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We study some combinatorial objects related to the flag manifold X of Lie
type G2. Using the moment graph of X , we calculate all the curve neighborhoods
for Schubert classes. We use this calculation to investigate the ordinary and
quantum cohomology rings of X . As an application, we obtain positive Schubert
polynomials for the cohomology ring of X and we find quantum Schubert poly-
nomials which represent Schubert classes in the quantum cohomology ring of X .

1. Introduction

One of the major theorems in algebra is the classification of complex semisimple Lie
algebras. There are four classical infinite series (of types An , Bn , Cn , Dn) and five
exceptional finite series (of types E6, E7, E8, F4, G2). To each algebra, one can asso-
ciate a group and to each group a certain geometric object called a flag manifold. In
type An , the points of this flag manifold are sequences V1⊂ V2⊂ · · · ⊂Cn of vector
spaces Vi of dimension i . The algebra of type G2 is considered the simplest among
the exceptional series, and we denote by X the flag manifold for type G2. The study
of flag manifolds has a long and rich history starting in the 1950s, and it lies at the in-
tersection of algebraic geometry, combinatorics, topology and representation theory.

One can associate a ring to the flag manifold X called the cohomology ring H∗(X).
This ring has a distinguished basis given by Schubert classes σw, indexed by the
elements w in the Weyl group W of type G2; see Section 4 below. We recall
that W is actually isomorphic to the dihedral group with 12 elements, although we
will use a different realization of it which is more suitable for our purposes. This
ring is generated by Schubert classes σs1, σs2 for the simple reflections s1, s2 in W .
Therefore, at least in principle, the full multiplication table in the ring is determined
by a formula to multiply one Schubert class by another for either s1 or s2. This is
called a Chevalley formula. There has been a substantial amount of work to find
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Chevalley formulas for this ring, starting with Chevalley [1994] in the 1950s. This
formula can be expressed combinatorially in terms of the root system and the Weyl
group for type G2. Alternatively, the cohomology ring has a “Borel” presentation
H∗(X)=Q[x1, x2]/I , where I is the ideal generated by x2

1 − x1x2+ x2
2 and x6

1 . A
natural question is to find out what is the relation between this “algebraic” presenta-
tion and the “geometric” one which involves the Schubert basis. In other words, one
needs to find a polynomial in Q[x1, x2] which represents a Schubert class σw under
the isomorphism H∗(X)=Q[x1, x2]. This is called a Schubert polynomial. Such
polynomials are not unique, as their class in Q[x1, x2]/I is unchanged if one changes
a polynomial by elements in I . In Section 5, we use the Chevalley rule to find Schu-
bert polynomials for σw. Some of our polynomials coincide with similar Schubert
polynomials found by D. Anderson [2011], via different methods. The polynomials
we found are homogeneous and have positive coefficients. Given that the positivity
of Schubert polynomial coefficients has geometric interpretations in type An (see
the paper of A. Knutson and E. Miller [2005]), this is a desirable property.

The current paper also focuses on a deformation of the ring above called the
quantum cohomology ring QH∗(X). It is a deformation of H∗(X) with the addition
of quantum parameters qd

= qd1
1 qd2

2 for degrees d = (d1, d2). If d = (0, 0), or
equivalently q1 = q2 = 0, the product reduces to the corresponding calculation
in H∗(X). More detail will be given in Section 4. See [Fulton and Pandharipande
1997] for more information about the background/history of this ring. Similar to the
ring H∗(X), the quantum cohomology ring has a Z[q]-basis consisting of Schubert
classes σw (where q = (q1, q2) are the quantum parameters), and it is generated as
a ring by the classes σs1 and σs2 for the simple reflections s1 and s2.

The quantum Chevalley formula is a formula for the quantum multiplication
σw ? σsi (i = 1, 2). An explicit form of this formula, which uses combinatorics of the
root system of Lie type G2, was obtained by Fulton and Woodward [2004]. In this pa-
per, we use the “curve neighborhoods” method to write down the explicit Chevalley
formula. This alternative method, obtained by Buch and Mihalcea [2015], involves
an interesting graph associated to the flag manifold, called the moment graph. Its
definition and properties are found in Section 3. It also has the advantage that it leads
to a conjectural Chevalley formula in a further deformation of the quantum cohomol-
ogy ring, called quantum K -theory. This will be addressed in a follow-up paper.

