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In 1908, Schur raised the question of the irreducibility over Q of polynomials
of the form f (x) = (x + a1)(x + a2) · · · (x + am)+ c, where the ai are distinct
integers and c ∈ {−1, 1}. Since then, many authors have addressed variations and
generalizations of this question. In this article, we investigate the irreducibility
of f (x) and f (x2), where the integers ai are consecutive terms of an arithmetic
progression and c is a nonzero integer.

1. Introduction

Throughout this paper, unless indicated otherwise, “reducible polynomial” and
“irreducible polynomial” pertain to reducibility and irreducibility over Q. Schur
[1908] raised the question of the irreducibility of polynomials of the form

g±(x)= (x + a1)(x + a2) · · · (x + am)± 1,

where the ai are distinct integers. Westlund [1909] showed that g−(x) is always
irreducible, and that if g+(x) is reducible, then g+(x) must be the square of a
polynomial. Flügel [1909] showed that g+(x) is reducible if and only if there exists
an integer z such that

g+(x + z)= (x − 1)2 or g+(x + z)= (x2
− 3x + 1)2.

Since that time, numerous authors [Seres 1956; Győry et al. 2011] have addressed
variations and generalizations of these questions. For some more recent generaliza-
tions, and a complete history and bibliography chronicling these results, see [Győry
et al. 2011].

Here we investigate the irreducibility of polynomials f (x) and f (x2), where

f (x)= (x + ai )(x + ai+1) · · · (x + ai+m−1)+ c, (1-1)
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with the a j being consecutive terms of an arithmetic progression

A= {k, k+ d, k+ 2d, . . .},

where d > 0 is the common difference. Since

f (x)=
(
x + k+ jd

)(
x + k+ ( j + 1)d

)
· · ·
(
x + k+ ( j +m− 1)d

)
+ c

is irreducible if and only if

f (x)= x(x + d)(x + 2d) · · · (x + (m− 1)d)+ c (1-2)

is irreducible, our focus here is on (1-2). While we are placing restrictions on the
values of ai in (1-1), the fact that we are not initially placing any restrictions on c,
other than c 6= 0, and that we are also concerned with the irreducibility of f (x2),
make this investigation somewhat of a departure from previous ones. In particular,
defining F(x) := f (x2), where f (x) is as in (1-2), we are interested in determining
values of d , m and c, with d > 0 and m ≥ 2, for which

(I) f (x) is reducible,

(II) f (x) is irreducible, but F(x) is reducible,

(III) both f (x) and F(x) are irreducible.

Note that if F(x) is irreducible, then f (x) is irreducible. However, the converse
is false in general, as the example f (x) = x − 1 illustrates, so that situation
(II) is not, in general, vacuous. Clearly, a complete answer to (I) and (II), or
to (I) and (III), provides an answer to (III), or to (II), respectively. Although a
complete answer to (I) seems intractable, a reasonable approach seems to be to
place restrictions on one or more of d, m and c. For example, one could place a
bound on m and determine the appropriate values of d and c such that f (x) satisfies
(I), (II) or (III). This is the strategy we employ in Section 3. However, in this
scenario, even small values of m prove to be challenging. In Section 4, by imposing
different restrictions on d, m and c, we can establish the following theorem for
larger degree polynomials:

Theorem 1.1. Let p ≥ 3 be prime, and let c, d ∈ Z, with c 6= 0, d > 0 and
d 6≡ 0 (mod p). Let

f (x)= x(x + d)(x + 2d) · · · (x + (p− 1)d)+ c

= x p
+ ap−1x p−1

+ · · ·+ a1x + c.

(1) If c 6≡ 0 (mod p), then f (x) is irreducible. If , in addition, c 6= −z2 for any
z ∈ Z, then F(x) is irreducible.

(2) Let k be a fixed positive integer, and suppose that |c| = kpw, where

pw > k p−1
+ ap−1k p−2

+ · · ·+ a2k+ a1.
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Then both f (x) and F(x) are irreducible if one of the sets of conditions below holds:

(a) c > 0.

