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We establish some preliminary results for Sutner’s σ+ game, known as Lights
Out, played on the generalized Petersen graph P(n, k). While all regular Petersen
graphs admit game configurations that are not solvable, we prove that every game
on the P(2n, n) graph has a unique solution. Moreover, we introduce a simple
iterative strategy for finding the solution to any game on P(2n, n), and generalize
its application to a wider class of graphs.

Background

All graphs are assumed to be undirected, without loops or multiple edges. The
σ+ game is a well-known single-player game that can be played on any graph
[Sutner 1990]. The handheld game Lights Out, released by Tiger Electronics in
1993, was the σ+ game on a 5× 5 grid graph. Since then, the name Lights Out has
been widely used and is synonymous with the σ+ game.

The idea of the game is simple. Each vertex is in one of two states: on or off
(think of the vertices as lights). Each vertex also acts as a button. When the player
pushes a button, its state toggles, and so do the states of each of its neighbors. Given
a graph and an initial configuration of lit vertices, the goal is to turn out all the
lights. Several playable versions of the game can be found online [Antonick 2013;
Scherphuis 2012; Torrence 2016].

Lights Out has been extensively studied on grid graphs, and a wide range of
generalizations have been explored. Our goal here is to present some preliminary
results for Lights Out played on the generalized Petersen graphs. In the process, we
introduce an iterative strategy that can successfully solve games on a larger class
of graphs.
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Definitions

Given a graph G with finite vertex set V (G) and edge set E(G), label the vertices
v1, v2, . . . , vn . The adjacency matrix Adj(G) is the n× n symmetric matrix with a
one in position (i, j) if vivj ∈ E(G), and a zero otherwise. We let In denote the
n× n identity matrix.

A lights out configuration or game g is an n× 1 column vector with entries in
the two-element field F2. If there is a one in position i , we say that vi is lit; if there
is a zero we say it is off. We let 0 and 1 denote the all-off and all-on configurations,
respectively.

Similarly, a lights out strategy s is an n× 1 column vector with entries in F2. It
denotes a collection of buttons to be pushed; if there is a one in position i , we say
that vertex vi is pushed. The vector 1 represents the strategy where every button
is pushed.

If one begins with the all-off configuration and invokes strategy s, the resulting
configuration is the matrix product (Adj(G)+ In)s, with arithmetic carried out
modulo 2 [Sutner 1990]. Since the matrix Adj(G)+ In is so important, we call it
the transition matrix for the σ+ game on G, and denote it A(G), or simply A if the
underlying graph is understood.

In general, if one begins with configuration g and invokes strategy s, the config-
uration that results is As+ g, with arithmetic carried out modulo 2. We say that
strategy s solves game g if As+ g = 0, the all-off configuration. Since we are
working modulo 2, this is equivalent to saying As = g. We say configuration g is
solvable if there exists a strategy that solves it.

For any vector g ∈ (F2)
n, the light number of g is the sum of the entries in g.

The parity of g is odd or even according to the parity of the light number of g.
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Figure 1. The Petersen graphs P(5, 2) and P(7, 3).
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Let n and k be integers with n ≥ 3 and 1 ≤ k < n. The generalized Petersen
graph P(n, k) is a graph with 2n vertices arranged in two concentric “rings” with
n vertices in each ring. We label the vertices on the inner (or lower) ring v1 to vn ,
and on the outer (or upper) ring vn+1 to v2n . Each outer-ring vertex vi is connected
to the inner-ring vertex vi−n , and to its two nearest outer-ring neighbors (vi−1

and vi+1 for n + 1 < i < 2n, while v2n is connected to v2n−1 and vn+1). Each
inner-ring vertex vi is connected to vi+k , where the index i+k is reduced modulo n
if i + k > n. In other words, vertices on the inner ring are connected to one another
by “skipping” k vertices. The classic Petersen graph P(5, 2) is shown on the left in
Figure 1, with P(7, 3) beside it.

For a given value of n, one need only consider k= 1 through k=bn/2c, since the
graphs P(n, k) and P(n, n−k) are isomorphic. (The first skips k vertices clockwise,
the second skips k vertices counterclockwise.) Also, P(2n, n) is not regular, as the
inner vertices have valence 2 (see Figure 2). All other Petersen graphs are 3-regular.

