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Tessellate the plane into rows of hexagons. Consider a subset of 2n rows of
these hexagons, each row containing 2n hexagons, forming a rhombus-shaped
chessboard of 4n2 spaces. Two kings placed on the board are said to “attack”
each other if their spaces share a side or corner. Placing kings in alternating
spaces of every other row results in an arrangement where no two of the n2 kings
are attacking each other. According to our specific distance metric, n2 is in
fact the largest number of kings that can be placed on such a board with no
two kings attacking one another, for a maximum “density” of 1

4 . We consider a
generalization of this maximum density problem, instead requiring that no king
attacks more than k other kings for 0 ≤ k ≤ 12. For instance when k = 2 the
density is at most 1

3 . For each k we give constructive lower bounds on the density,
and use systems of inequalities and discharging arguments to yield upper bounds,
where the bounds match in most cases.

1. Introduction

Consider the task of arranging as many king pieces as possible on a standard
8× 8 chessboard so that no two squares containing kings share a side or corner.
Note that the board partitions into sixteen 2× 2 patches, and at most one king
can reside in any patch. Yet placing a king in the upper left corner of each patch
satisfies our requirements. So, in an optimal placement we have sixteen kings
occupying 1

4 of the board. We can generalize this problem as follows. Consider
whole numbers k and n. What is the maximum number of kings that can be placed
on an n× n board such that each king-occupied space shares at most k edges and
corners with other king-occupied spaces? Note that in the previous example, k = 0
and n = 8. In fact, in [Ionascu et al. 2008] the following question is investigated:
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Given a whole number k ≤ 8 (8 being the maximum number of squares
a king can attack), what is the maximum number s of kings that can be
placed on an m×n board so that no king attacks more than k other kings?
When m and n are large, how large can the density s/(mn) be?

Similar problems have also been studied on alternate boards. For instance, [Bode
et al. 2003] studies a similar problem on triangular boards with k = 0, and [Bode
and Harborth 2003] looks at a similar problem for knights on both triangular and
hexagonal boards with k= 0. Other interesting articles on combinatorial chessboard
problems include [Fricke et al. 1995; Haynes et al. 1998; Hedetniemi et al. 1998;
Watkins 2004]. In this paper, we consider a board in which the spaces are regular
hexagons arranged into an n×n rhombus as in Figure 1. As in Władysław Gliński’s
hexagonal chess [Bodlaender 1996], a king occupying a hexagon will be said to
attack the 12 other hexagons “nearest” its hexagon (as shown in the left half of
Figure 2). In particular, we study the following:

Given a whole number k ≤ 12, what is the maximum number s of kings
that can be placed on an n×n hexagonal board so that no king attacks more
than k other kings? When n is large, how large can the density s/n2 be?

For most values of k, we find tight bounds on the optimal density s/n2 when n
is large. For those values of k where our bounds are not tight, the gaps between
our upper and lower bounds are reasonably close, and we conjecture that a limiting
density exists.

2. Notation and terminology

We establish some definitions and notation since we are not using the normal
n×n chessboard. Consider a tiling of the plane by regular hexagons, each hexagon
having two vertical sides. We call a finite collection of hexagons a hexagonal board
and call each hexagon in that tiling a space. For convenience we consider only
hexagonal boards Bn where the hexagons form an n × n rhombus in the plane
as in Figure 1, where n ≥ 5. We label the spaces on our board (as in Figure 1)

a1,1 a1,2 a1,3 a1, j a1,n

a2,1 a2,2 a2,3 a2,n

a3,1 a3,2 a3,3 a3,n

ai,1 ai,j ai,n

an,1 an,2 an,3 an,j an,n

Figure 1. An n× n hexagonal board in the shape of a rhombus.
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Figure 2. Some examples of R(v) shaded on a 5× 5 board.