(b) c < 0, w ≡ 1 (mod 2) and k 6≡ 0 (mod p).

(c) c < 0 and p ≡ 3 (mod 4).

Computations in this article were performed using either Maple or Magma.

2. Preliminaries

We now present, without proof, some facts that are used to establish the results in
this article. The first two theorems for general fields k first appeared in [Schinzel
1982]. For fields k ⊂ C, they are originally due to Capelli [Schinzel 2000].

Theorem 2.1. Let k be a field, and let f (x) and g(x) be polynomials in k[x] with
f (x) irreducible over k. Suppose that f (α)= 0. Then f (g(x)) is reducible over k
if and only if g(x)−α is reducible over k(α). Furthermore, if

g(x)−α = c1u1(x)e1 · · · ur (x)er ,

where c1∈ k(α) and the u j (x) are distinct monic irreducible polynomials in k(α)[x],
then

f (g(x))= c2N (u1(x))e1 · · ·N (ur (x))er ,

where c2 ∈ k, and the norms N (u j (x)) are distinct monic irreducible polynomials
in k[x].

Theorem 2.2. Let k be a field, and let r ∈ Z with r ≥ 2. Let α ∈ k. Then xr
− α

is reducible over k if and only if either α = β p for some prime divisor p of r and
β ∈ k, or 4 | r and α =−4β4 for some β ∈ k.

The next result follows from direct applications of Theorem 2.1 with g(x)= x2

and Theorem 2.2 with r = 2, and equating constant terms.

Theorem 2.3. Let

f (x)= xn
+

n−1∑
j=1

a j x j
+ c ∈ Z[x],

with f (x) irreducible. Then:

(1) If n ≡ 0 (mod 2) and c 6= z2 for any z ∈ Z, then F(x) is irreducible.

(2) If n ≡ 1 (mod 2) and c 6= −z2 for any z ∈ Z, then F(x) is irreducible.

The following result is well-known [Serret 1992].

Theorem 2.4. Let p be a prime, and let f (x)= x p
−x+c∈Fp[x]. If c 6≡0 (mod p),

then f (x) is irreducible over Fp.
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Since the irreducibility of a polynomial over Fp implies its irreducibility over Q,
we immediately have the following corollary.

Corollary 2.5. Let f (x)∈Z[x], and let p be a prime. If f (x)≡ x p
−x+c (mod p)

and c 6≡ 0 (mod p), then f (x) is irreducible.

The next theorem and its corollary are special cases of results of Weisner [1934].

Theorem 2.6. Let

A(x)= anxn
+ an−1xn−1

+ · · ·+ a1x + a0 ∈ Z[x]

be such that n ≥ 2, an 6= 0 and

|a0| = kpw, with k, w ≥ 1,

where p is a prime that does not divide a1 if w> 1. Suppose further that there exists
L such that |r | ≥ L ≥ 1 for all zeros r of A(x). If k < L , then A(x) is irreducible.

Corollary 2.7. Let k, w ≥ 1 and n ≥ 2 be integers, and let

A±(x)= xn
+ an−1xn−1

+ · · ·+ a1x ± kpw ∈ Z[x],

where p is a prime that does not divide a1. If

pw > kn−1
+ |an−1|kn−2

+ · · ·+ |a2|k+ |a1|,

then each of A±(x) is irreducible.

3. A first approach

In this section, we investigate an approach to determine the values of c such that
each of the conditions (I), (II) and (III) holds. The idea is to analyze the degree-type
factorization of f (x). The following proposition, whose proof is immediate from
the definition of f (x) in (1-2), represents a modest step in this direction.

Proposition 3.1. The polynomial f (x) has a zero n ∈ Z if and only if

c =−n(n+ d)(n+ 2d) · · · (n+ (m− 1)d) for some n ∈ Z.

