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We study the cocircular relative equilibria (planar central configurations) in the
four-vortex problem using methods suggested by the study of cocircular central
configurations in the Newtonian four-body problem in recent work of Cors and
Roberts. Using mutual distance coordinates, we show that the set of four-vortex
relative equilibria is a two-dimensional surface with boundary curves representing
kite configurations, isosceles trapezoids, and degenerate configurations with one
zero vorticity. We also show that there is a constraint on the signs of the vorticities in
these configurations; either three or four of the vorticities must have the same sign,
in contrast to the noncocircular cases studied by Hampton, Roberts, and Santoprete.

1. Introduction

Understanding central configurations is a problem of fundamental importance
in celestial mechanics (for instance, see [Saari 2011]). Recent years have seen
heightened interest in the study of central configurations, in part due to the fact that
advances in computing power have made it possible to utilize tools from algebraic
geometry to study such problems. These tools have led to breakthroughs such as
the proof that there are only finitely many central configurations for each collection
of positive masses in the four-body problem [Hampton and Moeckel 2006], and the
proof of finiteness in generic cases of the five-body problem [Hampton and Jensen
2011; Albouy and Kaloshin 2012].

Similarly useful is the study of relative equilibrium configurations of collections
of Helmholtz vortices [Hampton and Moeckel 2009; Saari 2011]. Helmholtz vortices,
thought of as whirlpools lying in an infinite plane composed of a perfect fluid, were
first introduced as a means of modeling the interactions of two-dimensional slices
of collections of columnar vortex filaments. The study of relative equilibria of
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vortices has applications that range from basic fluid mechanics to the study of how
cyclones and hurricanes interact and evolve over time.

Algebraically, the equations defining relative equilibria of vortices are very similar
to those defining relative equilibria of masses. Suppose vortices of strengths 0i

(unlike the masses in the Newtonian problem, these can have positive or negative
real values) are initially located at positions qi ∈ R2. Writing ri j = ‖qi − q j‖ for
the mutual distance, we have a relative equilibrium if for all i ,∑

j 6=i

0 j
qi − q j

r2
i j
=−λ(qi − c), (1-1)

where λ is a constant and c is the center of rotation. The equations (1-1) differ
from their Newtonian equivalents because of the r2

i j in the denominators (where r3
i j

appears in the equations for relative equilibria of masses). The difference is caused
by a logarithmic potential in the vortex case that replaces the gravitational potential
in the Newtonian case.

In this paper, we study relative equilibria of collections of four point vortices
whose locations lie on a circle in the plane (the cocircular configurations in the title).
The inspiration for this study can be found in a recent paper in which Cors and
Roberts [2012] study the corresponding problem for four cocircular masses under
Newtonian gravity. Other articles devoted to the study of cocircular central configu-
rations include [Hampton 2005; Llibre and Valls 2015]. We also use a number of gen-
eral results on the vortex problem from a second recent article by Hampton, Roberts,
and Santoprete [Hampton et al. 2014]. We first present a set of equations in mutual
distance coordinates whose solutions correspond to these configurations in Section 2.
By analyzing the set of solutions of these equations, in Section 3 we obtain a surface
in R3 whose points parametrize the family of cocircular relative equilibria. Next, in
Section 4, we prove a result concerning the possible signs of the vorticities for a co-
circular relative equilibrium. We discuss some constraints on the positions qi and the
vorticities 0i in relative equilibria in Section 5. Finally, we follow [Cors and Roberts
2012], mutatis mutandis, and analyze two symmetric cases (kites and isosceles trape-
zoids) in Sections 6 and 7. These cases correspond to boundary points of our surface.

2. Equations for relative equilibria in mutual distance coordinates

By using results from [Hampton et al. 2014] on the general four-vortex problem
and adapting results from [Cors and Roberts 2012] on the cocircular case of the
four-body problem, in this section we will derive a set of equations characterizing
the cocircular relative equilibria in the four-vortex problem.

