Harnack’s inequality for second order linear ordinary differential inequalities
AHMED MOHAMMED AND HANNAH TURNER

293The isoperimetric and Kazhdan constants associated to a Paley graph
KEVIN CRAMER, MIKE KREBS, NICOLE SHABAZI, ANTHONY SHAHEEN

AND EDWARD VOSKANIAN

307Mutual estimates for the dyadic reverse Hölder and Muckenhoupt constants for the
dyadically doubling weights

OLEKSANDRA V. BEZNOSOVA AND TEMITOPE ODE

317Radio number for fourth power paths
MIN-LIN LO AND LINDA VICTORIA ALEGRIA

333On closed graphs, II
DAVID A. COX AND ANDREW ERSKINE

347Klein links and related torus links
ENRIQUE ALVARADO, STEVEN BERES, VESTA COUFAL, KAIA

HLAVACEK, JOEL PEREIRA AND BRANDON REEVES

1944-4176(2016)9:2;1-3

involve
2016

vol.9,
no.2


	1. Introduction
	2. Example of gameplay
	3. Background
	4. Results
	5. Length of the game
	6. Open problems
	Acknowledgments
	References
	
	