Our main application is to obtain a quantum version of the Schubert polyno-
mials. More precisely, it is known [Fulton and Pandharipande 1997, Proposi-
tion 11] that QH∗(X) = Q[x1, x2, q1, q2]/ Ĩ , where Ĩ a certain ideal which de-
forms I . Then, as in the classical case, we would like to find the polynomials
in Q[x1, x2, q1, q2] which represent each Schubert class σw via the isomorphism
QH∗(X) = Q[x1, x2, q1, q2]/ Ĩ . These are called quantum Schubert polynomials.
As before, these polynomials are not unique, but we can impose some natural
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conditions that they satisfy, such as the fact that they deform the ordinary Schubert
polynomials, and that they are homogeneous with respect to a certain grading.
To our knowledge, such polynomials have not been explicitly calculated in the
literature. As a byproduct, we also use the quantum Chevalley formula to recover
the ideal Ĩ of quantum relations. This ideal has been, in principle, calculated by Kim
[1999] using different techniques, but the explicit polynomials generating this ideal
do not seem to appear in the literature. Our results are stated in Theorem 5.2 below.

2. Preliminaries: the root system and the Weyl group of type G2

2A. The G2 root system. Denote by R the root system of type G2. It consists of
12 roots, which are nonzero vectors in the hyperplane in R3 given by the equation
ξ1+ ξ2+ ξ3 = 0; our main reference is [Bourbaki 2002]. The roots are displayed
in Table 1, in terms of the natural coordinates in R3. Each root α can be written
uniquely as α = c1α1+ c2α2, where α1, α2 are simple roots and c1c2 ≥ 0. A root
is positive (negative) if both c1, c2 are nonnegative (resp. nonpositive). The set of
simple roots is denoted by1={α1, α2}, where α1= ε1−ε2 and α2=−2ε1+ε2+ε3.
For later purposes, we need to expand each root in terms of the simple roots. The full
results are shown in Table 1. The root vectors in the1-basis can be seen in Figure 1.

We also need the dual root system consisting of coroots α∨. The coroot α∨ of
a root α is defined as α∨ = 2α/(α, α), where (α, α) is the standard inner product
in R3. Note that the coroots satisfy the properties (α∨)∨ = α and (−α)∨ =−α∨.
We denote the full set of coroots by R∨ and define the set 1∨, which holds the
simple coroots α∨1 and α∨2 for R∨. Table 1 shows the values for each of the coroots.

2B. The Weyl group of G2. The Weyl group of G2, denoted W , is the group
generated by reflections sα, where α ∈ R. Let si := sαi . Geometrically, sα is the
reflection across the line perpendicular to the root α. For example, the reflection s1

−(3α1+2α2)

3α1+α2α2

3α1+2α2

−(3α1+α2) −α2

α1

2α1+α2α1+α2

−α1

−(2α1+α2) −(α1+α2)

Figure 1. The root system for G2. Each node is a root. The blue
lines represent the coordinate system using the 1-basis.
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natural coordinates E-basis
±

simple roots basis coroot α∨

(ε1,ε2,ε3) (α1,α2) α∨= λα1+µα2

ε1−ε2 + α1 α∨1 =α1

ε3−ε1 + α1+α2 (α1+α2)
∨
=α1+α2

ε3−ε2 + 2α1+α2 (2α1+α2)
∨
= 2α1+α2

ε2+ε3−2ε1 + α2 α∨2 =
1
3α2

ε1+ε3−2ε2 + 3α1+α2 (3α1+α2)
∨
=α1+

1
3α2

−ε1−ε2+2ε3 + 3α1+2α2 (3α1+2α2)
∨
=α1+

2
3α2

−(ε1−ε2) − −α1 (−α1)
∨
=−α1

−(ε3−ε1) − −(α1+α2) (−α1−α2)
∨
=−α1−α2

−(ε3−ε2) − −(2α1+α2) (−2α1−α2)
∨
=−2α1−α2

−(ε2+ε3−2ε1) − −α2 (−α2)
∨
=−

1
3α2

−(ε1+ε3−2ε2) − −(3α1+α2) (−3α1−α2)
∨
=−α1−

1
3α2

−(−ε1−ε2+2ε3) − −(3α1+2α2) (−3α1−2α2)
∨
=−α1−

2
3α2

Table 1. The root system of type G2. For each root, we give its
sign, the root in terms of 1-basis, and the corresponding coroot.

(corresponding to sα1) is the reflection across the line perpendicular to the α1-axis
(see Figure 2). As Figure 2 shows, for any root α, we have sα = s−α. Therefore
only six unique reflections exist for the G2 root system.

