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Generalized factorization theory for integral domains was initiated by D. D. An-
derson and A. Frazier in 2011 and has received considerable attention in recent
years. There has been significant progress made in studying the relation τn for
the integers in previous undergraduate and graduate research projects. In 2013,
the second author extended the general theory of factorization to commutative
rings with zero-divisors. In this paper, we consider the same relation τn over
the modular integers, Z/mZ. We are particularly interested in which choices
of m, n ∈ N yield a ring which satisfies the various τn-atomicity properties. In
certain circumstances, we are able to say more about these τn-finite factorization
properties of Z/mZ.

1. Introduction and background

D. D. Anderson and A. Frazier [2011] introduced a concept called τ -factorization.
This provided a general theory which unified much of the existing literature on fac-
torization theory in integral domains into one general notion of factorization theory.
Recently, the second author has used several methods to extend this τ -factorization
to commutative rings with zero-divisors; see [Mooney 2015a, 2015b; 2015c; 2016].

There has been a fair amount of research done on a particular τ -relation of interest
especially in the integers, Z. We discuss this in more depth in the following section.
In particular, the dissertation of S. M. Hamon [2007] answered the following
question, among others: for what n ∈ N is Z τn-atomic? A. Florescu [2013]
investigated reduced τn-factorizations over Z. These studies helped to give a
concrete basis for τ -factorization over the integers.

In this paper, we carry out a similar investigation of Z/mZ. We again are inter-
ested in the τn-finite factorization properties, especially the question of τn-atomicity.
We use the definitions and methods established by D. D. Anderson and S. Valdez-
Leon [1996] and generalized by the second author [Mooney 2015a]. In Section 2,
we present preliminary definitions and background information in a more rigorous
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and thorough manner. In Section 3, we present several important properties of
Z/mZ which play a role in the τn-finite factorization properties. In Section 4, we
present the main results concerning τn-finite factorization properties of Z/mZ for
various choices of m and n. Finally, in Section 5, we present further thoughts on
the remaining questions which were not answered in the present article.

2. Preliminaries

We assume R is a commutative ring with 1 6= 0. Let R∗ = R−{0}, U (R) be the set
of units of R, and R#

= R∗−U (R) be the nonzero nonunits of R. As in [Anderson
and Valdes-Leon 1996], we let

• a ∼ b if (a)= (b),

• a ≈ b if there exists λ ∈U (R) such that a = λb,

• a∼= b if (1) a∼ b and (2) a= b= 0 or if a= rb for some r ∈ R then r ∈U (R).

We say a and b are associates (resp. strong associates, very strong associates)
if a ∼ b (resp. a ≈ b, a ∼= b). As in [Anderson et al. 2004], a ring R is said to
be a strongly associate (resp. very strongly associate) ring if for any a, b ∈ R,
a ∼ b implies a ≈ b (resp. a ∼= b).

We leave the routine check that very strong associates are strong associates
and strong associates are associates as an exercise for the reader. Both ∼ and
≈ are equivalence relations, while ∼= fails only to be reflexive. It is interesting
to see why, in rings with zero-divisors, these associate relations are no longer
equivalent. Any nontrivial idempotent e ∈ R provides an example of an element
such that e ≈ e, but e 6∼= e. We have e = 1 · e, yet e 6∼= e because e is not a unit
in e = e · e. This also demonstrates why ∼= need not be reflexive. Examples
of elements which are associate, but not strongly associate are more difficult to
come by. We provide an example first given in [Fletcher 1969] and restated in
[Anderson and Valdes-Leon 1996, Example 2.3], where the details are provided.
Let R = F[X, Y, Z ]/(X − XY Z), where F is a field. Let x, y, and z be the images
of X, Y, and Z respectively in R. Then x = xyz, so x ∼ xy, but there is no unit
λ ∈U (R) such that x = λxy, so x 6≈ xy.

Let τ be a symmetric relation on R#; that is, τ ⊆ R#
× R# and if (a, b) ∈ τ ,

then (b, a) ∈ τ and we will write a τ b. For nonunits a, ai ∈ R, and λ ∈ U (R),
a = λa1 · · · an is said to be a τ -factorization if ai τ a j for all i 6= j . If n = 1, then
this is said to be a trivial τ -factorization. Given the above τ -factorization, we would
say that ai is a τ -factor of a or write ai |τ a. We note that 0 cannot appear as a
τ -factor, except in the trivial factorization 0= λ0 for some λ ∈U (R).

We pause to provide some examples of τ -relations which have been of interest
in the literature.
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Example 2.1. Let R be a commutative ring with 1.

(1) τd = R#
× R#. This yields the usual factorizations in R and |τd is the same as

the usual divides.

(2) τ =∅. For every a ∈ R#, there is only the trivial factorization and a |τ b⇐⇒
a = λb for λ ∈U (R)⇐⇒ a ≈ b.

(3) Let I be an ideal in R. Set a τI b if and only if a− b ∈ I .

(a) Let R = Z and I = (n). Then this is τn , which was studied extensively in
[Florescu 2013; Hamon 2007].

(b) In the present work, we are interested in the case when R=Z/mZ and I = (n).
We note that τ(n) is usually written as τn and this relation is indeed symmetric
since a− b ∈ I ⇐⇒ b− a ∈ I .

(4) We obtain the comaximal factorizations studied in [McAdam and Swan 2004] by
a τ b if and only if (a, b)= R. Furthermore, for any ?-operation, we obtain ?-comaxi-
mal factorizations, studied in [Juett 2012], by a τ? b if and only if (a, b)? = R.

(5) Lastly, for any set S, such as the collection of irreducible or prime elements in a
ring R, we can study τS-factorizations to obtain the atomic or prime factorizations
respectively by saying a τS b if and only if a ∈ S and b ∈ S.