from top to bottom, left to right, as ai, j , where i denotes the row the space is
in and j denotes the diagonal column the space is in. We make this assumption
since any finite set of spaces in the tiling will be contained in a suitably large
rhombus of hexagons. We use scripted capital letters (such as A) to name subsets
of a board Bn and nonscripted letters (such as a or A) to label individual spaces
of a board Bn . To avoid distinguishing between a space and a king occupying
that space, we introduce the following terminology. When a subset A of Bn is
specified, we refer to each space v ∈ Bn as being a king if v ∈ A. We define the
realm (or neighborhood) of a space v ∈ Bn , denoted R(v), to be the set of spaces
a king in space v attacks. In particular, we define the spaces in R(v) to create a
“wrap-around” property on the board as follows: Given a space ai, j ∈ Bn we define
g, g′, g′′, g′′′, h, h′, h′′, h′′′ ∈ (1, 2, . . . , n) as

g ≡ i − 2 (mod n),

g′ ≡ i − 1 (mod n),

g′′ ≡ i + 1 (mod n),

g′′′ ≡ i + 2 (mod n),

h ≡ j − 2 (mod n),

h′ ≡ j − 1 (mod n),

h′′ ≡ j + 1 (mod n),

h′′′ ≡ j + 2 (mod n).

Finally we define R(ai, j ) to be the set of spaces{
ag,h′, ag′,h, ag′,h′, ag′, j , ag′,h′′, ai,h′, ai,h′′, ag′′,h′, ag′′, j , ag′′,h′′, ag′′,h′′′, ag′′′,h′′

}
.

Note that if the board is less than 4× 4, the realm of a king overlaps itself. To
simplify matters, the theorems in this paper only address n×n boards where n ≥ 4,
so a king’s realm always contains 12 spaces. (This is because realm spaces that
are otherwise prevented by the boundary of the board are instead extended past
the boundary and associated with the opposite side. Additionally when n ≥ 4 it is
impossible for the realm to overlap itself.) As an example,

R(a1,1)=
{
a(n−1),n, an,(n−1), an,n, an,1, an,2, a1,n, a1,2, a2,n, a2,1, a2,2, a2,3, a3,2

}
.

A placement of kings on a hexagonal board Bn is a subset A of Bn , the members
of which we call kings. If u, v are kings, u is said to attack v if v ∈ R(u). A
placement of kings A is k-dependent if R(v) contains at most k kings for all v ∈A.
We denote the collection of all k-dependent placements of kings on Bn by Bn(k).
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Our notation of a k-dependent arrangement of kings relates to the following
graph-theoretic terminology. For a graph G = (V, E) and a vertex v ∈ V, the set
of vertices directly joined by an edge to v is denoted by N (v). A subset A of V
is called independent if N (a)∩A=∅ for each vertex a ∈A, and more generally,
A is called k-dependent (for a specified constant k) if |N (a) ∩ A| ≤ k for each
a ∈A. The k-dependence number of G= (V, E) is the maximum cardinality among
k-dependent subsets of V .

The maximum k-count on Bn , denoted by MNK(k, n), is the maximum size of a
k-dependent arrangement or placement of kings on Bn . That is,

MNK(k, n)=max{|A| :A ∈ Bn(k)}

when n ≥ 4. We let µ(k) denote the least upper bound of the density of kings in
k-dependent placements. That is,

µ(k)= sup
{
|A|
n2 :A ∈ Bn(k), n ≥ 4

}
.

Alternatively, µ(k)= sup{MNK(k, n)/n2
: n ≥ 4}.

3. Initial upper bounds

Following tradition, we refer to the following technique as linear programming,
even though we are not optimizing some objective function subject to constraints
in the standard sense. For each k, we produce a simple system of linear inequalities
valid for all A∈Bn(k). Summing these inequalities will yield upper bounds forµ(k).
Let T(k) be the maximum number of kings in R(v) for v ∈ Ac

= Bn \A over all
A ∈ Bn(k) for n ≥ 4. That is, if v is a non-king with respect to some k-dependent
placement, then the largest number of kings possible in R(v) is T (k). Given a
placement A⊆ Bn the indicator function of A over Bn is

χA(w)=

{
1 if w ∈A ,
0 if w ∈Ac.

Theorem 3.1. Given n ≥ 4, for all A ∈ Bn(k) we have

|A| ≤
T (k)

T (k)− k+ 12
n2.