It is known (see, e.g., [Humphreys 1972]) that W has the presentation

W = 〈s1, s2 : s1
2
= s2

2
= 1, (s1s2)

6
= 1〉.

From this it follows easily that W is isomorphic to the dihedral group with 12 ele-
ments. In order to determine the reflections in W , we need the following definitions.

Definition 2.1. Consider w ∈W . A reduced expression for w is one involving prod-
ucts of s1 and s2 in as short a way as possible (via the relations in the presentation).
If w ∈W , where w is a reduced expression, the length of w, denoted by `(w), is
the number of simple reflections (s1 and s2) that show up in the reduced expression.

α1−α1

Figure 2. The reflection sα1 (dashed line) which is perpendicular
to the α1-axis (blue line).
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root (in 1-basis) reflection (w ∈W )

±α1 s1

±α2 s2

±(3α1+α2) s1s2s1

±(α1+α2) s2s1s2

±(2α1+α2) s1s2s1s2s1

±(3α1+ 2α2) s2s1s2s1s2

Table 2. The root reflection corresponding to each root in G2.

Example 2.2. Consider w = s1s1s1s2s1s2. From the presentation of W , we know
that s1

2
= s1s1= 1 and so this expression is not reduced. However, (s1s1)s1s2s1s2=

(1)s1s2s1s2 = s1s2s1s2. The latter is a reduced expression and `(w)= 4.

The 12 reduced expressions of the elements in W are

W =
{
1, s1, s2, s1s2, s2s1, s1s2s1, s2s1s2, s1s2s1s2,

s1s2s1s2, s2s1s2s1, s1s2s1s2s1, s2s1s2s1s2, s1s2s1s2s1s2
}
.

We denote by w0 the longest element s1s2s1s2s1s2. Notice that among the twelve
elements, only six of them are the root reflections from the root system of G2.
Because any reflection has order 2, it is easy to check that the root reflections
correspond to the reduced expressions of odd length.

Since the reflections s1 and s2 generate W , every reflection sα in the G2 root
system can be expressed as a reduced expression product of s1s and s2s. Consider
the action of W on the root system R given by the natural action of reflections on
vectors in R3. Explicitly, this action is given by sα ·β = sα(β)= β− (β, α∨)α (see
[Humphreys 1972, p. 43]). The following lemma in proved in [loc. cit.].

Lemma 2.3. Let w ∈W and α ∈ R. Then wsαw−1
= sw·α.

Example 2.4. Considerw= s1s2s1. We want to find a reflection sα that corresponds
to w. By Lemma 2.3, s1s2s1 = ss1(α2), where s1 is its own inverse and the action is

s1(α2)= α2− (α2, α1
∨)α1 = α2−

(
α2,

2α1
(α1, α1)

)
α1.

We know (α1, α1)= 2, (see Table 1) so

α2−

(
α2,

2α1
(α1, α1)

)
α1 = α2−

(
α2,

2α1
2

)
α1 = α2− (α2, α1)α1

= α2− (−3)α1.

Thus s1(α2)= 3α1+α2. The reflection s1s2s1 is the reflection s3α1+α2 .

Table 2 shows the reflection across the line perpendicular to each root. Notice that
roots α and −α have the same reflection and all reflections listed have odd length.
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coroot degree d
α∨ = d1α1

∨
+ d2α2

∨ (d1, d2)

α1
∨ (1, 0)

α2
∨ (0, 1)

(3α1+α2)
∨ (1, 1)

(α1+α2)
∨ (1, 3)

(2α1+α2)
∨ (2, 3)

(3α1+ 2α2)
∨ (1, 2)

Table 3. The degree for each coroot in the moment graph.

3. The moment graph and curve neighborhoods

3A. Finding the moment graph. Using the properties of the elements in the Weyl
group for G2, it is possible to define the following graph.

Definition 3.1. The moment graph is an oriented graph that consists of a pair
(V, E), where V is the set of vertices and E is the set of edges. To each Weyl group
element v ∈ W there corresponds a vertex v ∈ V in this graph. For x, y ∈ V , an
edge exists from x to y, denoted by

x α∨
−→ y,

if there exists a reflection sα such that y = xsα and `(y) > `(x).

Definition 3.2. A degree d is a nonnegative combination d1α
∨

1 + d2α
∨

2 of simple
coroots. We will denote it as d = (d1, d2).

Since any coroot α∨ is a linear combination in terms of α∨1 and α∨2 , it determines
a degree. These degrees are given in Table 3.