An oscillating strategy

The Petersen graphs have an important property: if one refers to the vertices
{v1, . . . , vn} as the lower vertices, and {vn+1, . . . , v2n} as the upper vertices, then
for each i with 1 ≤ i ≤ n, there is an edge vivn+i , and these are the only edges
between a lower vertex and an upper vertex. In other words, the adjacency matrix
Adj(P(n, k)) has the block form (

C ′ In

In D′

)
,

where C ′ is the adjacency matrix for the subgraph induced by the lower vertices,
D′ is the adjacency matrix for the subgraph induced by the upper vertices, and
where the two identity matrices specify the edges vivn+i between upper and lower
vertices.

We now introduce an iterative “oscillating” lights out strategy that can be applied
to any graph whose adjacency matrix has this structure. That is, in this section we
suppose that we are given a graph G with 2n vertices such that when the vertices
of G are appropriately ordered its adjacency matrix has the block form above,
with In in the lower-left and upper-right corners (and where C ′ and D′ can be any
symmetric matrices over F2 with zeros on their respective main diagonals). We call
such a graph Petersen-like.

The strategy works as follows: Suppose that g is a game on the Petersen-like
graph G. For each lower vertex vk that is lit, push button vn+k . This will have the
effect of turning off all lower vertices. Then, for each upper vertex vn+k that is
now lit, push button vk . This will have the effect of turning off all upper vertices
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(and possibly lighting or relighting some lower ones). Together, we call these two
operations performed in succession “one oscillation”. One then repeats the process:
After the first oscillation, if any lower vertices are lit, push the corresponding upper
vertices. Then if any upper vertices are still lit, push the corresponding lower
vertices, and so on.

The strategy can be expressed explicitly in matrix form. Let U and L be the
2n× 2n matrices, defined in block form as

U =
(

0 0
In 0

)
, L =

(
0 In

0 0

)
,

where 0 denotes the n× n zero matrix. Then for any configuration g, the upper
vertices that correspond to lit lower vertices are U g, so the configuration that results
after pushing the upper vertices corresponding to the lit lower vertices is

g1 = AU g+ g = (AU + I )g.

And pushing the lower vertices corresponding to lit upper vertices in g1 yields the
configuration

g2 = AL g1+ g1 = (AL + I )g1 = (AL + I )(AU + I )g.

It follows that after performing k successive upper-lower iterations, the final config-
uration is

[(AL + I )(AU + I )]k g.

We call the matrix [(AL + I )(AU + I )] the oscillating matrix.
Noting that the lights out transition matrix A has the form

A =
(

C I
I D

)
,

where C = C ′+ I and D = D′+ I , it is simple to calculate the oscillating matrix:

(AL + I )=
(

C I
I D

) (
0 I
0 0

)
+

(
I 0
0 I

)
=

(
0 C
0 I

)
+

(
I 0
0 I

)
=

(
I C
0 0

)
.

Similarly,

(AU + I )=
(

C I
I D

) (
0 0
I 0

)
+

(
I 0
0 I

)
=

(
I 0
D 0

)
+

(
I 0
0 I

)
=

(
0 0
D I

)
.

The product is

(AL + I )(AU + I )=
(

I C
0 0

) (
0 0
D I

)
=

(
CD C
0 0

)
.
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Theorem 1. Suppose G is a graph with 2n vertices whose lights out transition
matrix has the form

A =
(

C In

In D

)
.

If the product CD is nilpotent, then A is invertible, and the oscillating strategy will
solve any initial configuration on G. Specifically, if (CD)m is the zero matrix, then
at most m+ 1 oscillations are required.

Proof. A straightforward inductive argument shows that for k ≥ 1,

[(AL + I )(AU + I )]k =
(
(CD)k (CD)k−1C

0 0

)
.

So if (CD)m = 0 and if g is any initial configuration, [(AL+ I )(AU+ I )]m+1 g= 0,
and we see that m+ 1 iterations will suffice to solve g.

It remains to show that A is invertible. Since we have shown that the oscillating
strategy will solve any configuration g, and since there are 22n possible configura-
tions and the same number of possible strategies, we see that for each game there
is precisely one strategy that solves it. So As = g has a unique solution s for each
game g. This means that A is invertible. �

Examples

In each example, G is a Petersen-like graph with 2n vertices and with lights out
transition matrix A =

( C
In

In
D

)
.