Proof. Let A ∈ Bn(k). Then for each v ∈ Bn , we have that
∑

w∈R(v) χA(w) is the
number of kings that are in the realm of v. We consider the inequality

(T (k)− k)χA(v)+
∑

w∈R(v)

χA(w)≤ T (k). (1)
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If χA(v)= 0, then (1) holds by the definition of T (k). Suppose χA(v)= 1. Then∑
w∈R(v) χA(w) ≤ k because A is a k-dependent placement of kings. Therefore,

since (T (k)− k) · 1+ k ≤ T (k), inequality (1) holds whether or not χA(v) = 0.
Now, we sum the inequalities of form (1), over all choices of v ∈ Bn , and simplify
the result: ∑

v∈Bn

(
(T (k)− k)χA(v)+

∑
w∈R(v)

χA(w)
)
≤
∑
v∈Bn

T (k),(
(T (k)− k)

∑
v∈Bn

χA(v)
)
+ 12

∑
v∈Bn

χA(v)≤ T (k)n2,

(T (k)− k+ 12)
∑
v∈Bn

χA(v)≤ T (k)n2.

Hence,

|A| ≤
T (k)

T (k)− k+ 12
n2. �

Therefore, Theorem 3.1 establishes that

|A|
n2 ≤

T (k)
T (k)− k+ 12

for all k ∈ {0, 1, 2, . . . , 12} and n ≥ 4.

Finding T-values. For each k ∈ {0, 1, 2, . . . , 12}, Theorem 3.1 gives us an upper
bound for |A|/n2, the fraction of Bn that can be occupied by a k-dependent set
of kings. Since these upper bounds depend upon k and T (k), we must find the
exact values of T (k) for each separate choice of k. We refer to values of T (k) as
T -values.

The following illustrates our process for finding the T -values for each k. To
see why T (0)= 4, suppose A ∈ Bn(0) for some n ≥ 4 and consider some v ∈Ac.
We label the spaces in R(v) as in Figure 3. Partition R(v) into the sets {A, B,C},
{D, E, F}, {G, H, I }, and {J, K , L}. Since A is 0-dependent, the maximum
number of kings in each of {A, B,C}, {D, E, F}, {G, H, I }, and {J, K , L} is 1.
Therefore, T (0) ≤ 4. Also, since {A, D,G, J } is a 0-dependent placement, we
have T (0)≥ 4. Therefore T (0)= 4.

Figure 4 demonstrates lower bounds for all remaining T -values. The reader can
check by hand that T (k) equals the lower bound given below each picture.

Therefore, Theorem 3.1 establishes upper bounds for µ(k) as seen below:

k 0 1 2 3 4 5 6 7 8 9 10 11 12

Upper bound for µ(k) 1
4

5
16

3
8

8
17

5
9

10
17

2
3

12
17

3
4

4
5

6
7

12
13 1

A board consisting entirely of kings would be 12-dependent. Therefore, µ(12)= 1.
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Figure 3. R(v) partitioned into four subsets.
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Figure 4. Lower bounds for the T -values for 0≤ k ≤ 12.

4. Lower bounds

Ideally, we wish to find matching upper and lower bounds for µ(k) for each k, so
as to determine µ(k) exactly. In this section we give constructive lower bounds for
each such µ(k). To establish lower bounds for µ(k) we create patterns via “puzzle
pieces”. We use them to construct arbitrarily large k-dependent placements with
calculable density. To construct these placements, we “stamp” the puzzle piece

K K K

K K K

K K K

Figure 5. The shaded region represents the puzzle piece P(0),
which has been stamped nine times to create a 0-dependent place-
ment on a 6× 6 board.
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Figure 6. Puzzle pieces P(k) that result in a k-dependent placement.

(using translated copies) as many times as needed to fill large n× n boards. For
example, in Figure 5, the shaded region represents a 2× 2 puzzle piece, which
we stamped a total of nine times to create a 6× 6 placement. This results in a
0-dependent placement. We call this method of obtaining a k-dependent placement
the stamping method. For a given k, we define P(k) (as in Figure 6) to be a particular
s×l puzzle piece which results in a k-dependent placement. Additionally, for a given
P(k), we define K (k) to be the number of kings in P(k). We denote the number
of rows in P(k) by s(k) and the number of diagonal columns in P(k) by l(k).