One difficulty in establishing a more general result similar to Proposition 3.1
is that the number of possible degree-type factorizations of f (x) into irreducibles
increases as m increases. To avoid this complication, we bound the value of m.
However, even for small values of m, such a method proves to be challenging. To
illustrate the difficulties that arise, we address the cases (I) and (II) for each value of
m∈{2, 3, 4}. For case (I), we use the straightforward method of equating coefficients.
Our investigation of case (II) also uses the method of equating coefficients, but we
additionally utilize Theorem 2.1 and Theorem 2.2 with g(x)= x2. Although the
techniques are similar, each value of m presents distinct obstacles.
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The case of m = 2.

Theorem 3.2. Let c, d ∈ Z, with d > 0, and let

f (x)= x(x + d)+ c.

Then

(1) f (x) is reducible if and only if

c ∈ {−n(n+ d) | n ∈ Z},

(2) f (x) is irreducible and F(x) is reducible if and only if

c ∈
{1

4(s
2
+ d)2

∣∣ s ∈ Z, with s > 0 and s2
≡ d (mod 2)

}
.

Proof. Observe that (1) follows immediately from Proposition 3.1. To prove (2),
suppose first that f (x) is irreducible and f (α)= 0. Suppose that α = β2 for some
β ∈Q(α). Then, by Theorem 2.1,

F(x)= x4
+ dx2

+ c (3-1)

=N (x +β)N (x −β)

=
(
x2
+ (β + β̄)x +ββ̄

)(
x2
− (β + β̄)x +ββ̄

)
= (x2

+ sx + t)(x2
− sx + t)

= x4
+ (2t − s2)x2

+ t2 (3-2)

for some s, t ∈ Z. Equating coefficients in (3-1) and (3-2) and solving the resulting
system of equations gives c = 1

4(s
2
+ d)2.

There are two items of concern here. The first item to address is whether there
are any restrictions that must be placed on s to guarantee that c ∈ Z. The second
item is whether there are any values of s such that f (x) is reducible. Clearly, we
can assume that s ≥ 0 in any case, and imposing the restriction that c ∈ Z tells us
that s2

≡ d (mod 2). We must now check if there are any such values of c such that
f (x) is reducible. That is, are there values of s, n ∈ Z such that

1
4(s

2
+ d)2 =−n(n+ d)? (3-3)

Solving (3-3), we get the single integer solution s = 0 and n = −1
2 d, where

d ≡ 0 (mod 2), which corresponds to c = 1
4 d2. Hence, we must have s > 0 to

ensure that f (x) is irreducible. Under these restrictions on c, we have conversely
that f (x) is irreducible and that

F(x)= x4
+ dx2

+
1
4(s

2
+ d)2

=
(
x2
+ sx + 1

2(s
2
+ d)

)(
x2
− sx + 1

2(s
2
+ d)

)
. �
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The case of m = 3.

Theorem 3.3. Let c, d ∈ Z, with d > 0, and let

f (x)= x(x + d)(x + 2d)+ c.
Then

(1) f (x) is reducible if and only if

c ∈ R = {−n(n+ d)(n+ 2d) | n ∈ Z},

(2) f (x) is irreducible and F(x) is reducible if and only if c ∈ S \ R, where

S =
{
−

(
s4
+ 6ds2

+ d2

8s

)2 ∣∣∣∣ all of the conditions in A hold
}
,

and A is the following list:

d 6≡ 2, 3 (mod 4), s ∈ Z+,
d2

s
∈ Z+,

s ≡ 0 (mod 2) and d2

8s
∈ Z+ if d ≡ 0 (mod 4),

s ≡ 1 (mod 2) if d ≡ 1 (mod 4).

Moreover, S contains at most finitely many elements for a fixed value of d.