By equation (10) of [Hampton et al. 2014], the following relation (a conse-
quence of the Dziobek relations in the vortex case) is necessary and sufficient for
the existence of a four-vortex relative equilibrium with mutual distances ri j > 0,
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where 1≤ i < j ≤ 4:

(r2
13− r2

12)(r
2
23− r2

34)(r
2
24− r2

14)− (r
2
12− r2

14)(r
2
24− r2

34)(r
2
13− r2

23)= 0. (2-1)

For future reference, we note that this equation can be rearranged algebraically in
many different ways. We will also need the forms

(r2
14− r2

24)(r
2
13− r2

34)(r
2
12− r2

23)− (r
2
14− r2

34)(r
2
13− r2

23)(r
2
12− r2

24)= 0, (2-2)

(r2
23− r2

24)(r
2
14− r2

34)(r
2
12− r2

13)− (r
2
24− r2

34)(r
2
13− r2

14)(r
2
12− r2

23)= 0, (2-3)

(r2
24− r2

23)(r
2
13− r2

34)(r
2
12− r2

14)− (r
2
34− r2

23)(r
2
13− r2

14)(r
2
12− r2

24)= 0. (2-4)

Now we impose the condition that the locations of the four vortices lie on a
single circle in the plane. Numbering the positions sequentially around that circle,
it follows that r12, r23, r34, r14 are the lengths of the exterior edges of a cyclic
quadrilateral, and r13, r24 are the lengths of the diagonals. Letting

a = r12r34+ r14r23, b = r12r14+ r23r34, c = r12r23+ r14r34, (2-5)

from the law of cosines and the fact that opposite interior angles in the quadrilateral
are supplementary, it follows that

r2
13 =

ab
c
, (2-6)

r2
24 =

ac
b
. (2-7)

Multiplying the two equations above and taking square roots gives Ptolemy’s
theorem on cyclic quadrilaterals

r13r24 = r12r34+ r14r23. (2-8)

As in [Cors and Roberts 2012], we will always fix the numbering of the vortices
so that r12 is the largest exterior side length, and we will normalize the unit of
distance so r12 = 1. Then

r23, r34, r14 ≤ 1. (2-9)

As noted in [Cors and Roberts 2012], we also have
r13

r24
=

b
c
,

so

r13− r24 ≥ 0 ⇐⇒ b− c ≥ 0 ⇐⇒ (r14− r23)(r12− r34)≥ 0.

Since r12 ≥ r34 by our choice of labeling,

r14 ≥ r23 ⇐⇒ r13 ≥ r24. (2-10)

We note some additional useful consequences of the equations above relating the
diagonals of the cyclic quadrilateral to the exterior sides. In words, these inequalities
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will say that the diagonals of the cyclic quadrilateral are longer than any exterior
side on the opposite side of the diagonal from the longest exterior side. For instance,
from (2-6), notice that

r2
13− r2

14 = r34

(
r34r23+ r2

23r14+ r14− r3
14

r23+ r14r34

)
> 0 (2-11)

(since r14− r3
14 ≥ 0 by (2-9)). By similar computations, we also have

r2
13− r2

34 > 0, (2-12)

r2
24− r2

23 > 0, (2-13)

r2
24− r2

34 > 0. (2-14)

Let 0i ∈R\ {0}, where i = 1, . . . , 4, denote the strengths (vorticities) of the four
vortices. The derivation of (2-1) above and a computation analogous to that giving
equations (16)–(18) in [Cors and Roberts 2012] leads to the vorticity ratio formulas

02

01
=

r23r24(r2
13− r2

14)

r13r14(r2
24− r2

23)
, (2-15)

03

01
=

r23r34(1− r2
14)

r14(r2
23− r2

34)
, (2-16)

04

01
=

r24r34(r2
13− 1)

r13(r2
24− r2

34)
. (2-17)

We can always normalize (choose units for vorticity) to set 01 = 1. By (2-3)
and (2-11)–(2-14), the numerator in the formula for 02 and the denominators in
the formulas for 02 and 04 are always nonzero, so the values of 02 and 04 are
always determined by these. Equation (2-16) gives a well-defined value for03 unless
r2