We now summarize several definitions given in [Mooney 2015a; 2016]. Let a ∈ R
be a nonunit. Then a is said to be τ -irreducible or τ -atomic if for any τ -factorization
a = λa1 · · · an , we have a ∼ ai for some i . We say a is τ -strongly irreducible or
τ -strongly atomic if for any τ -factorization a = λa1 · · · an , we have a ≈ ai for
some ai . We say that a is τ -m-irreducible or τ -m-atomic if for any τ -factorization
a = λa1 · · · an , we have a ∼ ai for all i . Note: the “m” is for “maximal” since
such an a is maximal among principal ideals generated by elements which occur as
τ -factors of a. As in [Mooney 2016], a ∈ R is said to be a τ -unrefinable atom if a
admits only trivial τ -factorizations. We say that a is τ -very strongly irreducible or
τ -very strongly atomic if a ∼= a and a has no nontrivial τ -factorizations. We refer
the reader to [Mooney 2015a; 2016] for a further discussion and more equivalent
definitions of these various forms of τ -irreducibility.

We have the following relationship between the various types of τ -irreducibles,
which is proved in [Mooney 2015a, Theorem 3.9] as well as [Mooney 2016].

Theorem 2.2. The following diagram illustrates the relationships between the
various types of τ -irreducibility a might satisfy, where ≈ represents R being a
strongly associate ring:

τ -v. s. irred. +3 τ -unrefinably irred.

%-

+3 τ -s. irred. +3 τ -irred.

τ -m-irred.

≈

KS 3;
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Let e be a nontrivial idempotent in R. Let τ∅ = ∅. Then there are no non-
trivial τ∅-factorizations. Thus every a ∈ R# is τ∅-unrefinably atomic. However,
e · e = e shows that e 6∼= e and thus e is not τ∅-very strongly atomic. To see
that none of the other reverse implications hold, we may set τ = R#

× R# to
obtain the usual factorizations. Examples are provided in [Anderson and Valdes-
Leon 1996] which show that the other implications are not reversible in rings
with zero-divisors.

We are now able to summarize various τn-finite factorization properties that a
ring may have.

Definition 2.3. Let α∈{atomic,strongly atomic,m-atomic,unrefinably atomic,very
strongly atomic}. Let β ∈ {associate, strongly associate, very strongly associate}.

(1) R is said to be τ -α if every nonunit has a τ -factorization into elements which
are τ -α.

(2) R is said to satisfy τn-ACCP if for every nonunit a0 ∈ R, any ascending chain
of principal ideals

(a0)⊆ (a1)⊆ (a2)⊆ · · · ⊆ (ai )⊆ (ai+1)⊆ · · ·

such that ai+1 |τ ai for each i becomes stationary.

(3) R is said to be a τn-α-β-unique factorization ring (UFR) if

• R is τn-α,
• every nonunit has a unique τn-α factorization up to rearrangement and β.

(4) R is said to be a τn-α-half factorial ring (HFR) if R is τ -α and for each nonunit,
the length of every τn-α factorization is the same.

(5) R is said to be a τn-bounded factorization ring (BFR) if every nonunit has a
finite bound on the length of any τn-factorization.

(6) R is said to be a τn-β-finite factorization ring (FFR) if every nonunit has only
a finite number of τn-factorizations up to rearrangement and β.

(7) R is said to be a τn-β-weak finite factorization ring (WFFR) if every nonunit
has only a finite number of τn-divisors up to β.

(8) R is said to be a τn-α-β-divisor finite ring (df ring) if every nonunit has only a
finite number of τn-α-divisors up to β.

We include parts of the diagram from [Mooney 2016] to help the reader visualize
the relationship between these τ -finite factorization properties. In the diagram
below, ∇ represents τ being refinable and associate-preserving and we direct the
reader to [Mooney 2016] for further details:
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τ -α-HFR
∇

"*
τ -α-β-UFR

2:

∇ +3 τ -β-FFR +3

��

τ -BFR ∇ +3 τ -ACCP ∇ +3 τ -atomic

τ -β-WFFR

��

∇

rz
τ -α τ -α-β-df ring +3 τ -α-β-df ring

3. Z/mZ is strongly associate

We begin by studying the ring we are interested in, Z/mZ. As seen in the previous
section, the main issue with factorization in rings with zero-divisors is the number
of types of irreducibility and atomicity. We find that this ring has several nice
properties, which makes our work slightly more manageable. We find that Z/mZ is
a strongly associate ring and if p is a prime and e∈N, then Z/peZ is présimplifiable.
Equivalently, Z/peZ is a very strongly associate ring. So if m is a prime power, then
for any a∈ R#, all the associate relations and hence types of τ -irreducibility coincide.
In general, even if m has multiple prime divisors, we will know that associate and
strongly associate coincide; hence τn-atomic and τn-strongly atomic also coincide.

It was proved, in [Kaplansky 1949], that any Artinian or principal ideal ring
is strongly associate. This immediately gives us that our finite (hence Artinian)
principal ideal ring, Z/mZ, is strongly associate. We outline an elementary proof for
Z/mZ being strongly associate as well as present other useful results about Z/mZ.
We hope this is helpful for the reader, both to become familiar with the ring we
are working in and to see the relationships between the various types of associate
relations. Many of these results and similar techniques are used later when we
analyze the question of τn-atomicity of Z/mZ.

We begin with a remark about the units of a direct product of commutative rings.
This is a routine result, which can be found in any modern algebra text, and will be
left as an exercise to the reader.

Remark. Let R1 and R2 be commutative rings with unity and let R= R1×R2. Then

U (R)=
{
(λ1, λ2) | λ1 ∈U (R1), λ2 ∈U (R2)

}
=U (R1)×U (R2) := S.

That is, the units in a direct product of rings are the direct product of the collection
of units in the individual rings.

Lemma 3.1. R = R1× R2 is strongly associate if and only if R1 and R2 are both
strongly associate.
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Proof. (⇒) Let R = R1× R2 be a strongly associate ring. Let (a), (b) be ideals
in R1 such that a ∼ b, i.e., (a)= (b). Consider the ideals (a)× R2 = (a)× (1) and
(b)× R2 = (b)× (1). Since (a)= (b), we have

((a, 1))= (a)× (1)= (b)× (1)= ((b, 1)).