Proof. As in the case of m = 2, observe that (1) follows immediately from
Proposition 3.1. To establish (2), we proceed as in Theorem 3.2. We assume
that f (x) is irreducible and f (α)= 0. Suppose also that α= β2 for some β ∈Q(α).
Then, by Theorem 2.1, we have

F(x)= x6
+ 3dx4

+ 2d2x2
+ c (3-4)

= (x3
+ sx2

+ t x + u)(x3
− sx2

+ t x − u)

= x6
+ (2t − s2)x4

+ (t2
− 2su)x2

− u2 (3-5)

for some s, t, u∈Z. Equating coefficients in (3-4) and (3-5) and solving the resulting
system of equations, with d > 0, gives

c =−
(

s4
+ 6ds2

+ d2

8s

)2

,

where we can assume that s > 0. Since c ∈ Z, it is necessary that d2
≡ 0 (mod s).

This restriction alone implies that there are at most finitely many such values of c
for a fixed d, and therefore all such values of c in S can be effectively computed.
Further analysis reveals that d 6≡ 2, 3 (mod 4), since s4

+ 6ds2
+ d2
≡ 0 (mod 8).

Additionally, we see that s ≡ 0 (mod 2) when d ≡ 0 (mod 4), and in this case we
get the more restrictive condition that d2

≡ 0 (mod 8s). Finally, s ≡ 1 (mod 2)
when d ≡ 1 (mod 4).
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Conversely, if c ∈ S \ R, then f (x) is irreducible and

F(x)= x6
+ 3dx4

+ 2d2x2
−

(
s4
+ 6ds2

+ d2

8s

)2

= F1(x)F2(x),

where

F1(x)= x3
+ sx2

+
1
2(s

2
+ 3d)x +

s4
+ 6ds2

+ d2

8s
∈ Z[x]

and

F2(x)= x3
− sx2

+
1
2(s

2
+ 3d)x −

s4
+ 6ds2

+ d2

8s
∈ Z[x]. �

As in the proof of Theorem 3.2, a somewhat more explicit description of the
values of c such that (II) holds would be desirable. To determine whether any values
of c ∈ S from (2) are such that f (x) is reducible when d ≡ 0, 1 (mod 4), we must
solve the Diophantine equation(

s4
+ 6ds2

+ d2

8s

)2

= n(n+ d)(n+ 2d). (3-6)

Again, because of the restriction on s for a given value of d , the solutions to (3-6)
can be effectively computed. We conjecture that there are no solutions to (3-6) for
any value of d , so that S ∩ R =∅.

Remark 3.4. Any solutions to (3-6) are integral solutions of the so-called “congruent-
number” elliptic curve y2

= x(x2
−d2), which has been studied extensively [Bremner

et al. 2000; Koblitz 1993; Silverman 2009].

The case of m = 4.
Theorem 3.5. Let c, d ∈ Z, with d > 0, and let

f (x)= x(x + d)(x + 2d)(x + 3d)+ c.
Then

(1) f (x) is reducible if and only if c ∈ R = R1 ∪ R2, where

R1 = {v(2d2
− v) | v ∈ Z},

R2 =
{1

4(u− d)(u− 2d)(u− 4d)(u− 5d) ∈ Z | u ∈ Z
}
,

(2) f (x) is irreducible and F(x) is reducible if and only if c ∈ S \ R, where

S =
{(

u2
+ 6d3

2t

)2

∈ Z

∣∣∣∣ all of the conditions in B hold
}
,

and B is the following list:

u, t ∈ Z+, t = 1
2(s

2
+ 6d) for some s ∈ Z,

8u2
+ (−8s3

− 48sd)u+ s6
+ 18s4

+ 64s2d2
= 0.

Moreover, S contains at most finitely many elements.
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Proof. Logically, since

f (x)= x4
+ 6dx3

+ 11d2x2
+ 6d3x + c (3-7)

is a fourth-degree polynomial, there are five possibilities that could occur when
factoring f (x) into irreducibles:

(1) f (x) is irreducible.

(2) f (x) is the product of a linear factor and an irreducible cubic.

(3) f (x) is the product of two linear factors and an irreducible quadratic.

(4) f (x) is the product of two irreducible quadratics.

(5) f (x) is the product of four linear factors.