Theorem 4.1. For a given k, puzzle piece P(k), and n ≥max{s, l, 4}, we have

µ(k)≥
K (k)

s(k)l(k)
.
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Proof. Let n = q1s(k) + r1 = q2l(k) + r2 for integers q1, q2, r1, r2 ≥ 0, where
r1 < s(k) and r2 < l(k). Consider a particular k and its corresponding puzzle piece
P(k) placed in the top-left of the n × n board. Let Z be the set of kings in the
n× n board at this stage. We define

Z ′ =
{
ai+cs, j+dl : ai, j ∈ Z, c ∈ {0, 1, 2, . . . , q1− 1}, d ∈ {0, 1, 2, . . . , q2− 1}

}
.

Therefore, Z ′ is the placement of kings arising from a specific stamp and the process
of stamping it in Bn .

Since q1q2 is the number of copies of the puzzle piece on the n × n board,
|Z| = K (k)q1q2. Thus, since MNK(k, n) is the maximum number of kings on a
k-dependent n×n board, we have MNK(k, n)≥ K (k)q1q2 for n≥max{s, l}. Also,
note that q1 = (n− r1)/s(k) and q2 = (n− r2)/ l(k). So it follows that

q1q2 =
(n− r1)(n− r2)

s(k)l(k)
.

Thus,
MNK(k, n)

n2 ≥
K (k)(n− r1)(n− r2)

s(k)l(k)n2 .

This implies

µ(k)≥ sup
{

K (k)(n− r1)(n− r2)

s(k)l(k)n2 : n ≥max{s, l, 4}
}
=

K (k)
s(k)l(k)

. �

Our choices of P(k) for 0 ≤ k ≤ 12 are shown in Figure 6. Each of these is
crafted carefully to optimize the maximum proportion of kings, yielding the best
lower bound we can manage. The following is a table of the lower bounds we
constructed for µ(k) using the stamping method:

k 0 1 2 3 4 5 6 7 8 9 10 11 12

Lower bound for µ(k) 1
4

7
25

1
3

2
5

1
2

1
2

4
7

2
3

3
4

7
9

6
7

12
13 1

5. Tightening the upper bounds

Although the upper and lower bounds for µ(k) were matched for some k using the
methods in Sections 3 and 4, we were unable to match others. In this section we
use two additional methods to attempt to bring down the upper bound for µ(k) to
match the lower bound.

Taxation. We now use a standard discharging method, which we refer to as taxation,
to improve the upper bound for µ(k) when k ∈ {1, 2, 3, 4}. In this method, we
call any non-king space a pawn. So, for a placement of kings A, the set of pawns
is Ac. To understand taxation, consider the following scenario. Initially, each pawn
starts with X dollars. Then each pawn pays all its money to the kings adjacent
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$10

$10

$10$10 P
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$12

$12

$12$12 P

$15

$15$15

$15 P

$20

$20

$20

P

$30

$30 P

$60

P

Figure 7. Examples of a taxation rule.

to it, following taxation rules. For example, each pawn could start with $60 and
distribute it evenly among all the kings adjacent to it. Some examples of a pawn
following this taxation rule can be seen in Figure 7, where the shaded spaces are
kings and the white spaces are pawns.

An $X taxation rule for A ∈ Bn(k) is a function f : Ac
× A→ [0, X ] such

that
∑

K∈A f (P, K ) = X for every P ∈ Ac. Note that in an $X taxation rule,∑
(P,K )∈Ac×A f (P, K ) = X |Ac

|. When f is understood, we denote the value of
funds a king K receives by F(K )=

∑
P∈Ac f (P, K ). In an $X taxation rule, we

know that the total amount of taxes paid, and also received, is $X |Ac
|. So if each

king receives a known minimum amount of money, $Y , we can calculate an upper
bound for |A|.

Theorem 5.1. Consider a placement of kings A∈Bn(k), where n≥ 4. If , following
an $X taxation rule, F(K )≥ Y for all K ∈A, then

|A| ≤
X

X + Y
n2.

Proof. Consider a placement A∈Bn(k). The number of kings is |A|, and the number
of pawns is n2

−|A|. Suppose for some $X taxation rule f , we have F(K )≥ Y for
each king K ∈A. Comparing the amounts paid by pawns and received by kings,
we see that

Y |A| ≤ X (n2
− |A|) =⇒ (X + Y )|A|≤ Xn2

=⇒ |A| ≤
X

X + Y
n2. �

For a given k, a general $X taxation plan (tax plan) G(A) is a function G that
assigns an $X taxation rule f to each A ∈ Bn(k). Given such a G, let

YG =min{F(K ) : K ∈A and A ∈ Bn(k)}.