23−r2
34=0. Looking at (2-4), (2-12), and (2-13), we see that this implies 1−r2

14=0,
so the quotient is actually indeterminate. If, on the other hand, the factor 1− r2

14
vanishes, then (2-4) and (2-11) show that r2

23 − r2
34 = 0, or 1− r2

24 = 0. When
r2

23− r2
34 = 0, an alternate formula for 03 can be derived using (2-1):

03 =
(r2

13− 1)(r2
24− 1)r2

23

(r2
24− r2

23)(r
2
13− r2

23)
. (2-18)

There are solutions with r14 = r12 = r24 = 1 corresponding to degenerate configura-
tions with vortices 1, 2 and 4 forming an equilateral triangle and 03 = 0. Similarly,
there are degenerate configurations with r13 = r12 = r23 = 1 and 04 = 0. The
configurations with r14= r12= 1 and r23= r34 are the symmetric kites to be studied
in Section 6.

Collecting all of the results stated above, we see the following statement.
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Theorem 2.1. A cocircular configuration of four vortices with mutual distances ri j ,
vorticities0i , and with r12=1, r14<1 and01=1 is a relative equilibrium if and only
if the ri j and 0i give a common zero of the following set of six polynomial equations:

F1 = r2
13(r23+ r34r14)− (r34+ r14r23)(r14+ r23r34),

F2 = r2
24(r14+ r23r34)− (r34+ r14r23)(r23+ r14r34),

F3 = (r2
13− 1)(r2

23− r2
34)(r

2
24− r2

14)− (1− r2
14)(r

2
24− r2

34)(r
2
13− r2

23),

F4 = r13r14(r2
24− r2

23)02− r23r24(r2
13− r2

14),

F5 = r14(r2
23− r2

34)03− r23r34(1− r2
14),

F6 = r13(r2
24− r2

34)04− r23r24(r2
13− 1).

(2-19)

When r12 = r14 = 1, the equation F5 = 0 is replaced by a similar equation F ′5 = 0
derived from (2-18).

3. The surface of cocircular relative equilibria

As suggested by the naive count of variables and equations in the system (2-19),
with our normalizations, the set of cocircular relative equilibria is two-dimensional.
The equations F4 = F5 = F6 = 0 in Theorem 2.1 express the vorticities 02, 03, 04

in terms of the ri j . Moreover, we may use the equations F1 = 0 and F2 = 0 to write
the squared diagonals r2

13 and r2
24 as functions of the other mutual distances as in

(2-6) and (2-7) above. Using these two relations, one can think of F3 as a function
of the three exterior side lengths r23, r34, r14:

F3(r23, r34, r14)= (r2
13− 1)(r2

23− r2
34)(r

2
24− r2

14)− (1− r2
14)(r

2
24− r2

34)(r
2
13− r2

23).

Then F3 = 0 defines an algebraic surface in R3 with coordinates r23, r34, r14.
By (2-9), we can plot the set of points on which F3 = 0 implicitly in the unit

cube. Figure 1 shows the view of the surface looking along the positive r14-axis
toward the (r23, r34)-plane. There is a nearly vertical portion of the surface that is
obscured from this viewpoint, but visible in the rotated view on the right in Figure 1.
However, the entire implicit plot is symmetric across the plane r14 = r23 (this can
be seen by the fact that interchanging r14 and r23 takes (2-1) to (2-2)).

Therefore we can assume without loss of generality that r14 ≥ r23, and so also
r13 ≥ r24 by (2-10). We will only consider that portion of the graph in the following.
Because of the shape, we will refer to it as the bowtie surface.

We next consider what configurations correspond to points on the boundary
curves. Note that if r14 = r23, then (2-5), (2-6), and (2-7) imply that r13 = r24 as
well, so the only cases where r14 = r23 are the configurations known as isosceles
trapezoids. These will be studied in more detail in Section 7. We next note that
since 1= r12≥ r14≥ r23, the rest of the boundary is defined by r14= 1. Substituting
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Figure 1. Two views of the surface F3(r23, r34, r14)= 0.

this into F3 and factoring yields

F3(r23, r34, 1)= (r23− r34)(r23+ r34)
2(r2

23+ r23r34+ r2
34− 1).