Proposition 3.1 gives us conditions under which f (x) has a linear factor, but it is
not delicate enough alone to distinguish among possibilities (2), (3) and (5). In
fact, it turns out that (2) is vacuous. To see this, first note that if f (r)= 0 for some
r ∈ Z, then

f (−r − 3d)= (−r − 3d)(−r − 2d)(−r − d)(−r)+ c

= r(r + d)(r + 2d)(r + 3d)+ c

= f (r)= 0.

If r 6=−r−3d , then f (x) has at least two distinct linear factors. If r =−r−3d , then

4r3
+18dr2

+22d2r+6d3
= f ′(r)= f ′(−r−3d)=−4r3

−18dr2
−22d2r−6d3,

so that f ′(r)= 0. Hence, (x − r)2 divides f (x), and therefore (2) does not occur.
Thus, to determine exactly the values of c for which f (x) is reducible, we proceed
as follows. Assuming f (x) is reducible, we write

f (x)= (x2
+ sx + t)(x2

+ ux + v)

= x4
+ (s+ u)x3

+ (t + su+ v)x2
+ (tu+ sv)x + tv. (3-8)

Solving the system of equations that results by equating coefficients in (3-7) and
(3-8), we arrive at the two solutions for c,

c = v(2d2
− v) and c = 1

4(u− d)(u− 2d)(u− 4d)(u− 5d),

where if c = v(2d2
− v), then

f (x)=
(
x2
+ 3dx + (2d2

− v)
)
(x2
+ 3dx + v),

and if c = 1
4(u− d)(u− 2d)(u− 4d)(u− 5d) ∈ Z, then

f (x)=
(
x2
+ (6d − u)x + 1

2(u− 5d)(u− 4d)
)(

x2
+ ux + 1

2(u− 2d)(u− d)
)
.
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We note that the infinite sets R1 and R2 are not disjoint, and further analysis is
required to determine the particular degree-types given in (3), (4) and (5).

We turn now to an examination of when

F(x)= x8
+ 6dx6

+ 11d2x4
+ 6d3x2

+ c (3-9)

is reducible, assuming that f (x) is irreducible. As before, we have from Theorem 2.1
and Theorem 2.2 that

F(x)= (x4
+ sx3

+ t x2
+ ux + v)(x4

− sx3
+ t x2

− ux + v)

= x8
+ (2t − s2)x6

+ (t2
− 2us+ 2v)x4

+ (2vt − u2)x2
+ v2. (3-10)

Equating coefficients in (3-9) and (3-10), and solving the resulting system of
equations yields

v =
u2
+6d3

2t
, t = 1

2(s
2
+ 6d),

8u2
− (8s3

+ 48sd)u+ s6
+ 18s4d + 64s2d2

= 0.
(3-11)

Note that if s=0 in (3-11), then u=0 and c=d4, so that f (x)= (x2
+3dx+d2)2.

Viewing the third equation in (3-11) as a quadratic equation in the variable u, and
solving gives

u = 1
4

(
2s3
+ 12ds± s

√
2s4+ 12ds2+ 16d2

)
. (3-12)

From (3-12), we see that a necessary condition for u to be an integer is that
2s4
+ 12ds2

+ 16d2 be a square. To determine when this occurs, we think of s as
a variable and we seek nontrivial (s 6= 0) integral solutions to the elliptic curve

y2
= 2s4

+ 12ds2
+ 16d2

= 2(s2
+ 2d)(s2

+ 4d). (3-13)

For a given value of d , it is well known that there are at most finitely many nontrivial
solutions to (3-13), and these solutions can be found using the command

IntegralQuarticPoints([2, 0, 12d, 0, 16d2])

in Magma. Hence, there are at most finitely many polynomials f (x) that satisfy (II),
and for a given value of d , these polynomials can effectively be found.

Conversely, if c 6∈ R, then f (x) is irreducible, and it is straightforward to derive
(3-9) by the substitution of conditions (3-11) into (3-10). �

Remark 3.6. For bounds on the number of solutions to (3-13), the interested reader
should see [Bennett 1998; Bugeaud et al. 2011].
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4. A second approach

In this section, we prove Theorem 1.1, which can be deduced easily using the
following theorem and some results presented in Section 2.