Example 3.3. An edge exists from s1 to s2s1. This is so because

`(s2s1) > `(s1) and s2s1 = s1sα, where sα = s1s2s1.

Example 2.4 shows s1s2s1 = s3α1+α2 . The edge corresponding to these two edges
has degree (3α1+α2)

∨; i.e.,

s1
(3α1+α2)

∨

−−−−→ s2s1.

Notice that (3α1+α2)
∨
= 1α∨1 + 1α∨2 , so d = (1, 1). The edge from s1 to s2s1 can

be represented by the degree (1, 1).

We depict the moment graph as oriented upward, as in Figure 3. To help read
the moment graph, a color code has been set up to represent the different edges.
We review some of the relevant properties of the moment graph:
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id

s2

s2s1

s2s1s2

s2s1s2s1

s2s1s2s1s2

w0

s1s2s1s2s1

s1s2s1s2

s1s2s1

s1s2

s1

Figure 3. The moment graph for G2. The color code for the de-
grees is black= (1, 0), violet= (0, 1), red= (1, 1), green= (1, 3),
blue= (2, 3), orange= (1, 2).

• The vertices correspond to the 12 Weyl group elements.

• The edges represent the root reflections associated to the G2 root system. There
are six different types of edges (different degree values) because there are
exactly six reflections in the G2 root system. Note that edges exist between
Weyl group elements if the difference between lengths is odd.

• The bottom vertex is the element with the smallest length (id, where `(id)= 0).
The vertices in the next “row” have length 1 (s1 and s2). The length of these
elements increases by one as you travel up the graph. The top vertex is the
element with the largest length, w0, where `(w0)= 6.

• For any vertex, there are six edges connected to it, corresponding to the six
different coroots in R∨.

• For any w1, w2 ∈W , where `(w1)= `(w2), both w1 and w2 will have edges
connecting to the same six vertices.

3B. Curve neighborhoods. In Section 3A, we defined the degree d to help sim-
plify the moment graph for use in future calculations. The importance of the
moment graph can be realized with the following concept defined by A. Buch and
L. Mihalcea [2015]:

Definition 3.4. Fix a degree d = (d1, d2) and an element u of the Weyl group W .
The curve neighborhood, 0d(u), is a subset of W which consists of the maximal
elements in the moment graph which can be reached from u with a path of total
degree at most d.
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Example 3.5. Consider w= id and d = (1, 1). We want to determine the “highest”
path (starting at the identity) where the total degree traveled is at most (1, 1). By
inspecting the moment graph, we see that there are three initial paths starting from id:

• path d = (1, 0), which goes from id to s1. Upon reaching s1, one is not allowed
to travel more than d ′ = (0, 1) upwards. Further inspection of the moment graph
shows that a path exists with degree (0, 1) from s1 to s1s2. We now have traveled a
total degree of (1,1). Thus we are done and s1s2 is the largest element on this path.

• path d = (0, 1) which goes from id to s2. Upon reaching s2, one is not allowed
to travel more than d ′ = (1, 0) upwards. Further inspection gives a path with
degree (1, 0) from s2 to s2s1. We now have traveled a total degree of (1, 1). Thus
we are done and s2s1 is the largest element on this path.

• path d = (1, 1) which goes from id to s1s2s1. Since we traveled a total degree
of (1, 1), we are done, and s1s2s1 is the largest element on this path.

We now take the maximal element that can be reached from id with degree (1, 1).
The largest of the three elements above is s1s2s1; thus 0(1,1)(id)= {s1s2s1}.

It is clear that for anyw∈W , there exists some degree (a, b)where0(a,b)(w)=w0.
Then for any larger degree (a′, b′), where a′≥a and b′≥b, we have 0(a′,b′)(w)=w0.
Table 6 in the Appendix shows the curve neighborhoods for every element of the
Weyl group. For all the examples given, the curve neighborhood for some degree d
at u ∈W is always unique, a fact which was initially proved in [Buch and Mihalcea
2015] for all Lie types.

4. Quantum cohomology ring for flag manifold X

Recall that X denotes the flag manifold of type G2. The cohomology ring, denoted
by H∗(X), consists of elements that can each be written uniquely as finite sums∑

w∈W awσw, where aw ∈ Z and σw is a (geometrically defined) Schubert class.
Addition in this ring is given by∑

w∈W

awσw +
∑
w∈W

bwσw =
∑
w∈W

(aw + bw)σw.