Corollary 5.2. Suppose that YG ≥ Y for some $X taxation rule G. Then

µ(k)≤
X

X + Y
.

Proof. Suppose YG ≥ Y for some $X taxation rule G. For all A ∈ Bn(k),

|A| ≤
X

X +YG
n2
≤

X
X + Y

n2,
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where the first inequality follows from Theorem 5.1. So, (X/(X+Y ))n2 is an upper
bound on |A| for all A ∈ Bn(k). Thus, X/(X + Y ) is an upper bound for µ(k). �

For each k ∈ {1, 2, 3, 4}, we choose a convenient X and Y and show that there ex-
ists an $X tax plan G such that YG ≥Y . Thus, by Corollary 5.2, µ(k)≤ X/(X + Y ).
To achieve this, it is helpful to partition each placement A into parts and ana-
lyze how much funding each part receives collectively. We define a cluster in a
placement of kings A to be a nonempty set K ⊆ A such that for each v,w ∈ K,
there exists a sequence v = v1, v2, . . . , vs = w, where vi and vi+1 are adjacent
for each i ∈ {1, 2, . . . , s − 1}. When a tax plan is understood, we denote the
funds a cluster K ⊆A receives by F(K)=

∑
K∈K F(K ). Since each k-dependent

placement of kings is partitioned into clusters in our arguments, it suffices to show
that $Y |K| ≤ F(K) for each cluster K ∈ Bn(k) we consider.

Corollary 5.3. Consider an $X tax plan for a given k and n ≥ 4. Suppose for each
A ∈ Bn(k) that A partitions into clusters where $Y |K| ≤ F(K) for each cluster K
in that partition. Then µ(k)≤ X/(X + Y ).

In all of our tax plans, any pawn with no adjacent kings is assumed to divide its
money equally between all the kings in A. Since we are looking for a maximum
number of kings on Bn(k) for some k with n ≥ 4, we need not worry about the case
A=∅, so there will always be at least one king in any relevant arrangement. In
the remainder of this subsection the following notation is used in the diagrams. A
white hexagon denotes a pawn. A shaded hexagon denotes a king. We omit proofs
of the following four propositions, as they took many pages of case analysis.

Tax plan for k = 1. We show that µ(1)≤ 7
25 using a taxation argument. We employ

a tax plan where each pawn starts with $14 and distributes it evenly among kings
adjacent to it unless the pawn and king arrangement is one shown in Figure 8.
When the arrangement is as in Figure 8(a), the pawn P1 pays $6 to K1 and $8 to K2.
When the arrangement is as in Figure 8(b)–(c) the pawn P2 pays $8 to K1 and $6
to K2. When the arrangement is as in Figure 8(d)–(e) the pawn P3 pays $8 to K1

and $6 to K2. Note that the orientation of these figures is arbitrary, with respect to
rotation and reflection.

Proposition 5.4. Every king in a 1-dependent arrangement on Bn receives at least
$36 using the aforementioned tax plan.

By Proposition 5.4, µ(1)≤ 7
25 .

Tax plan for k= 2. We show that µ(2)≤ 1
3 using a taxation argument. We employ a

tax plan where each pawn starts with $6 and distributes it evenly among kings adja-
cent to it unless the pawn and king arrangement is as shown in Figure 9. When the ar-
rangement is as in Figure 9, the pawn P1 pays $3 to K1 and $1.50 each to K2 and K3.
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K1 1 2P K K1 2 2P K K1 2 2P K K2 3 1P K K2 3 1P K

(a) (b) (c) (d) (e)

Figure 8. Pawn and king arrangements for the tax plan for k = 1.

Proposition 5.5. Every king in a 2-dependent arrangement on Bn receives at least
$12 using the aforementioned tax plan.

By Proposition 5.5, µ(2)≤ 1
3 .

Tax plan for k = 3. We show that µ(3)≤ 2
5 using a taxation argument. We employ

a tax plan where each pawn starts with $4 and distributes it evenly among kings ad-
jacent to it unless the pawn and king arrangement is as shown in Figure 9. When the
arrangement is as in Figure 9, the pawn P1 pays $2 to K3 and $1 each to K1 and K2.