Example 2. Suppose n is even, C = In , and D is the all-ones matrix. Since n is
even and we are working over F2, one has (CD)2 = D2

= 0 (the zero matrix). In
graph theoretic terms, the lower vertices have no edges among them, while the
upper vertices induce the complete graph Kn . According to Theorem 1, at most
three iterations of the oscillating strategy will solve any game.

Note that playing Lights Out on Kn itself is quite boring. Pushing any single
vertex changes the state of every vertex. Hence the only solvable games are 0 and 1.
It is interesting that adding a “dead end” edge to each vertex of Kn transforms it
into a graph where every game is solvable, and where the oscillating strategy can
solve any game.

Example 3. Suppose m is a natural number and n = 2m. Let

C =
(

Im Im

Im Im

)
, D =

(
T S
S T

)
,

where S and T may be any m ×m symmetric matrices over F2 such that T has
ones along its main diagonal. Then in block form, each of the four blocks of CD
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Figure 2. The Petersen graph P(6, 3).

is S + T , and since we are working over F2, we know (CD)2 is the zero matrix.
According to Theorem 1, at most three iterations suffice to solve any game.

If T = Im and S = 0, then G is isomorphic to m copies of the path graph P4. In
this setting, the upper vertices have valence 1, and the lower vertices have valence 2.

If T is the m ×m tridiagonal matrix, and S is the m ×m matrix with ones in
the upper-right and lower-left corners only, then G is the Petersen graph P(2m,m).
See Figure 2.

Corollary 4. For every natural number m, the transition matrix for the Petersen
graph P(2m,m) is invertible, and at most three iterations of the oscillating strategy
suffice to solve any game. �

Example 5. Suppose n is even. Let C = (ci, j ) be the n× n matrix where c1,1 = 1,
all other entries in the first row and column are zero, and if i > 1 and j > 1, then
ci, j = 1. In graph theoretic terms, the lower vertices induce the graph that is the
union of the isolated vertex v1 with the complete graph on v2, . . . , vn . Let D be
the n× n matrix with ones in the first row and column, ones on the main diagonal,
and zeros elsewhere. In graph theoretic terms, the upper vertices induce the star
graph K1,n−1 with hub at vn+1. It is a simple matter to check that C = C2, so C is
not nilpotent. Also, Dn

= D2 is the matrix obtained from D by swapping all ones
with zeros and zeros with ones, so D is not nilpotent. Yet one readily verifies that
(CD)2 is the zero matrix, so Theorem 1 applies: every game on G is solvable, and
at most three iterations of the oscillating strategy suffice to solve any game.

Example 6. Suppose n is even. Let C = (ci, j ) be the n× n matrix where c1,1 =

c2,2 = 1, all other entries in the first two rows and columns are zero, and for either
i > 2 or j > 2, we have ci, j = 1. In graph theoretic terms, the lower vertices induce
the graph that is the union of isolated vertices v1 and v2 with the complete graph
on v3, . . . , vn . Let D be the n× n matrix with ones in the first row and column,
ones on the main diagonal, and zeros elsewhere (exactly the same as it was in
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Example 5). In graph theoretic terms, the upper vertices induce the star graph
K1,n−1 with hub at vn+1. It is a simple matter to check that Cn

= C2 has precisely
two ones, in positions (1, 1) and (2, 2), so C is not nilpotent. Also, Dn

= D2 is
the matrix obtained from D by swapping all ones with zeros and zeros with ones,
so D is not nilpotent. Yet one readily verifies that (CD)3 is the zero matrix, so
Theorem 1 applies: every game on G is solvable, and at most four iterations of the
oscillating strategy suffice to solve any game.

These examples should make clear that Theorem 1 is widely applicable. In
particular, the last two examples show that for every even n there are multiple
Petersen-like graphs for which neither C nor D is nilpotent, but CD is.

A restriction

In each example from the previous section, G is a Petersen-like graph where
Theorem 1 applies: G has σ+ transition matrix A =

( C
In

In
D

)
, and the product CD is

nilpotent. Observe that in each example, C and D are n× n matrices where n is
even. This is no accident.

Theorem 7. Suppose C and D are symmetric n×n matrices over a field of charac-
teristic 2, with ones along their main diagonals. If CD is nilpotent, then n is even.

Before proving this, we present a lemma:

Lemma 8. Suppose C = (ci, j ) and D = (di, j ) are symmetric n× n matrices over
a field of characteristic 2, with ones along their main diagonals. Then the trace
tr(CD)= 0 if and only if n is even.