Now R = R1× R2 is strongly associate, so there is a unit (λ1, λ2) ∈U (R) such that
(a, 1)= (λ1, λ2)(b, 1). Thus a = λ1b. By the above remark, we have shown that
λ1 ∈U (R1). Hence a ≈ b. A symmetric argument demonstrates that R2 is strongly
associate.

(⇐) Now suppose R1 and R2 are strongly associate rings. Let a, b ∈ R with a ∼ b.
Suppose a= (a1, a2) and b= (b1, b2). Now a∼b means ((a1, a2))= ((b1, b2)). We
must prove that there exists a (λ1, λ2)∈U (R) with (a1, a2)= (λ1, λ2)(b1, b2). Now

(a1)× (a2)= ((a1, a2))= ((b1, b2))= (b1)× (b2).

Thus a1 is associate with b1 and a2 is associate with b2. Hence, R1 and R2 are
strongly associate, so there exists λ1 ∈U (R1) and λ2 ∈U (R2) such that a1 = λ1b1

and a2 = λ2b2. Therefore (λ1, λ2) ∈ U (R) with (a1, a2) = (λ1, λ2)(b1, b2). This
demonstrates R is strongly associate as desired. �

A routine induction argument on n, the number of factors in the product, yields
the following result since R = (R1× R2×· · ·× Rn−1)× Rn = R1× R2×· · ·× Rn .

Lemma 3.2. R = R1 × R2 × · · · × Rn is strongly associate if and only if Ri is
strongly associate for each 1≤ i ≤ n.

Lemma 3.3. Let a1, . . . , an ∈ R. Then (a1a2 · · · an)= (a1)(a2) · · · (an).

Proof. Let x ∈ (a1)(a2) · · · (an). Then

x = r11a1r12a2 · · · r1nan + r21a1r22a2 · · · r2nan + · · ·+ rm1a1rm2a2 · · · rmnan

for some ri j ∈ R, with 1≤ i, j ≤m, is a typical element of (a1)(a2) · · · (an). Notice
that we can factor out a1a2 · · · an from each term yielding

x = (r11r12 · · · r1n + r21r22 · · · r2n + · · ·+ rm1rm2 · · · rmn)(a1a2 · · · an). (1)

The right-hand side of (1) demonstrates that x ∈ (a1a2 · · · an). Thus (a1a2 · · · an)⊇

(a1)(a2) · · · (an).
Let x ∈ (a1a2 · · · an). Then x = ra1a2 · · · an for some r ∈ R. Then we can write

x = ra1a2 · · · an = (ra1)(1a2) · · · (1an), demonstrating x ∈ (a1)(a2) · · · (an). Thus
(a1a2 · · · an)⊆ (a1)(a2) · · · (an). �

Lemma 3.4. Let p ∈ N be a prime number and e ∈ N. Then R = Z/peZ is very
strongly associate; equivalently, Z/peZ is présimplifiable. Moreover, this means
that Z/peZ is a strongly associate ring.
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Proof. Suppose a ∼ b. We will show a ∼= b. Since a ∼ b, we have (a) = (b) by
definition. Thus we must prove that either a = b = 0 or if a = rb for some r ∈ R
then r ∈U (R).

If a = 0 or b = 0 we are done, so we may assume that neither a nor b is 0.
If a or b are units, then (a) = (b) = R and r = ab−1, which is a unit. Thus we
may assume a and b are nonzero nonunits. Thus p | a and p | b. Let ea be the
largest integer such that pea divides a, but no larger power still divides a. Define eb

similarly. Now (a) = (b), so a | b and pea | a and therefore pea | b. This means
ea ≤ eb. Similarly, b | a so eb ≤ ea . This means ea = eb, but by comparing the
number of factors of p in both sides of a = rb, we see that p cannot divide r . Thus
gcd(r, p)= 1 and r ∈U (Z/peZ). Hence, R has been shown to be a very strongly
associate ring, which is equivalent to présimplifiable in the language of Bouvier
[1971; 1972a; 1972b; 1974]. Every présimplifiable ring is certainly a strongly
associate ring. �

The following theorem now follows easily from the lemmas and the Chinese
remainder theorem.

Theorem 3.5. Let m ∈ N with m ≥ 2 and m = pe1
1 · · · p

en
n . Then

Z/mZ∼= Z/pe1
1 Z×Z/pe2

2 Z× · · ·×Z/pen
n Z

is a strongly associate ring.

This means associate and strongly associate are always the same relation and
hence τn-atomic and τn-strongly atomic coincide for our rings Z/mZ. We also
needed R to be a strongly associate ring to conclude that τn-m-atomic implies
τn-strongly atomic in Theorem 2.2. We find that this property of Z/mZ greatly
streamlines much of the research.

4. τn-factorization properties of Z/mZ

Here we begin our analysis of which choices of m, n ∈ N yield a τn-atomic (or
-strongly atomic, -m-atomic, -unrefinably atomic, -very strongly atomic) ring.
Moreover, when possible, we indicate if the ring satisfies other nice τn-finite
factorization properties.

Z/ pZ. We first consider the simplest case, R = Z/pZ when p is prime.

Lemma 4.1. Let p ∈ N be a prime number. Then R = Z/pZ is a field.

Proof. Let a ∈ R∗. Then gcd(a, p)= 1, so by the Euclidean algorithm, there are
integers s, t ∈ Z such that as + pt = 1. When reduced modulo p, we see that
as ≡ 1 (mod p). Thus Z/pZ is a commutative ring with unity such that every
nonzero element is a unit. Thus Z/pZ is a field. �
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Theorem 4.2. Let p ∈ N be prime and set R = Z/pZ. Let α ∈ {atomic, strongly
atomic,m-atomic, unrefinably atomic, very strongly atomic}. Let β ∈ {associate,
strongly associate, very strongly associate}. Then for any n ∈ N, we have:

(1) R is τn-α.

(2) R satisfies τn-ACCP.

(3) R is a τn-BFR.

(4) R is a τn-α-β-UFR.

(5) R is a τn-α-HFR.

(6) R is a τn-β-FFR.

(7) R is a τn-β-WFFR.

(8) R is a τn-α-β-df ring.