The first factor vanishes on points corresponding to kite configurations where
r23 = r34. The kite cases will be completely characterized in Section 6.

The second factor is never zero for positive mutual distances. Hence it is left to
consider cases where

r2
23+ r23r34+ r2

34− 1= 0.

Examining (2-7), we see that when r12 = r14 = 1, this equation is equivalent to
r2

24=1. Therefore, the vortices 1, 2, and 4 are at the corners of an equilateral triangle,
and it follows by (2-18) that 03 = 0. Thus, the points on this curved component of
the boundary shown in Figure 2 correspond to degenerate configurations.
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Figure 2. Plot of r2
23+ r23r34+ r2

34− 1= 0 with the graph of
F3(r23, r34, r14)= 0.
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Figure 3. Views of 03 along r14 axis (left) and from the side (right).

4. The signs of the vorticities

In this section, we will analyze the possible signs of the 0i in solutions of the
system of equations from Theorem 2.1. We will see that, in fact, in any such relative
equilibrium either all of the 0i have the same sign, or else three of the 0i have the
same sign and the remaining vorticity has the opposite sign.

We were led to conjecture these patterns by plots showing the values for the vortic-
ity 03 obtained from the equation F5=0 in (2-19) on the points of the bowtie surface
defined by F3 = 0. To generate the plots in Figure 3, we solved the equation F3 = 0
numerically for r14 as a function of r23 and r34 at a collection of points in the projec-
tion of the bowtie onto the (r23, r34)-plane, then plotted positive 03 values in blue
and negative 03 values in red. Figure 3 (left) shows a top view along the direction
of the r14-axis. Figure 3 (right) shows the same plot of 03-values, but from one side.

In the remainder of this section, we will give an analytic proof that 03 takes
opposite signs on the two lobes of the bowtie surface. We will need the following
fact; this depends only on the geometry of the cyclic quadrilateral.

Lemma 4.1 [Cors and Roberts 2012, Lemma 4.6]. Under the assumption r14 ≥ r23,
and the consequence noted above in (2-10), it follows that

r13

r24
≤

r14

r23
.

Proof. For the convenience of the reader, we reproduce the proof from [Cors
and Roberts 2012]. From (2-6) and (2-7), and using the assumptions r12 = 1 and
r23 ≤ r14, we have

r13

r24
=

b
c
=

r14+ r23r34

r23+ r14r34
≤

r14(1+ r34)

r23(1+ r34)
,

which implies the claim. �
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Lemma 4.2. In all cocircular four-vortex relative equilibria as above, 02 > 0.

Proof. From the equation F4 = 0, we have

02 =
r24

r13

r23

r14

(r2
13− r2

14)

(r2
24− r2

23)
. (4-1)

The inequality 02 > 0 follows from (2-11) and (2-13). �

The portion of the bowtie surface with r14 ≥ r23 off the boundary curves is
composed of two lobes: one (on the left in Figure 1 (left)) on which r23 < r34, and
a second on which r23 > r34. We will call these open subsets of the bowtie surface
lobe I and lobe II, respectively. The closures of the two lobes of the surface intersect
only at the point corresponding to a degenerate configuration that is also a kite.

We will deal with the points in the interior of lobe II first, since they follow
essentially the same patterns as those found by Cors and Roberts in the cocircular
four-body central configurations. We note that in [Cors and Roberts 2012, Sec-
tion 2.2], the inequality r23 ≥ r34 was deduced from the positivity of the masses mi .
However, this inequality holds by definition on our lobe II.

Theorem 4.3. On lobe II, we have

02 ≥ 04 ≥ 03 > 0.

Hence all four of the vorticities have the same sign on lobe II.

Proof. The inequality 02 ≥ 04 follows from the equations F4 = 0 and F6 = 0, or
from (2-15) and (2-17). These say

02 =
r23r24(r2

13− r2
14)

r13r14(r2
24− r2

23)
, 04 =

r34r24(r2
13− 1)

r13(r2
24− r2

34)
,

and the inequalities r23 > r34, r14 ≤ 1, and r13 ≥ r14 combine to give 02 ≥ 04.
Finally, 04 ≥ 03 > 0 follows using Lemma 4.1 just as in the proof of Theorem 4.4
of [Cors and Roberts 2012]. �

Now we analyze the situation on lobe I:

Theorem 4.4. On lobe I, we have

04 > 02 > 0> 03.