Proposition 5.6. Every king in a 3-dependent arrangement on Bn receives at least
$6 using the aforementioned tax plan.

By Proposition 5.6, µ(3)≤ 2
5 .

Tax plan for k = 4. We show that µ(4)≤ 1
2 using a taxation argument. We employ

a tax plan where each pawn starts with $60 and distributes it evenly amongst all
kings adjacent to it.

Proposition 5.7. Every king in a 4-dependent arrangement on Bn receives at least
$60 using the aforementioned tax plan.

By Proposition 5.7, µ(4)≤ 1
2 .

Further linear programming. We improve our bounds using a more general form
of linear programming we call weighting patterns. In this method, we seek more
complicated linear inequality constraints that are valid for all k-dependent sets.

K2 K3

1

1

P

K

Figure 9. The special case for k = 2 and k = 3.
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Given n ≥ 4 and a weighting function $ : Bn→ [0,∞), not everywhere zero,
let W ($) denote the total weight,

∑
v∈Bn

$(v), of $ . Given k and $ on Bn , let
Mk(n,$) denote the maximum value of

∑
v∈Bn

$(v)χA(v) over all A ∈ Bn(k).
So, for any such $ and any A ∈ Bn(k), we always have∑

v∈Bn

$(v)χA(v)≤ Mk(n,$).

To define a weighting function $ we refer to a figure with mapped values in
their corresponding spaces. For example, if we defined $ by Figure 10(a), then
$(a5,4) = 10740. Given a weighting function $ , we define the shifted function
$x,y :Bn→[0,∞) by$x,y(ai, j )=$(a(i+x)mod n,( j+y)mod n). Note that$0,0=$ .

Theorem 5.8. Consider any weighting function $ on Bn . Then

µ(k)≤
Mk(n,$)

W ($)

whenever n≥ n0≥ 4, where n0 is the minimum value such that the weighting pattern
$ fits within an n0× n0 rhombus.

Proof. Given n ≥ n0 ≥ 4, let A ∈ Bn(k), and let 0 = {0, 1, 2, . . . , n− 1}. For any
x, y ∈ 0, we know that $x,y is also a weighting function on Bn . Thus we have∑

ai, j∈Bn

$x,y(ai, j )χA(ai, j )≤ Mk(n,$).

Therefore ∑
x,y∈0

( ∑
ai, j∈Bn

$x,y(ai, j )χA(ai, j )

)
≤

∑
x,y∈0

Mk(n,$),

∑
ai, j∈Bn

(
χA(ai, j )

( ∑
x,y∈0

$x,y(ai, j )

))
≤ n2 Mk(n,$),

∑
ai, j∈Bn

(
χA(ai, j )

( ∑
x,y∈0

$(a(i+x) mod n,( j+y) mod n)

))
≤ n2 Mk(n,$),

∑
ai, j∈Bn

(χA(ai, j )W ($))≤ n2 Mk(n,$),

and thus

|A| ·W ($)≤ n2 Mk(n,$) =⇒
|A|
n2 ≤

Mk(n,$)
W ($)

.

Since n ≥ 4 and A ∈ Bn(k) were arbitrary, we have

µ(k)≤
Mk(n,$)

W ($)
. �
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1 8 28 56 70 95 67 8 1