Proof. (1) Let a ∈ R with a a nonunit. Then by Lemma 4.1, a = 0 since all nonzero
elements are units in a field. The only τn-factorizations are 0= λ0 since there are
no other nonzero nonunits. Furthermore, R is a field, so (0) is a maximal ideal and
therefore 0 is m-irreducible and thus τn-m-irreducible. Fields are integral domains,
which are présimplifiable, so all of the other forms of τn-α coincide. Thus R is τn-α.

(2) The only proper ideal is (0) since R is a field, so it certainly satisfies ACCP and
therefore τn-ACCP.

(3) There are no nonzero nonunits, so there can be no nontrivial τn-factorizations.
Thus all τn-factorizations are trivial and have length 1, making R a τn-BFR.

(4)–(6) We know R is τn-α by (1). Moreover, 0 has only 0=λ0 as a τn-factorization.
Since R is a field, 0 ∼= 0, so we see this is the only factorization up to rearrange-
ment and β. Hence R is a τn-α-β-UFR and a τn-α-HFR. Again, this is the only
τn-factorization, not just the only τn-α factorization, so R is certainly a τn-β-FFR.

(7)–(8) R is a finite ring with p elements. Hence there are a finite number of τn- and
τn-α-divisors in the whole ring. Thus R is a τn-β-WFFR and a τn-α-β-df ring. �

Z/ peZ, where e> 1. For Z/mZ, with m = pe (where e ∈ N and p is prime), we
found that Z/peZ is présimplifiable, or equivalently very strongly associate. As in
[Mooney 2016], we have the following, which we state without proof.

Lemma 4.3. Let R be a présimplifiable ring. Let a ∈ R# be a nonzero nonunit.
Then the following are equivalent:

(1) a is τn-atomic.

(2) a is τn-strongly atomic.

(3) a is τn-m-atomic.

(4) a is τn-unrefinably atomic.

(5) a is τn-very strongly atomic.
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Lemma 4.4. Let R = Z/peZ, where p, e, n ∈ N and p is prime. Then p is
τn-m-atomic and therefore p is τn-atomic (-strongly atomic, -m-atomic, -unrefinably
atomic, -very strongly atomic).

Proof. Let p ∈ R = Z/peZ. We show that (p) is maximal. The following are
equivalent:

• An element a ∈ Z/peZ is a unit.

• gcd(a, pe)= 1.

• gcd(a, p)= 1.

• p does not divide a.

• a 6∈ (p).

Thus (p) is precisely the set of nonunits. If J ) (p), then let x ∈ J \ (p). Then p
does not divide x , so x ∈ J is a unit, and so J = R. This shows that (p) is a
maximal ideal (not just among principal ideals). Thus p is m-atomic and therefore
τn-m-atomic. Moreover, by Lemma 4.3 this means p is τn-atomic (-strongly atomic,
-m-atomic, -unrefinably atomic, -very strongly atomic). �

Proposition 4.5. Let p, e, n ∈ N, where p is prime and e > 1. The only τn-atomic
(-strongly atomic, -m-atomic, -unrefinably atomic, -very strongly atomic) elements
of R = Z/peZ are p and unit multiples of p.

Proof. Let a ∈ R be a τn-irreducible (equivalently, -strongly atomic, -m-atomic,
-unrefinably atomic, -very strongly atomic) element. Since a must be a nonunit, we
know gcd(a, p)= p > 1. Therefore, p | a. Let j be the largest number of factors
of p that we can factor out of a. That is, let j be the integer such that p j divides a,
but p j+1 does not divide a. Write a=λp j . Then gcd(λ, p)=1 or else p j+1

| a. This
means λ∈U (R). If j > 1, then a= λ· p j

= λ· p · · · p is a τn-factorization of a such
that (a) 6= (p). This means a is not τn-atomic and therefore a is also not τn-strongly
atomic (-m-atomic, -unrefinably atomic, -very strongly atomic). Thus, j = 1 and
a=λp, showing any τn-atomic (or -strongly atomic, -m-atomic, -unrefinably atomic,
-very strongly atomic) element of R = Z/peZ must be a unit multiple of p. �

Theorem 4.6. Let R = Z/peZ, where p, e, n ∈ N and p is prime. Then we have
the following:

(1) R is τn-atomic.

(2) R is τn-strongly atomic.

(3) R is τn-m-atomic.

(4) R is τn-unrefinably atomic.

(5) R is τn-very strongly atomic.
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Proof. Let a ∈ R be a nonunit. If a is not a unit, then gcd(a, p) > 1; hence p | a.
We let j represent the integer for which p j

| a, but p j+1 does not divide a. Thus
a= p j

·λ for some λ∈N. Moreover, p does not divide λ, so gcd(λ, p)= 1 and λ is
a unit. Then a = λp · · · p, where p occurs j times. Certainly p τn p for any n ∈ N
since p− p= 0∈ (0)⊆ I for any ideal I . Thus we have found a τn-atomic (-strongly
atomic, -m-atomic, -unrefinably atomic, -very strongly atomic) factorization of a
by Lemma 4.3. �

Proposition 4.7. Let R=Z/peZ, where p, e, n∈N and p is prime. Let α∈{atomic,
strongly atomic,m-atomic, unrefinably atomic, very strongly atomic} and let β ∈
{associate, strongly associate, very strongly associate}. Then we have the following:

(1) R is a τn-β-WFFR.

(2) R is a τn-α-β-idf ring.

(3) R satisfies τn-ACCP.

Proof. This is immediate again since R is a finite ring. �

Remark. We note here that this ring nearly satisfies further τn-finite factoriza-
tion properties; however, we have the following issue. For any j ≥ e, we have
0= p · · · p = p j is a τn-atomic (-strongly atomic, -m-atomic, -unrefinably atomic,
-very strongly atomic) factorization of 0. This means that R fails to be a τn-BFR
(or -α-HFR, -α-β-UFR, -β-FFR). We do, on the other hand, have some positive
results for nonzero elements of Z/peZ.