Hence three of the vorticities are positive and one is negative on lobe I.

Proof. The inequality 02 > 0 follows again from Lemma 4.2. On lobe I, r23 < r34

and the equation F5 = 0 from (2-19) imply that 03 < 0. Hence to finish the proof,
we only need to show that 04 > 02 on this lobe of the bowtie.
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We begin with the equations F4 = 0 and F6 = 0 from (2-19). Solving for 02, 04

and multiplying, we have

0204 =
r23r2

24r34

r2
13r14

(r2
13− r2

14)

(r2
24− r2

23)

(r2
13− 1)

(r2
24− r2

34)
.

We will show first that 0204 > 0. From (2-3), we also have

r2
13− r2

14

r2
24− r2

23
=
(r2

14− r2
34)(r

2
13− 1)

(1− r2
23)(r

2
24− r2

34)
. (4-2)

Substituting into the previous equation, we have

0204 =
r23r2

24r34

r2
13r14

(r2
14− r2

34)

(1− r2
23)

(
r2

13− 1

r2
24− r2

34

)2

.

Hence the sign of 0204 is determined by the sign of the factor r2
14− r2

34.
By rearranging (2-2) and (2-3) (with r12 = 1), we obtain the equations

r2
14− r2

34

1− r2
23
=
(r2

13− r2
34)(r

2
24− r2

14)

(r2
13− r2

23)(r
2
24− 1)

=
(r2

13− r2
14)(r

2
24− r2

34)

(r2
13− 1)(r2

24− r2
23)

. (4-3)

In the rightmost expression in (4-3), all of the factors except r2
13− 1 are known to

be positive by (2-11), (2-13), and (2-14). Similarly from (2-12) and r23 < r34, the
factors r2

13− r2
34 and r2

13− r2
23 in the middle product are also positive.

We consider the following possible cases. If r2
24− r2

14 and r2
24− 1 have the same

sign, then 0204 > 0 and we are done.
On the other hand, we claim that the case where these factors have opposite

signs, that is, r2
24 − 1 < 0 but r2

24 − r2
14 > 0, is not possible for a four-vortex

relative equilibrium (even though these relations are certainly possible for a cyclic
quadrilateral). We note that in this remaining potential “bad” case, from (4-3), we
have r2

13− 1< 0, so the edge lengths are ordered as

r12 = 1> r13 > r24 > r34 > r14 > r23. (4-4)

We will show that this is incompatible with the equation F3=0, but in the rearranged
form given in (2-4).

Denote the factors in that equation as ABC − abc = 0. Under the assumptions
that the lengths are ordered as in (4-4), we see

A = r2
24− r2

23 > a = r2
34− r2

23 > 0.

We claim that it is also true that BC > bc > 0, so the equation ABC − abc = 0
cannot hold. First, BC>0 and bc>0 by (4-4). Expand out the products in BC−bc,
noting one cancellation, to obtain

r2
13r2

24+ r2
14+ r2

34r2
14− r2

13r2
14− r2

34− r2
14r2

24.
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By Ptolemy’s theorem from (2-8), we can substitute for the first term and simplify
to obtain

BC − bc = r2
14(r

2
23+ r2

34+ 1− r2
13− r2

24)+ 2r14r23r34.

By the law of cosines as before, we have

r2
23+ r2

34 = r2
24+ 2r23r34 cos θ3,

where θ3 is the interior angle of the quadrilateral at vortex 3. Hence

BC − bc = r2
14(1− r2

13)+ 2r14r23r34(1+ r14 cos θ3) > 0.

This shows that this case cannot occur. Hence 0204>0 and in addition, r2
14−r2

34>0.
It remains to show that 04 > 02. By (2-15) and (2-17),

04

02
=

r34r14

r23

(r2
13− 1)(r2

24− r2
23)

(r2
13− r2

14)(r
2
24− r2

34)
.