Proof of Lemma 8. The k-th diagonal entry of CD is

ck,1d1,k + ck,2d2,k + · · ·+ ck,ndn,k = c1,kd1,k + c2,kd2,k + · · ·+ cn,kdn,k

since C is symmetric. The expression on the right is the sum of the entries in
the k-th column of the Hadamard product C ◦ D. Summing over all columns k,
we see that tr(CD) is the sum of all entries of C ◦ D. But C ◦ D is symmetric,
since C and D are, and has ones on its main diagonal since each of C and D do.
Therefore, the nondiagonal entries appear in pairs (and so cancel modulo 2), and
the sum of the diagonal entries is n. So over a field of characteristic 2, we have
tr(CD)≡ n (mod 2). �

Proof of Theorem 7. We prove the contrapositive. Suppose n is odd. The char-
acteristic polynomial of an n × n matrix M over a field of characteristic 2 has
tr(M) (mod 2) as the coefficient to the term with power n− 1. Since n is odd, the
lemma says that tr(CD) is nonzero. Therefore the characteristic polynomial of CD
has a nonzero coefficient for the term with power n− 1. This means that CD has a
nonzero eigenvalue, and therefore cannot be nilpotent. �
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Results for Petersen graphs

The transition matrix A(G) governs the behavior of the σ+ game on G, and its
nullity is particularly important. If G has n vertices, there are 2n configurations
on G. If A(G) has nullity k, then there are 2k nullspace vectors in (F2)

n. This
means there are 2n−k solvable games on G, and every solvable game has 2k distinct
strategies that solve it: if strategy s solves game g, so does s+ n ∈ (F2)

n for each
nullspace vector n. If A(G) is nonsingular, then every game is solvable and has a
unique solution.

Our first goal is to determine which Petersen graphs have nonsingular transition
matrices.

Lemma 9. If G is a graph where every vertex is odd-valent, then the σ+ transition
matrix A(G) is singular. In particular, the all-on strategy 1 is in the nullspace
of A(G).

Proof. Suppose every vertex in G is odd-valent. Consider the strategy 1, where
every button is pushed once. Let v be a button. Since v gets pushed, it changes
state once on that account. But v has odd valence, so in addition it will change
state an odd number of times (once for each button adjacent to it). So ultimately v
changes state an even number of times, and hence is left unchanged. Therefore 1 is
in the nullspace of A(G), so A(G) must be singular. �

Corollary 10. If G is a graph where every vertex is odd-valent, and s is a strategy
that solves the σ+ game g, then the complementary strategy 1 − s also solves
game g.

Proof. Suppose s solves game g. This means As = g, where A = A(G) is the
transition matrix for G. Since we are working modulo 2, we know 1− s = 1+ s,
and we have

A(1− s)= A1+ As = As = g,

since A1= 0 by Lemma 9. So strategy 1− s also solves game g. �

We now focus on Petersen graphs. Corollary 4 tells us that the transition matrix
for P(2n, n) is invertible, and that the oscillating strategy can be used to solve
any game on this graph. Note that for graphs of this type, the lower vertices have
valence 2, while the upper vertices have valence 3.

Theorem 11. The generalized Petersen graph P(n, k) has nonsingular σ+ transi-
tion matrix if and only if n = 2k.

Proof. If n 6= 2k, then P(n, k) is 3-regular, so by Lemma 9 its transition matrix
is singular. If n = 2k, then Corollary 4 guarantees that the transition matrix is
nonsingular. �
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While we have shown that the nullity of A is strictly positive for the regular
Petersen graphs, determining its precise value is a subtle business (see Table 1).
Both Sutner [1988], and Anderson and Feil [1998] pointed out a similar situation
for grid graphs, and much work was done subsequently to make sense of it [Barua
and Ramakrishnan 1996; Goldwasser et al. 1997; Sutner 2000].

Lemma 12. Let g and h be vectors in (F2)
n. Then g+ h ∈ (F2)

n has even parity if
and only if g and h have the same parity.

Proof. Let m and n be the light numbers of g and h. Let k be the number of
coordinate positions where g and h both have the value 1. Then the light number
of g+ h is

(m− k)+ (n− k)= m+ n− 2k ≡ m+ n (mod 2).

But m+ n is even if and only if m and n have the same parity. �

Lemma 13. If G is a graph where every vertex is odd-valent, and g is a solvable
game, then g is even.