Theorem 4.8. Let p, e, n ∈N, where p is prime. Let α ∈ {atomic, strongly atomic,
m-atomic, unrefinably atomic, very strongly atomic}. Let β ∈ {associate, strongly
associate, very strongly associate}. Let a ∈ Z/peZ, a nonzero nonunit. Then we
have the following:

(1) Any two τn-α factorizations of a have the same length.

(2) The element a not only has a τn-α factorization, but it is unique up to re-
arrangement and β.

(3) The element a has a finite number of τn-factorizations up to rearrangement
and β.

(4) There is a bound on the length of any τn-factorization of a.

Proof. (1) Let a ∈ R be a nonzero nonunit. We know by Theorem 4.6 that there is
a τn-α factorization of a. As Proposition 4.5 demonstrated, p and unit multiples
of p are the only τn-α elements in Z/peZ. Recall that from the construction of the
τn-α factorization in Theorem 4.6, j is the unique integer such that p j

| a, but p j+1

does not divide a. It is clear then that any τn-α factorization of a must have precisely
j factors, each being some unit multiple of p.
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(2) By Proposition 4.5, the only τn-α elements are unit multiples of p. Now Z/peZ is
présimplifiable, so all choices of β are equivalent. Thus since all τn-α factorizations
have the same length and all τn-α elements are β, it is clear that this τn-α factoriza-
tion of a is unique.
(3) Since any τn-factorization of a is certainly a factorization of a, it suffices to show
that there are only finitely many factorizations of a up to β. Again, let j be as in (1).
We claim that j is the largest number of nonunit factors that any factorization can
have. If each factor is a nonunit, then it must be divisible by p. By the definition
of j , we have p j

| a, but p j+1 does not divide a. Thus there can be no more than
j factors in any given factorization of a. In this way, all factorizations of a must
come as some grouping of the j factors of p or some unit multiple of p. Hence the
number of distinct factorizations up to β is certainly bounded by 2 j . A better bound
would be P( j), where P(n) is the number of partitions of a set with n elements.
(4) Since there are only a finite number of τn-factorizations up to β, we can simply
take the maximum length of these factorizations as the bound on the length of
τn-factorizations of a. Alternatively, it is clear that j , as defined in the unique factor-
ization in (1), is the longest possible τn-factorization since any other τn-factorization
could be refined into this τn-α factorization and it would be at least as long. �

The above theorem shows that 0 is the only element preventing Z/peZ from
being a τn-α-β-UFR (or -α-HFR, -β-FFR, -BFR).

Z/mZ. When m has multiple distinct prime divisors, matters become more com-
plicated. There are now nontrivial idempotent elements. For instance, consider
Z/6Z and the element 3. We can factor 3 = 3 · 3 = 3 · 3 · 3 = · · · . Often the
solution to dealing with issues that arise from idempotents is using U-factorization,
as in [Mooney 2015b]. We are still able to say a few things about certain finite
factorization properties in the affirmative, but further research will need to be
conducted to completely answer this question.

We begin with a known result which sheds some light on the situation. If
gcd(n,m)=1, then (n)= R and we have the usual factorization since τn= τd , where
τd = R#

× R# yields the usual factorizations. This situation was discussed in [An-
derson and Valdes-Leon 1996] and we refer the reader here for the traditional case.

Proposition 4.9. Let R=Z/mZ, where m, n∈N. Let α∈{atomic, strongly atomic,
m-atomic, unrefinably atomic, very strongly atomic}. Let β ∈ {associate, strongly
associate, very strongly associate}. Then we have the following:

(1) R is a τn-β-WFFR.

(2) R is a τn-α-β-idf ring.

(3) R satisfies τn-ACCP.

Proof. This is immediate again since R is a finite ring. �
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Theorem 4.10. Let α ∈ {atomic, strongly atomic,m-atomic, unrefinably atomic,
very strongly atomic} and β∈{associate,strongly associate,very strongly associate}.
Let R = Z/pe1

1 pe2
2 · · · p

ek
k Z, where pi , ei , n, k ∈ N with pi primes. Then we have

the following:

(1) If k = 1, then R is as in the previous subsection.

(2) If ei 6= 1 for at least one i and k > 1, then we have the following:

(a) R fails to be a τn-BFR.
(b) R fails to be a τn-β-FFR.
(c) R fails to be a τn-α-HFR.
(d) R fails to be a τn-α-β-UFR.

(3) If ei = 1 for all 1≤ i ≤ k, then R is a direct product of fields and we have the
following:

(a) R is not τn-unrefinably atomic (or -very strongly atomic).
(b) R fails to be a τn-BFR.
(c) R fails to be a τn-β-FFR.
(d) R fails to be a τn-α-HFR.
(e) R fails to be a τn-α-β-UFR.

Proof. (1) is immediate.

(2) After reordering the primes if necessary, we may assume that e1 > 1. Then
consider the element (0, 1, . . . , 1) and the τn-factorizations

(0, 1, . . . , 1)= (p, 1, . . . , 1) · · · (p, 1, . . . , 1)= (p, 1, . . . , 1) j ,

where j ≥ e1. We notice that this is indeed a τn-factorization for any choice of
ideal (n) since (p, 1, . . . , 1)− (p, 1, . . . , 1) = (0, 0, . . . , 0) ∈ (n). Furthermore,
(p, 1, . . . , 1) is both regular (not a zero-divisor) and generates a principal ideal
which is maximal. This means (p, 1, . . . , 1) is τn-α and we have demonstrated
arbitrarily long τn-α factorizations of a nonunit. This proves R is not a τn-BFR (or
-β-FFR, -α-HFR, -α-β-UFR).

(3a) We observe that the element e := (0, 1, . . . , 1) is neither τn-unrefinably atomic
nor τn-very strongly atomic. To see this, consider the τn-factorization

e = (0, 1, . . . , 1)= (0, 1, . . . , 1)(0, 1, . . . , 1).

This demonstrates that e is an idempotent and hence e 6∼= e. Thus we have found a
nontrivial τn-factorization of e. We now consider any factorization of e. We have

e = (0, 1, . . . , 1)= (a11, a12, . . . , a1k)(a21, a22, . . . , a2k) · · · (at1, at2, . . . , atk).