As noted above, from (2-3) (with r12 = 1), we obtain

(r2
13− 1)(r2

24− r2
23)

(r2
13− r2

14)(r
2
24− r2

34)
=

1− r2
23

r2
14− r2

34
. (4-5)

Hence
04

02
=

r34r14(1− r2
23)

r23(r2
14− r2

34)
.

Note that both the numerator and the denominator are positive by the argument
showing 0204 > 0. We subtract the denominator in the last expression from the
numerator and factor to obtain

(r34− r14r23)(r14+ r23r34).

The first factor is positive since r34 > r23 on lobe I and r14 < 1. The second factor
is automatically positive since the ri j are distances. Hence 04 > 02. �

5. Further constraints on the qi and the 0i

We have already seen that, as in the Newtonian case, not every cyclic quadrilateral
can appear in a relative equilibrium of four vortices; there are additional geometric
constraints imposed by (2-1). The following lemma is inspired by the proof of
Conley’s perpendicular bisector theorem for Newtonian central configurations from
[Moeckel 1990] and gives another type of constraint. To our knowledge, this sort of
argument has not been used before for vortices and this sort of approach could be
useful in other situations. However, the fact that the 0i can be positive or negative
makes it somewhat difficult to foresee the circumstances where something of this
sort might be used (other than for cases where it is assumed that all the 0i are
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positive, for instance). We continue to assume that the positions of the vortices are
labeled in sequential order around the circumscribed circle, r12 = 1 is the longest
exterior side of the quadrilateral, r23 ≤ r14, and 0 = 1.

Lemma 5.1. Let L be the perpendicular bisector of the chord of the circle connect-
ing q2 and q3. Then q1 and q4 lie on opposite sides of L. In particular, the arc
from q1 to q2 along the circle not containing q3 and q4 is less than a semicircle.

Proof. We begin with the observation that, by Theorems 4.3 and 4.4, 01 = 1
and 04 > 0 have the same sign in all of our relative equilibria. From (1-1) with
i = 2, 3, we have the equations

01
q2− q1

r2
12
+03

q2− q3

r2
23
+04

q2− q4

r2
24
=−λ(q2− c),

01
q3− q1

r2
13
+02

q3− q2

r2
23
+04

q3− q4

r2
34
=−λ(q3− c).

Subtracting these two equations and rearranging, we see that the vector

01

(
q2− q1

r2
12
−

q3− q1

r2
13

)
+04

(
q2− q4

r2
24
−

q3− q4

r2
34

)
(5-1)

is a scalar multiple of q2 − q3. Let v be a unit vector orthogonal to q2 − q3.
The standard inner (dot) product of v and q2 − q3 is 〈v, q2 − q3〉 = 0. Hence
〈v, q2− q1〉 = 〈v, q3− q1〉 and 〈v, q2− q4〉 = 〈v, q3− q4〉. Call the first of these
scalars d1 and the second d4. Then taking the inner product of (5-1) and v, we obtain

01d1

(
1

r2
12
−

1
r2

13

)
+04 d4

(
1

r2
24
−

1
r2

34

)
= 0. (5-2)

We claim that this relation can only hold when q1 and q4 lie on opposite sides
of L . Note that 1/r2

12 − 1/r2
13 (respectively, 1/r2

24 − 1/r2
34) is zero only if q1

(respectively, q4) lies on the perpendicular bisector L . Moreover the sign is positive
if q1 (respectively, q4) lies in the half-plane bounded by L and containing q2 and
negative on the half-plane containing q3. On the other hand, d1 and d4 both have
the same sign since q1 and q4 lie in the same half-plane bounded by the chord
through q2 and q3. Hence the only way the left side of (5-2) can cancel to zero is
if q1 and q4 lie on opposite sides of L . �

Theorem 5.2. In all of our relative equilibria, 02 ≤ 1.