Proof. Let A = A(G) be the transition matrix for G. Observe that A has an even
number of ones in each column, since A = Adj(G)+ I , and the adjacency matrix
for G has an odd number of ones in each column and zeros on the diagonal. Now
for any strategy s, the vector As is the simply the sum of those columns of A
where s has a one. It follows from Lemma 12 that any such sum has even parity.
So if As = g, it must be the case that g has even parity. �

Corollary 14. If G is a graph where every vertex is odd-valent, and the nullity of
A(G) is 1, then the solvable games are precisely the games with an even number of
lights lit. Every solvable game has precisely two solutions, and they are complements
of each other.

Proof. On any graph, precisely half of all possible games have an even light number.
If the nullity of the transition matrix for any graph is 1, precisely half of all games
are solvable (and every solvable game has two solutions). But Lemma 13 says
that on an odd-valent graph, every solvable game has an even light number, hence
these two sets (solvable games and games with an even light number) must agree.
If strategy s solves game g, Corollary 10 guarantees the complement 1− s is the
other solution. �

Table 1 shows that among the various Petersen graphs, there are many examples
satisfying the assumptions of Corollary 14 (e.g., P(n, 1) when n is odd). Other
questions and conjectures are suggested by the table. For example, it seems natural
to conjecture that the parity of n matches the parity of the nullity of A(P(n, k)) for
all k.
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n ↓ k→ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

3 1
4 4 0
5 1 5
6 2 2 0
7 1 1 1
8 4 2 4 0
9 1 1 1 1

10 2 6 6 2 0
11 1 1 1 1 1
12 4 2 4 2 4 0
13 1 1 1 1 1 1
14 2 2 2 2 2 2 0
15 1 5 5 9 1 1 5
16 4 2 4 2 4 2 4 0
17 1 1 1 1 9 1 9 1
18 2 2 2 2 2 2 2 2 0
19 1 1 1 1 1 1 1 1 1
20 4 6 8 2 4 2 8 6 4 0
21 1 1 1 1 1 1 1 1 1 1
22 2 2 2 2 2 2 2 2 2 2 0
23 1 1 1 1 1 1 1 1 1 1 1
24 4 2 4 2 4 2 4 2 4 2 4 0
25 1 5 5 1 1 1 5 5 1 1 1 5
26 2 2 2 2 2 2 2 2 2 2 2 2 0
27 1 1 1 1 1 1 1 1 1 1 1 1 1
28 4 2 4 2 4 2 4 2 4 2 4 2 4 0
29 1 1 1 1 1 1 1 1 1 1 1 1 1 1
30 2 6 6 10 2 2 6 6 2 2 10 6 6 2 0
31 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
32 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 0
33 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
34 2 2 2 2 10 2 10 2 2 10 2 10 2 2 2 2 0
35 1 5 5 1 1 1 5 5 1 1 1 5 5 1 1 1 5
36 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 0
37 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
38 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 0
39 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
40 4 6 8 2 4 2 8 6 4 2 4 6 8 2 4 2 8 6 4 0

Table 1. Nullity of A(P(n, k)) for n ≤ 40.
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Graph Oscillating strategy

P(4, 1) L
P(5, 2) L
P(6, 1) LUL
P(6, 2) UL
P(9, 3) LUL
P(12, 1) LULUL
P(12, 3) LULULULU
P(12, 5) LULUL
P(18, 3) LULUL
P(18, 6) LULU
P(36, 3) LULULULUL

P(36, 15) LULULULUL

Table 2. Regular Petersen graphs P(n, k) with n ≤ 72 where an
oscillating strategy suffices to solve any solvable game. Read each
strategy from left to right. For example, UL means first push the
upper buttons (opposite lit lower buttons), then push lower buttons
(opposite lit upper buttons).

The oscillating strategy on other Petersen graphs

Even when n 6= 2k, the oscillating strategy, repeated a finite number of times, will
suffice to solve all solvable games on certain Petersen graphs. The proof for each
such result is much like the proof of Theorem 1, but matters can be a bit more
subtle since the oscillating matrix need not be zero; it need only be the case that
every solvable game is in its nullspace.

Table 2 shows the regular Petersen graphs with n ≤ 72 (and k < n/2) for which
an oscillating strategy suffices to solve every solvable game. A minimal oscillation
sequence is given for each such graph. Playable versions of these games can be
found online at [Antonick 2013; Torrence 2016].
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