We have 0=a11a21 · · · at1 in Z/pe1
1 Z, which is a field, so a f 1=0 for some 1≤ f ≤ t .

In the other coordinates, we have factorizations of 1, and thus ai j must be a unit for
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each i and j ≥ 2. This tells us that any factorization of e must have a factor of the
form (0, λ2, . . . , λk), where λ2, . . . , λk are units. But this means

e = (0, 1, . . . , 1)= (1, λ−1
2 , . . . , λ−1

k )(0, λ2, . . . , λk).

This factor is a strong associate of e which is neither τn-unrefinably atomic nor
τn-very strongly atomic. Thus there is no possible τn-unrefinably atomic or τn-very
strongly atomic factorization of e. On the other hand, R/(e) ∼= Z/p1Z, which
is a field, and R is a strongly associate ring, so e is τn-atomic (-strongly atomic,
-m-atomic).

(3b–3e) We again consider e := (0, 1, . . . , 1). We observe that e = e2
= e3

=

· · · = e j
= · · · yields τn-factorizations for any j > 1. This demonstrates that R is

neither a τn-FFR nor a τn-BFR. Furthermore, this gives τn-atomic (-strongly atomic,
-m-atomic) factorizations of e of different lengths, proving R is not a τn-atomic-
(-strongly atomic-, -m-atomic-) HFR or a τn-atomic- (-strongly atomic-, -m-atomic-
) β-UFR. Lastly, from (3a), we know R is not even τn-unrefinably atomic (or -very
strongly atomic), so it is certainly not a τn-unrefinably atomic- (or -very strongly
atomic-) HFR or a τn-unrefinably atomic- (or -very strongly atomic-) β-UFR. �

5. Further thoughts on Z/mZ with multiple prime factors

We have answered many questions regarding τn-finite factorization properties in
the negative; however, there are certainly some remaining open questions. When
there are multiple prime divisors, the question of whether R = Z/mZ is τn-atomic
(or -strongly atomic, -m-atomic) appears much more complicated and sensitive to
the choice of the ideal picked. Further research would need to be done. Indeed, this
question appears difficult even in the integers; see [Florescu 2013; Hamon 2007].
For fixed n ∈ Z, τn-atomicity and τn-finite factorization properties, even for small n,
have been and continue to be studied in depth in Z, especially by Reyes M. Ortiz
Albino and many of his students at The University of Puerto Rico at Mayagüez. It
seems fertile ground for future research.

The fact that Z/mZ is strongly associate simplifies (or at least unifies) some of
these questions to make it more tractable. The existence of idempotent elements
when m has multiple prime divisors suggests that looking at τ -U-factorization,
as in [Mooney 2015b], may be a better path to take. The τ -U-factorizations are
particularly effective in dealing with direct products of rings. It was often idempotent
elements that were preventing the ring from satisfying further τn-finite factorization
properties. As initiated by C. R. Fletcher [1969; 1970] and studied extensively by
M. Axtell, S. Forman, N. Roersma, and J. Stickles [Axtell 2002; Axtell et al. 2003],
the method of U-factorizations is helpful for this. When using U-factorization, rings
like Z/6Z go from not being even bounded factorization rings (3= 3i for all i) to
being U-unique factorization rings.



392 AUSTIN MAHLUM AND CHRISTOPHER PARK MOONEY

Acknowledgments

The authors would like to thank Viterbo University, in particular, the Viterbo Summer
Research Fellowship Program which provided the funding to carry out this research
in the summer of 2014. Mooney would also like to acknowledge the work done
at The University of Iowa with the VIGRE REU program under the supervision
of Professor Daniel D. Anderson, which tackled this problem over Z and provided
the inspiration for this particular study over Z/mZ as a possible project suitable
for undergraduate research. The authors would also like to thank the referee for
diligent work and careful reading of the article. Their suggestions have improved
the quality of the article.

References

[Anderson and Frazier 2011] D. D. Anderson and A. M. Frazier, “On a general theory of factor-
ization in integral domains”, Rocky Mountain J. Math. 41:3 (2011), 663–705. MR 2012g:13003
Zbl 1228.13001

[Anderson and Valdes-Leon 1996] D. D. Anderson and S. Valdes-Leon, “Factorization in commu-
tative rings with zero divisors”, Rocky Mountain J. Math. 26:2 (1996), 439–480. MR 97h:13001
Zbl 0865.13001

[Anderson et al. 2004] D. D. Anderson, M. Axtell, S. J. Forman, and J. Stickles, “When are associates
unit multiples?”, Rocky Mountain J. Math. 34:3 (2004), 811–828. MR 2005k:13001 Zbl 1092.13002

[Axtell 2002] M. Axtell, “U-factorizations in commutative rings with zero divisors”, Comm. Algebra
30:3 (2002), 1241–1255. MR 2003d:13001 Zbl 1046.13002

[Axtell et al. 2003] M. Axtell, S. Forman, N. Roersma, and J. Stickles, “Properties of U-factorizations”,
Int. J. Commut. Rings 2:2 (2003), 83–99. MR 2005j:13003 Zbl 1120.13001

[Bouvier 1971] A. Bouvier, “Sur les anneaux de fractions des anneaux atomiques présimplifiables”,
Bull. Sci. Math. (2) 95 (1971), 371–377. MR 45 #6810 Zbl 0219.13020

[Bouvier 1972a] A. Bouvier, “Anneaux présimplifiables”, C. R. Acad. Sci. Paris Sér. A-B 274 (1972),
A1605–A1607. MR 45 #6797 Zbl 0244.13009

[Bouvier 1972b] A. Bouvier, “Résultats nouveaux sur les anneaux présimplifiables”, C. R. Acad. Sci.
Paris Sér. A-B 275 (1972), A955–A957. MR 47 #4982 Zbl 0242.13002

[Bouvier 1974] A. Bouvier, “Anneaux présimplifiables”, Rev. Roumaine Math. Pures Appl. 19 (1974),
713–724. MR 52 #13811 Zbl 0289.13010

[Fletcher 1969] C. R. Fletcher, “Unique factorization rings”, Proc. Cambridge Philos. Soc. 65 (1969),
579–583. MR 39 #189 Zbl 0174.33401

[Fletcher 1970] C. R. Fletcher, “The structure of unique factorization rings”, Proc. Cambridge Philos.
Soc. 67 (1970), 535–540. MR 40 #5596 Zbl 0192.38401

[Florescu 2013] A. A. Florescu, Reduced τ(n) factorizations in Z and τ(n)-factorizations in N, Ph.D.
thesis, University of Iowa, 2013, available at http://search.proquest.com/docview/1444307443.