The quantum cohomology ring QH∗(X) is a deformation of H∗(X) by adding
quantum parameters, qd

= qd1
1 qd2

2 for degrees d = (d1, d2). If d = (0, 0) for any
calculation in QH∗(X), we reduce down to the corresponding calculation in H∗(X).
Similarly to H∗(X), the elements of QH∗(X) can each be written uniquely as
finite sums

∑
w∈W aw(d)qdσw, where aw(d) ∈ Z. The addition in this ring is also

straightforward:∑
w∈W

aw(d)qdσw +
∑
w∈W

bw(d)qdσw =
∑
w∈W

(aw(d)+ bw(d))qdσw.



QUANTUM SCHUBERT POLYNOMIALS FOR THE G2 FLAG MANIFOLD 445

The multiplication in this ring is given by certain integers cw,du,v called the Gromov–
Witten invariants:

σu ? σv =
∑
w,d

cw,du,v qdσw,

where the sum is over w ∈W and degrees d which have nonnegative components.
The (quantum) cohomology ring has two generators, namely σs1 and σs2 , correspond-
ing to the simple reflections s1, s2 ∈W . As a result, every element is a sum of mono-
mials in the σsi , and the quantum multiplication σu ? σsi by generators σsi determines
the entire ring multiplication. The formula for σw ? σsi , the (quantum) Chevalley rule,
is illustrated in Section 4A. We list below a few properties that will help to understand
this ring and we refer, e.g., to [Fulton and Pandharipande 1997] for full details.

(1) The multiplication of quantum parameters is given by qds
i qd ′s

i = qds+d ′s
i .

(2) The quantum multiplication ? is associative, commutative and has unit 1= σid.

(3) The quantum multiplication is graded by imposing deg(σw) = `(w) and for
d = (d1, d2), we have deg qd

= 2(d1+ d2). This implies that deg(σu ? σv)=

deg(σu)+ deg(σv) and that cw,du,v = 0 unless `(u)+ `(v)= `(w)+ deg qd .

(4) If we impose the substitution q1 = q2 = 0 in σu ? σv then we obtain the
multiplication σu · σv in the ordinary cohomology ring H∗(X).

4A. Quantum Chevalley rule via curve neighborhoods. Recall that each coroot α∨

can be written as a linear combination α∨ = d1α
∨

1 + d2α
∨

2 , where α∨1 , α
∨

2 are the
simple coroots and d1, d2 ∈ Z. It follows that each α∨ can be identified with the
unique degree d = (d1, d2). Let d[i] denote the i-th component of the degree d
in the decomposition d = d[1]α∨1 + d[2]α∨2 . In other words, d[i] = di . Note that
α∨[i] means the same thing as d[i].

The classical Chevalley rule [1994] (see also [Fulton and Woodward 2004]) is a
formula for the products σu · σsi ∈ H∗(X):

σu · σsi =

∑
α

(α∨[i])σusα , (1)

where the sum is over positive roots α such that `(usα)= `(u)+ 1.
The quantum Chevalley formula for σu ? σsi =

∑
w,d cw,du,si

qdσw was first proved by
Fulton and Woodward [2004]. See Theorem 4.3 below. We follow here an approach
based on curve neighborhoods, recently proved by Buch and Mihalcea [2015].
If d= (0, 0) then the coefficients cw,du,si

are those from identity (1) above. If d 6= (0, 0)
then the quantum coefficient cw,du,si

can be calculated as follows. First, let w[d] ∈W
be the curve neighborhood 0d(w). Then

cw,du,si
= d[i] · δu,w[d], (2)

where δv1,v2 is the Kronecker symbol and w satisfies `(w)+ deg qd
= `(u)+ 1.
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Remark 4.1. Although it is not clear from the definition, it turns out that if d[i] 6= 0
then u = w[d] only if d = α∨ for some α such that `(sα) = deg qα

∨

− 1. This
recovers the original quantum Chevalley rule from [Fulton and Woodward 2004].

Example 4.2. Consider σs1 ? σs1 .

•Assume d= (0, 0). We need to determine roots α such that `(s1sα)= `(s1)+1=2.
The only possible Weyl group elements to represent sα are s2 and s1s2s1. If sα = s2

then α=α2. This implies α∨= (0, 1), so α∨[1]=0. If sα= s1s2s1 then α=3α1+α2.
This implies α∨ = (1, 1), so α∨[1] = 1. Thus∑

α

(α∨[i])σusα = 0 · σs1s2 + 1 · σs1s1s2s1 = σs2s1 .