Theorem 4.1. Let p be a prime and let

f (x)= xn
+

n−1∑
j=1

a j x j
+ c ∈ Z[x],

where n ≥ 2 and c ≡ 0 (mod p). Suppose that f (x) is irreducible. Then

(1) If n ≡ 0 (mod 2) and a1 6≡ −z2 (mod p) for any z ∈ Fp, then F(x) is irre-
ducible.

(2) If n≡ 1 (mod 2) and a1 6≡ z2 (mod p) for any z ∈ Fp, then F(x) is irreducible.

Proof. Since f (x) is irreducible, we can apply Theorem 2.1 and Theorem 2.2 to
deduce that if F(x) is reducible, then

F(x)= x2n
+

n−1∑
j=1

a j x2 j
+ c

=

(
xn
+

n−1∑
j=0

b j x j
)(

xn
+

n−1∑
j=0

(−1)n− j b j x j
)

=

{
x2n
+ · · ·+ (2b0b2− b2

1)x
2
+ b2

0 if n ≡ 0 (mod 2),

x2n
+ · · ·+ (b2

1− 2b0b2)x2
− b2

0 if n ≡ 1 (mod 2).

Since c ≡ 0 (mod p), equating coefficients gives that b0 ≡ 0 (mod p) and

a1 ≡

{
−b2

1 (mod p) if n ≡ 0 (mod 2),

b2
1 (mod p) if n ≡ 1 (mod 2). �

For the convenience of the reader, we restate Theorem 1.1 here.

Theorem 1.1. Let p ≥ 3 be prime, and let c, d ∈ Z, with c 6= 0, d > 0 and
d 6≡ 0 (mod p). Let

f (x)= x(x + d)(x + 2d) · · · (x + (p− 1)d)+ c

= x p
+ ap−1x p−1

+ · · ·+ a1x + c.

(1) If c 6≡ 0 (mod p), then f (x) is irreducible. If , in addition, c 6= −z2 for any
z ∈ Z, then F(x) is irreducible.

(2) Let k be a fixed positive integer, and suppose that |c| = kpw, where

pw > k p−1
+ ap−1k p−2

+ · · ·+ a2k+ a1.
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Then both f (x) and F(x) are irreducible if one of the sets of conditions below holds:

(a) c > 0.

(b) c < 0, w ≡ 1 (mod 2) and k 6≡ 0 (mod p).

(c) c < 0 and p ≡ 3 (mod 4).

Proof. Since d 6≡ 0 (mod p), we have that

f (x)≡ x(x − 1)(x − 2) · · · (x − (p− 1))+ c ≡ x p
− x + c (mod p).

Hence, since c 6≡ 0 (mod p), we have from Corollary 2.5 that f (x) is irreducible.
If, in addition, c 6= −z2 for any z ∈ Z, then F(x) is irreducible by Theorem 2.3(2).

To prove (2), note that since d 6≡ 0 (mod p), we have

a1 = d p−1(p− 1)! ≡ −1 (mod p) 6≡ 0 (mod p) (4-1)

by Fermat’s little theorem and Wilson’s theorem. Hence, f (x) is irreducible by
Corollary 2.7.

To establish parts (2a), (2b) and (2c), first note that deg( f (x))= p is odd. Thus,
if c = kpw > 0, then F(x) is irreducible by Theorem 2.3(2), which resolves (2a).
For (2b), observe that kpw is not a square since w ≡ 1 (mod 2) and k 6≡ 0 (mod p).
Thus, again it follows from Theorem 2.3(2) that F(x) is irreducible. Finally, for (2c),
since p ≡ 3 (mod 4), we have from (4-1) that a1 6≡ z2 (mod p) for any z ∈ Fp.
Therefore, F(x) is irreducible by Theorem 4.1(2). �
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