[Hamon 2007] S. M. Hamon, Some topics in τ -factorizations, Ph.D. thesis, University of Iowa, 2007,
available at http://search.proquest.com/docview/304860971.

[Juett 2012] J. Juett, “Generalized comaximal factorization of ideals”, J. Algebra 352 (2012), 141–166.
MR 2862178 Zbl 1253.13005

http://dx.doi.org/10.1216/RMJ-2011-41-3-663
http://dx.doi.org/10.1216/RMJ-2011-41-3-663
http://msp.org/idx/mr/2012g:13003
http://msp.org/idx/zbl/1228.13001
http://dx.doi.org/10.1216/rmjm/1181072068
http://dx.doi.org/10.1216/rmjm/1181072068
http://msp.org/idx/mr/97h:13001
http://msp.org/idx/zbl/0865.13001
http://dx.doi.org/10.1216/rmjm/1181069828
http://dx.doi.org/10.1216/rmjm/1181069828
http://msp.org/idx/mr/2005k:13001
http://msp.org/idx/zbl/1092.13002
http://dx.doi.org/10.1081/AGB-120004871
http://msp.org/idx/mr/2003d:13001
http://msp.org/idx/zbl/1046.13002
http://msp.org/idx/mr/2005j:13003
http://msp.org/idx/zbl/1120.13001
http://msp.org/idx/mr/45:6810
http://msp.org/idx/zbl/0219.13020
http://msp.org/idx/mr/45:6797
http://msp.org/idx/zbl/0244.13009
http://msp.org/idx/mr/47:4982
http://msp.org/idx/zbl/0242.13002
http://msp.org/idx/mr/52:13811
http://msp.org/idx/zbl/0289.13010
http://dx.doi.org/10.1017/S0305004100003352
http://msp.org/idx/mr/39:189
http://msp.org/idx/zbl/0174.33401
http://dx.doi.org/10.1017/S0305004100045825
http://msp.org/idx/mr/40:5596
http://msp.org/idx/zbl/0192.38401
http://search.proquest.com/docview/1444307443
http://search.proquest.com/docview/304860971
http://dx.doi.org/10.1016/j.jalgebra.2011.11.008
http://msp.org/idx/mr/2862178
http://msp.org/idx/zbl/1253.13005


GENERALIZED FACTORIZATION IN Z/mZ 393

[Kaplansky 1949] I. Kaplansky, “Elementary divisors and modules”, Trans. Amer. Math. Soc. 66
(1949), 464–491. MR 11,155b Zbl 0036.01903

[McAdam and Swan 2004] S. McAdam and R. G. Swan, “Unique comaximal factorization”, J.
Algebra 276:1 (2004), 180–192. MR 2004m:13006 Zbl 1081.13008

[Mooney 2015a] C. P. Mooney, “Generalized factorization in commutative rings with zero-divisors”,
Houston J. Math. 41:1 (2015), 15–32. MR 3347935 Zbl 06522510

[Mooney 2015b] C. P. Mooney, “Generalized U-factorization in commutative rings with zero-
divisors”, Rocky Mountain J. Math. 45:2 (2015), 637–660. MR 3356632 Zbl 06475249

[Mooney 2015c] C. P. Mooney, “τ -regular factorization in commutative rings with zero-divisors”,
preprint, 2015, available at http://projecteuclid.org/euclid.rmjm/1411945723. To appear in Rocky
Mountain J. Math.

[Mooney 2016] C. P. Mooney, “τ -complete factorization in commutative rings with zero-divisors”,
Houston J. Math. 42:1 (2016), 23–44.

Received: 2014-09-27 Revised: 2015-04-07 Accepted: 2015-06-06

amahlu04769@viterbo.edu Department of Mathematics, Viterbo University,
La Crosse, WI 54601, United States

christopher.mooney@westminster-mo.edu
Department of Mathematics, Westminster College,
Fulton, MO 65251, United States

mathematical sciences publishers msp

http://dx.doi.org/10.2307/1990591
http://msp.org/idx/mr/11,155b
http://msp.org/idx/zbl/0036.01903
http://dx.doi.org/10.1016/j.jalgebra.2004.02.007
http://msp.org/idx/mr/2004m:13006
http://msp.org/idx/zbl/1081.13008
http://msp.org/idx/mr/3347935
http://msp.org/idx/zbl/06522510
http://dx.doi.org/10.1216/RMJ-2015-45-2-637
http://dx.doi.org/10.1216/RMJ-2015-45-2-637
http://msp.org/idx/mr/3356632
http://msp.org/idx/zbl/06475249
http://projecteuclid.org/euclid.rmjm/1411945723
http://math.uh.edu/~hjm/Vol42-1.html
mailto:amahlu04769@viterbo.edu
mailto:christopher.mooney@westminster-mo.edu
http://msp.org




involve
msp.org/ involve

INVOLVE YOUR STUDENTS IN RESEARCH
Involve showcases and encourages high-quality mathematical research involving students from all
academic levels. The editorial board consists of mathematical scientists committed to nurturing
student participation in research. Bridging the gap between the extremes of purely undergraduate
research journals and mainstream research journals, Involve provides a venue to mathematicians
wishing to encourage the creative involvement of students.