• Assume d 6= (0, 0). We need to determine w ∈W such that w[d] = 0d(w)= s1.
According to the curve neighborhood results table in the Appendix, the only possible
w ∈W are id and s1. For both elements, the possible nondegrees are (N , 0), where
N ∈ N. Note that we also need to choose w and d such that `(w)+ deg qd

=

`(s1)+ 1 = 2. Since deg qd is never odd, `(w) must be even. This eliminates s1.
As for id, `(id) = 0 so then deg qd

= 2, where d = (N , 0). This implies N = 1.
Therefore cid,(1,0)

s1,s1 = d[1] · δs1,s1 = 1 · 1 = 1 and this represents the only nonzero
quantum term. Thus for d 6= (0, 0),∑

w∈W,d

cw,du,si
qdσw = 1 · q(1,0) · σid = 1 · q1 · 1= q1.

Combining the classical (i.e., from H∗(X)) and pure quantum terms gives us
σs1 ? σs1 = σs2s1 + q1.

Table 4 shows the results of our quantum Chevalley computations.

Theorem 4.3 (the quantum Chevalley rule [Fulton and Woodward 2004; Buch and
Mihalcea 2015]). The following holds in QH∗(X):

σu ? σsi =

∑
α

(α∨[i])σusα +
∑
β

(β∨[i])qβ
∨

σusβ . (3)

The first sum is over positive roots α such that `(usα) = `(u)+ 1 and the second
sum is over positive roots β such that `(usβ)= `(u)+ 1− deg(qβ

∨

).

5. Quantum Schubert polynomials

We know that QH∗(X) is generated as a Q[q] =Q[q1, q2]-algebra by the classes
σs1 and σs2 . (This means that every element in QH∗(X) can be written as a sum
of monomials in the σsi with coefficients in Q[q].) Then there exists a surjective
homomorphism of Q[q]-algebras 9 :Q[x1, x2; q1, q2] → QH∗(X) sending

9(qi )= qi , 9(x1)= σs1, 9(x1+ x2)= σs2 .
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w σw ?σs1 σw ?σs2

s1 σs2s1+q1 σs1s2+σs2s1

s2 σs1s2+σs2s1 3σs1s2+q2

s1s2 σs1s2s1+σs2s1s2 2σs2s1s2+q2σs1

s2s1 2σs1s2s1+q1σs2 3σs1s2s1+σs2s1s2

s1s2s1 σs2s1s2s1+q1σs1s2+q1q2 σs1s2s1s2+2σs2s1s2s1+q1q2

s2s1s2 σs2s1s2s1+2σs1s2s1s2 3σs1s2s1s2+q2σs2s1

s1s2s1s2 σs1s2s1s2s1+σs2s1s2s1s2 σs2s1s2s1s2+q2σs1s2s1

s2s1s2s1 σs1s2s1s2s1+q1σs2s1s2+q1q2σs2 σs2s1s2s1s2+3σs1s2s1s2s1+q1q2σs2

s1s2s1s2s1 q1σs1s2s1s2+q1q2σs1s2 σw0+q1q2σs1s2

s2s1s2s1s2 σw0+q1q2
2 q2σs2s1s2s1+2q1q2

2

w0= (s1s2)
3 q1σs2s1s2s1s2+q1q2σs2s1s2+q1q2

2σs1 q2σs1s2s1s2s1+q1q2σs2s1s2+2q1q2
2σs1

Table 4. The quantum Chevalley table.

Note that for any P, P ′ ∈ Q[x1, x2, q1, q2], we have 9(P · P ′) = 9(P) ?9(P ′).
We call 9 the quantization map. Let Ĩ be the kernel of this homomorphism. By
the first isomorphism theorem, we have an isomorphism

9 :Q[x1, x2, q1, q2]/ Ĩ → QH∗(X),

and this gives the presentation of the quantum cohomology ring. A quantum Schu-
bert polynomial for the Schubert class σw is any polynomial Pw ∈Q[x1, x2, q1, q2]

such that the image of Pw under9 gives the class σw. Equivalently9(Pw+ Ĩ )=σw.
To find a quantum Schubert polynomial Pw, we proceed by induction on `(w),

using the quantum Chevalley formula from Table 4, and starting from the “initial
conditions” Ps1 = x1 and Ps2 = x1 + x2. To obtain the corresponding classical
Schubert polynomials for cohomology, set q1 = q2 = 0.