Proof. In a cyclic quadrilateral, it is a standard fact that the angle between an
exterior side and a diagonal is equal to the angle between the opposite side and the
other diagonal. It follows that the four triangles formed by the two diagonals and
the exterior sides are similar in pairs. In particular, the angle at q4 in the triangle
formed by q1, q2, q4 and the angle at q3 in the triangle formed by q1, q2, q3 are
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equal. Denote this angle by θ . By Lemma 5.1, θ < π/2, so cos θ > 0. By the law
of cosines in these triangles,

r2
13+ r2

23 = r2
12+ 2r13r23 cos θ,

r2
14+ r2

24 = r2
12+ 2r14r24 cos θ.

By Lemma 4.1, r13r23≤ r14r24, and hence since cos θ > 0, it follows that r2
13+r2

23≤

r2
14+ r2

24. Thus r2
13− r2

14 ≤ r2
24− r2

23 and the statement to be proved follows since
each of the three factors in the product giving 02 in (4-1) is at most 1. �

It follows from this result that 01 = 1≥ 02 ≥ 04 ≥ 03 > 0 on lobe II from the
previous section. On lobe I, we have 04 > 02 > 0> 03, but at present we do not
see how to get good bounds on 04 or 03.

6. The kite configurations

We call a convex quadrilateral a kite if two opposite vertices lie on an axis of
symmetry of the configuration (see Figure 4). Thus a cocircular relative equilibrium
forms a kite if and only if one pair of opposite vortices lie on the diameter of the
circumscribed circle. There are also kites that are not cocircular, but we will not
consider them. In the following, we will assume, as in Figure 4, that the axis of
symmetry passes through vortices 1 and 3.

The definition of a kite implies that adjacent sides are equal for the two vortices
that lie on the diameter of the circle. Thus the conditions r12= r14= 1 and r23= r34

hold. For any kite inscribed in a circle, each side of the line of symmetry forms a
right triangle. This gives us the Pythagorean relation

r2
13 = 1+ r2

34. (6-1)

To analyze this case, we will use (2-19), but with F5 = 0 replaced by the
equivalent form F ′5 = 0 from (2-18). We will make use of Gröbner bases for the
ideals generated by these polynomials. See [Cox et al. 2007] for general background

01

02

03

04

Figure 4. Kite configuration with line of symmetry through
vortices 1 and 3.
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on this algebraic technique. Equations for the kite configurations are obtained by
substituting r14 = 1 and r23 = r34. We adjoin an additional equation,

1− tr13r24r34020304,

to force the variables appearing there to be nonzero. Using Sage [Stein et al.
2012], we compute a Gröbner basis for the substituted ideal with respect to the
lexicographic order with the variables ordered as

t > r13 > r24 > r34 > 02 > 03 > 04.

The resulting Gröbner basis contains 24 polynomials, one of which depends only
on 03, 04. After factoring, we see that this polynomial is

(402
4 +0403+04− 203)(−402

4 +0403+04+ 203). (6-2)

The next polynomial in the Gröbner basis is

02−04,

which shows that 02 = 04 for all kite configurations, as we expect from the
symmetry.

The real vanishing locus of each of the two factors in (6-2) is a hyperbola in
the (03, 04)-plane and each of these equations can be solved for 03 in terms of 04:

03 =
∓402

4 −04

04∓ 2
(6-3)

(the − sign gives the solution of the equation from the left-hand factor in (6-2) and
the + gives the solution of the equation from the right-hand factor).

Adjoining each factor in (6-2) to the ideal individually and computing Gröbner
bases again, all of the other variables can be expressed in terms of 04. From the
system using the left-hand factor in (6-2), for instance, we obtain

r2
34 =

304

04− 2
, r2

24 =
604

204− 1
, r2

13 =
404− 2
04− 2

.

All of the right sides must be positive since ri j must be nonzero and real. In addition,
r34 ≤ 1 forces −1≤04 ≤ 0. However, since 04 > 0 on the interiors of lobes I and II
of the bowtie surface from Theorems 4.4 and 4.3, we see that the left-hand factor
from (6-2) is satisfied only for points on the surface F3 = 0 with r23 > r14.