MANAGING EDITOR
Kenneth S. Berenhaut Wake Forest University, USA

BOARD OF EDITORS
Colin Adams Williams College, USA

John V. Baxley Wake Forest University, NC, USA
Arthur T. Benjamin Harvey Mudd College, USA

Martin Bohner Missouri U of Science and Technology, USA
Nigel Boston University of Wisconsin, USA

Amarjit S. Budhiraja U of North Carolina, Chapel Hill, USA
Pietro Cerone La Trobe University, Australia

Scott Chapman Sam Houston State University, USA
Joshua N. Cooper University of South Carolina, USA
Jem N. Corcoran University of Colorado, USA

Toka Diagana Howard University, USA
Michael Dorff Brigham Young University, USA

Sever S. Dragomir Victoria University, Australia
Behrouz Emamizadeh The Petroleum Institute, UAE

Joel Foisy SUNY Potsdam, USA
Errin W. Fulp Wake Forest University, USA

Joseph Gallian University of Minnesota Duluth, USA
Stephan R. Garcia Pomona College, USA

Anant Godbole East Tennessee State University, USA
Ron Gould Emory University, USA

Andrew Granville Université Montréal, Canada
Jerrold Griggs University of South Carolina, USA

Sat Gupta U of North Carolina, Greensboro, USA
Jim Haglund University of Pennsylvania, USA

Johnny Henderson Baylor University, USA
Jim Hoste Pitzer College, USA

Natalia Hritonenko Prairie View A&M University, USA
Glenn H. Hurlbert Arizona State University,USA

Charles R. Johnson College of William and Mary, USA
K. B. Kulasekera Clemson University, USA

Gerry Ladas University of Rhode Island, USA

Suzanne Lenhart University of Tennessee, USA
Chi-Kwong Li College of William and Mary, USA

Robert B. Lund Clemson University, USA
Gaven J. Martin Massey University, New Zealand

Mary Meyer Colorado State University, USA
Emil Minchev Ruse, Bulgaria
Frank Morgan Williams College, USA

Mohammad Sal Moslehian Ferdowsi University of Mashhad, Iran
Zuhair Nashed University of Central Florida, USA

Ken Ono Emory University, USA
Timothy E. O’Brien Loyola University Chicago, USA

Joseph O’Rourke Smith College, USA
Yuval Peres Microsoft Research, USA

Y.-F. S. Pétermann Université de Genève, Switzerland
Robert J. Plemmons Wake Forest University, USA

Carl B. Pomerance Dartmouth College, USA
Vadim Ponomarenko San Diego State University, USA

Bjorn Poonen UC Berkeley, USA
James Propp U Mass Lowell, USA

Józeph H. Przytycki George Washington University, USA
Richard Rebarber University of Nebraska, USA

Robert W. Robinson University of Georgia, USA
Filip Saidak U of North Carolina, Greensboro, USA

James A. Sellers Penn State University, USA
Andrew J. Sterge Honorary Editor

Ann Trenk Wellesley College, USA
Ravi Vakil Stanford University, USA

Antonia Vecchio Consiglio Nazionale delle Ricerche, Italy
Ram U. Verma University of Toledo, USA

John C. Wierman Johns Hopkins University, USA
Michael E. Zieve University of Michigan, USA

PRODUCTION
Silvio Levy, Scientific Editor

Cover: Alex Scorpan

See inside back cover or msp.org/involve for submission instructions. The subscription price for 2016 is US $160/year for the electronic
version, and $215/year (+$35, if shipping outside the US) for print and electronic. Subscriptions, requests for back issues from the last
three years and changes of subscribers address should be sent to MSP.

Involve (ISSN 1944-4184 electronic, 1944-4176 printed) at Mathematical Sciences Publishers, 798 Evans Hall #3840, c/o University of
California, Berkeley, CA 94720-3840, is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and additional
mailing offices.

Involve peer review and production are managed by EditFLOW® from Mathematical Sciences Publishers.

PUBLISHED BY

mathematical sciences publishers
nonprofit scientific publishing

http://msp.org/
© 2016 Mathematical Sciences Publishers

http://msp.org/involve
http://msp.org/involve
http://msp.org/
http://msp.org/


inv lve
a journal of mathematics

involve
2016 vol. 9 no. 3

361A combinatorial proof of a decomposition property of reduced residue
systems

YOTSANAN MEEMARK AND THANAKORN PRINYASART

367Strong depth and quasigeodesics in finitely generated groups
BRIAN GAPINSKI, MATTHEW HORAK AND TYLER WEBER

379Generalized factorization in Z/mZ

AUSTIN MAHLUM AND CHRISTOPHER PARK MOONEY

395Cocircular relative equilibria of four vortices
JONATHAN GOMEZ, ALEXANDER GUTIERREZ, JOHN LITTLE,
ROBERTO PELAYO AND JESSE ROBERT

411On weak lattice point visibility
NEIL R. NICHOLSON AND REBECCA RACHAN

415Connectivity of the zero-divisor graph for finite rings
REZA AKHTAR AND LUCAS LEE

423Enumeration of m-endomorphisms
LOUIS RUBIN AND BRIAN RUSHTON

437Quantum Schubert polynomials for the G2 flag manifold
RACHEL E. ELLIOTT, MARK E. LEWERS AND LEONARDO C.
MIHALCEA

453The irreducibility of polynomials related to a question of Schur
LENNY JONES AND ALICIA LAMARCHE

465Oscillation of solutions to nonlinear first-order delay differential equations
JAMES P. DIX AND JULIO G. DIX

483A variational approach to a generalized elastica problem
C. ALEX SAFSTEN AND LOGAN C. TATHAM

503When is a subgroup of a ring an ideal?
SUNIL K. CHEBOLU AND CHRISTINA L. HENRY

517Explicit bounds for the pseudospectra of various classes of matrices and
operators

FEIXUE GONG, OLIVIA MEYERSON, JEREMY MEZA, MIHAI

STOICIU AND ABIGAIL WARD

1944-4176(2016)9:3;1-2

involve
2016

vol.9,
no.3


	1. Introduction and background
	2. Preliminaries
	3. Z/mZ is strongly associate
	4. n-factorization properties of Z/mZ
	5. Further thoughts on Z/mZ with multiple prime factors
	Acknowledgments
	References
	
	