9 73 261 540 714 708 456 156 45 9 1

34 311 1150 2462 3440 3378 2312 1081 369 82 9

94 859 3254 7260 10740 11139 8190 4247 1540 351 38

191 1726 6727 15684 24467 26669 20560 11163 4146 951 102

295 2691 10809 26182 42720 48672 38452 21364 8053 1859 199

368 3370 13871 34609 58175 69718 55493 31421 12044 2816 303

372 3422 14374 36735 63712 76682 63712 36735 14374 3422 372

303 2816 12044 31421 55493 69718 58175 34609 13871 3370 368

199 1859 8053 21364 38452 48672 42720 26182 10809 2691 295

102 951 4146 11163 20560 26669 24467 15684 6727 1726 191

38 351 1540 4247 8190 11139 10740 7260 3254 859 94

9 82 369 1081 2312 3378 3440 2462 1150 311 34

1 9 45 156 456 708 714 540 261 73 9

1 8 67 95 70 56 28 8 1

(a) k = 5

1 5 10 10 5 1

1 11 41 76 80 51 21 6 1

5 41 140 266 315 245 126 40 6

10 76 266 571 776 679 379 125 21 1

10 80 314 768 1242 1138 677 243 51 5

5 51 243 677 1138 1242 768 314 80 10

211 125 379 679 776 571 266 76 10

6 40 126 245 315 266 140 41

1 5 10 10 5 1

5

2161 51 80 76 41 11 1

1 6 16 26 30 26 16 6 1

1 10 40 89 130 141 120 77 34 9 1

2 19 78 186 303 350 283 162 66 17 2

2 19 82 214 405 534 405 214 82 19 2

2 17 66 162 283 350 303 186 78 19 2

1 9 34 77 120 141 130 89 40 10 1

1 6 16 26 30 26 16 6 1

(b) k = 6 (c) k = 7

2 14 42 70 70 42 14 2

2 20 86 212 336 364 280 156 62 16 2

4 36 150 384 672 840 756 480 204 52 6

2 22 114 358 744 1064 1063 744 358 114 22 2

6 52 204 480 756 840 672 384 150 36

2 16 62 156 280 364 336 212 86 20

4

2

2 14 42 70 70 42 14 2

(d) k = 9

Figure 10. Weighting functions $ for k ∈ {5, 6, 7, 9}.

Using Theorem 5.8, we improve our upper bounds for some µ(k) values by conve-
niently choosing the weighting patterns in Figure 10 to define $ for k ∈ {5, 6, 7, 9}.
The shaded hexagons represent a k-dependent placement of kings resulting in the
largest Mk(n,$).
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Applying four weighting functions and employing a tedious case analysis yields
the following upper bounds for µ(k):

k 5 6 7 9

Upper bound for µ(k) 902416
1636944

11099
17872

4520
6474

12287
15359

6. Conclusion

When the upper and lower bounds for µ(k) match, we know

lim
n→∞

(
MNK(k, n)

n2

)
= µ(k).

In the cases where the upper and lower bounds for µ(k) do not match, it remains
to determine the values of limn→∞(MNK(k, n)/n2), if indeed these limits exist.
In summary, combining results from various methods, the best results we found
concerning the values of µ(k) are

µ(0)= 1
4 , µ(1)= 7

25 , µ(2)= 1
3 , µ(3)= 2

5 , µ(4)= 1
2 ,

8
15 ≤ µ(5)≤

902416
1636944 ,

3
5 ≤ µ(6)≤

11099
17872 ,

2
3 ≤ µ(7)≤

4520
6474 , µ(8)= 3

4 ,

7
9 ≤ µ(9)≤

12287
15359 , µ(10)= 6

7 , µ(11)= 12
13 , µ(12)= 1.

Although our bounds for µ(k) are tight for most values of k, we were unable to
match the bounds for k ∈ {5, 6, 7, 9}. The tightness of these bounds can perhaps
be improved through computer programming and other mathematical methods.
For example, one could try a “reverse taxation” process to lower the upper bound
for µ(9). In such a process the kings would be given money to distribute to the
pawns, potentially limiting the number of cases in the case analysis. Additionally, a
computer could be used to test larger weighting patterns, although we have reason
to believe that it is unlikely they will lead to a tight bound. Finally, by computer
search or by hand, one could search for patterns which raise the lower bound.

To create a new problem, one can investigateµ(k) on similar boards with a change
in the realm of a king. Moreover, one can consider boards consisting of other shapes,
or in higher dimensions. For example, one could examine the k-dependence of kings
on an n×n rhombus tiled with equilateral triangles, a parallelepiped whose surface
is tiled with equilateral triangles, or a parallelepiped internally tiled with regular
tetrahedra. A similar type of problem one might investigate is the domination
number as in [Haynes et al. 1998] of an n× n hexagonal board on a torus using
our king’s realm. One could also examine the domination number of a board
with respect to different realms or of a different board altogether. We encourage
the investigation of these problems, because they seem to us ideal problems for
upper-level undergraduates with backgrounds or interests in discrete mathematics.
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