Example 5.1. In order to calculate Ps2s1 , we use the identity σs1 ? σs1 = σs2s1 + q1

(taken from Table 4). Using that 9 is an algebra homomorphism, we know that

9(x2
1)=9(x1) ?9(x1)= σs1 ? σs1 and 9(q1)= q1.

Since 9(x2
1 −q1)=9(x2

1)−9(q1), it follows that 9(x2
1 −q1)= σs2s1 . This shows

that x2
1−q1 is a quantum Schubert polynomial for σs2s1 . The corresponding ordinary

Schubert polynomial is x2
1 , obtained by making q1 = 0.

Computations of ordinary Schubert polynomials were done for the ordinary
cohomology ring H∗(X) of the G2 flag manifold in a paper by Anderson [2011].
A classical result of Borel [1953] shows that H∗(X) = Q[x1, x2]/I , where I =
〈x2

1−x1x2+x2
2 , x6

1〉. (This can also be deduced from the classical Chevalley formula.)
Anderson used this presentation and a different method to obtain different Schubert
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σsα our calculation Anderson’s calculation [2011]

w0
1
2(x

6
1 + x5

1 x2)
1
2 x5

1 x2

s1s2s1s2s1
1
2 x5

1
1
2 x5

1

s2s1s2s1s2
1
6(x1+ x2)

3x1x2
1
2(x

3
1 + x2x2

1 + x2
2 x1+ x3

2)x1x2

s2s1s2s1
1
2 x4

1
1
2(4x2

1 − 3x1x2+ 3x2
2)x

2
1

s1s2s1s2
1
6(x1+ x2)

2x1x2
1
2(x

4
1 + x3

1 x2+ x2
1 x2

2 + x1x3
2 + x4

2)

s1s2s1
1
2 x3

1
1
2(4x2

1 − 3x1x1+ 3x2
2)x1

s2s1s2
1
2(x1+ x2)x1x2 2x3

1 +
1
2 x2

1 x2+
1
2 x1x2

2 + 2x3
2

s2s1 x2
1 3x2

1 − 2x1x2+ 2x2
2

s1s2 x1x2 2x2
1 − x1x2+ 2x2

2
s2 x1+ x2 x1+ x2

s1 x1 x1

id 1 1

Table 5. Classical Schubert polynomials.

polynomials, but our answers and his must be equal modulo the ideal I . The classical
Schubert polynomials we found are shown alongside Anderson’s in Table 5. In
order to check if our results are equal, we verified that the difference between our
resulting classical polynomials was a multiple of one of the elements of the ideal.

We used our quantum Schubert polynomial results, found in Theorem 5.2 below,
to compute the ideal Ĩ of the quantum cohomology ring QH∗(X). This ideal is a
deformation of the ideal I of H∗(X). As an example, we will derive the degree-2
relation in Ĩ . From the quantum Chevalley table on page 447, we know the identities

• σs1 ? σs1 = σs2s1 + q1,

• σs1 ? σs2 = σs1s2 + σs2s1 , and

• σs2 ? σs2 = 3σs1s2 + q2.

These three equalities can be combined to obtain

3(σs1 ? σs1)+ (σs2 ? σs2)= 3(σs1 ? σs2)+ 3q1+ q2.

Now apply the transformation under 9 to get

3(x1 · x1)+ ((x1+ x2) · (x2+ x2))≡
(
3(x1(x1+ x2))+ 3q1+ q2

)
+ Ĩ ,

which is

3x2
1 + x2

1 + 2x1x2+ x2
2 ≡ (3x2

1 + 3x1x2+ 3q1+ q2)+ Ĩ .

Their difference belongs to Ĩ = ker9, so (after simplification) we get

x2
1 − x1x2+ x2

2 − (3q1+ q2) ∈ Ĩ .
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This is the degree-2 relation in Ĩ . Notice that this is clearly a deformation of the
ideal term x2

1 − x1x2 + x2 in I . To get the degree-6 relation, one does a similar
manipulation but using the higher-degree terms in the quantum Chevalley table on
page 447. The following is the main result of this paper.

Theorem 5.2. The quantum cohomology ring of the flag manifold of type G2 is

QH∗(X)=Q[q1, q2, x1, x2]/〈R2, R6〉,

where R2 := x2
1 − x1x2+ x2

2 − (3q1+ q2) and

R6 := x6
1 + q1

(
−2x4

1 −
13
3 x3

2 x2−
5
3 x2

1 x2
2 −

1
3 x1x3

2
)
+ q2

1
(
−

10
3 x2

1 −
5
3 x1x2−

1
3 x2

2
)

+ q1q2
(
−2x2

1 −
11
3 x1x2

)
−

8
3q2

1 q2.