With the right-hand factor in (6-2), we obtain

r2
34 =

304

04+ 2
, r2

24 =
604

204+ 1
, r2

13 =
404+ 2
04+ 2

. (6-4)

(The last equation also follows from (6-1).) Now the equation for r2
34 shows that to

get 0< r34 ≤ 1, we must have 0< 04 ≤ 1. Using the + signs in (6-3), it follows
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01 02

0304

Figure 5. An isosceles trapezoid.

that 03 < 0 for 0 < 04 <
1
4 and 03 > 0 for 1

4 < 04 ≤ 1. The points with 03 < 0
form one of the boundary curves of lobe I of the bowtie surface considered above,
and the points with 03 > 0 give one boundary curve of lobe II. When 04 =

1
4 , it

follows that r34 = 1/
√

3, and the corresponding configuration is the symmetric
degenerate configuration mentioned before: an equilateral triangle configuration
with 01 = 1, 02 = 04 =

1
4 , and an additional vortex with 03 = 0. When 04 = 1, we

have a geometric square configuration with all exterior sides equal to 1, diagonals
equal to

√
2, and all vorticities 0i = 1.

We have proved the following statements.

Theorem 6.1. There is exactly one kite configuration corresponding to each point
on the intersection of the bowtie surface F3 = 0 and the plane given by r23 = r34.
These configurations are parametrized by the value of the vorticity 04 with 0<04≤1
as in (6-4). The other vorticities are 02 = 04 and

03 =
402

4 −04

04+ 2
.

The values 0<04≤
1
4 give the portion of the boundary curve in the closure of lobe I

and the values 1
4 ≤ 04 ≤ 1 give the portion of the boundary curve in the closure

of lobe II.

7. The isosceles trapezoid configurations

We will call a convex quadrilateral possessing a line of symmetry passing through
the midpoints of two opposite edges an isosceles trapezoid. Any such quadrilateral
has a circumscribed circle. If we label the vertices as in Figure 5, then the equal
pairs of distances are r13= r24 and r14= r23. The corresponding four-vortex relative
equilibria have been described already in Section 7 of [Hampton et al. 2014]. Hence
we will only briefly discuss how the results of Hampton, Roberts and Santoprete
can be recovered with our setup.

To analyze this case, we will use (2-19). Equations for the isosceles trapezoid
configurations are obtained by substituting r23 = r14 and r24 = r13. We adjoin an
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additional equation,
1− tr14r13r34020304,

to force the variables appearing there to be nonzero. Using Sage [Stein et al.
2012], we compute a Gröbner basis for the substituted ideal with respect to the
lexicographic order with the variables ordered as

t > r14 > r13 > r34 > 03 > 04 > 02.

The resulting Gröbner basis contains 35 polynomials. In factored form, the equations
from the polynomials with the three smallest lex leading terms are

(02− 1)(r34+ 1)= 0,

(04− 1)(03−04)(r34+ 1)= 0,

(r34− 1)(r34+ 1)(03−04)= 0.

The first implies that02=1, since r34>0. Similarly, the second implies either04=1
or 04=03 and the third implies r34=1 or 04=03. If r34=1, then the configuration
must be a geometric square and 0i = 1 for i = 1, . . . , 4. Hence we see the symmetry
of the vorticities directly from the form of the Gröbner basis polynomials.

From the subsequent polynomials in the basis, we can solve for the remaining
distances in terms of 03 with the triangular form system

r2
34 =

203+0
2
3

203+ 1
, r2

13 =
03r2

34− r34

03− r34
, r2

14 =
03r2

34+ 2r2
13−03− 2

2r2
13− 2

. (7-1)

From the first equation here, we see that 0< r34 ≤ 1 only when −2< 03 ≤−1
or 0< 03 ≤ 1. The last equation then shows r2

14 > 0 only when 0< 03 ≤ 1.

Theorem 7.1. There is exactly one isosceles trapezoid configuration corresponding
to each point on the intersection of the bowtie surface F3 = 0 and the plane given
by r14 = r23. With the labeling in Figure 5, these configurations are parametrized
by the value of the vorticity 03 with 0< 03 ≤ 1 as in (7-1). The point with 03 = 1
corresponds to the geometric square configuration.
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