Under this presentation, the corresponding quantum Schubert polynomials are

w0= (s1s2)
3
:

1
2(x

6
1+x5

1 x2)+
1
2(−2x4

1−6x3
1 x2−5x2

1 x2
2−x1x3

2)q1,

+
1
2(−3x2

1−7x1x2−2x2
2)q1q2+

1
2(−3x2

1−4x1x2−x2
2)q

2
1−q2

1 q2,

s2s1s2s1s2 :
1
6

(
(x1+x2)

3x1x2
)
+

1
6

(
(x1+x2)

3q1,

+(−6x3
1−4x1

2x2−x1x2
2)q2+(8x1+5x2)q1q2

)
,

s1s2s1s2s1 :
1
2 x5

1+
1
2

(
(−2x3

1−4x2
1 x2−x1x2

2)q1+(−3x1−2x2)q1q2+(−3x1−x2)q2
1
)
,

s1s2s1s2 :
1
6

(
(x1+x2)

2x1x2
)
+

1
6

(
(x1+x2)

2q1+(−3x2
1−x1x2)q2+2q1q2

)
,

s2s1s2s1 :
1
2 x4

1+
1
2

(
(−2x2

1−3x1x2)q1−2q1q2−2q2
1
)
,

s2s1s2 :
1
2

(
(x1+x2)x1x2

)
+

1
2

(
(x1+x2)q1−x1q2

)
,

s1s2s1 :
1
2 x3

1+
1
2

(
(−2x1−x2)q1

)
,

s1s2 : x1x2+q1,

s2s1 : x2
1−q1,

s2 : x1+x2,

s1 : x1,

id : 1.

Appendix: Table of curve neighborhood calculations

This appendix contains the curve neighborhoods for all the Weyl group elements.
In order to list them as concisely as possible, we need to define

• `,m = 0, 1, 2, 3, . . . ,

• N ,M = 1, 2, 3, . . . ,

• N ′,M ′ = 2, 3, 4, . . . .

If w ∈W then 0(0,0)(w)= w, so we won’t include that condition in the table.
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id s1 s2

0(N,0)(id)=s1 0(N,0)(s1)=s1 0(N,0)(s2)=s2s1

0(0,N )(id)=s2 0(0,N )(s1)=s1s2 0(0,N )(s2)=s2

0(N,1)(id)=s1s2s1 0(N,1)(s1)=s1s2s1 0(N,1)(s2)=s2s1s2s1

0(1,N ′)(id)=s2s1s2s1s2 0(N,N ′)(s1)=w0 0(1,N ′)(s2)=s2s1s2s1s2

0(N ′,M ′)(id)=w0 0(N ′,M ′)(s2)=w0

s1s2 s2s1 s1s2s1

0(N,0)(s1s2)=s1s2s1 0(N,0)(s2s1)=s2s1 0(N,0)(s1s2s1)=s1s2s1

0(0,N )(s1s2)=s1s2 0(0,N )(s2s1)=s2s1s2 0(0,N )(s1s2s1)=s1s2s1s2

0(N,1)(s1s2)=s1s2s1s2s1 0(N,1)(s2s1)=s2s1s2s1 0(N,1)(s1s2s1)=s1s2s1s2s1

0(N,N ′)(s1s2)=w0 0(N,N ′)(s2s1)=w0 0(N,N ′)(s1s2s1)=w0

s2s1s2 s1s2s1s2 s2s1s2s1

0(N,0)(s2s1s2)=s2s1s2s1 0(N,0)(s1s2s1s2)=s1s2s1s2s1 0(N,0)(s2s1s2s1)=s2s1s2s1

0(0,N )(s2s1s2)=s2s1s2 0(0,N )(s1s2s1s2)=s1s2s1s2 0(0,N )(s2s1s2s1)=s2s1s2s1s2

0(N,M)(s2s1s2)=w0 0(N,M)(s1s2s1s2)=w0 0(N,M)(s2s1s2s1)=w0

s1s2s1s2s1 s2s1s2s1s2 w0

0(N,0)(s1s2s1s2s1)=s1s2s1s2s1 0(0,N )(s2s1s2s1s2)=s2s1s2s1s2 0(`,m)(w0)=w0

0(`,N )(s1s2s1s2s1)=w0 0(N,`)(s2s1s2s1s2)=w0

Table 6. The curve neighborhoods for every degree at every w∈W .
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