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In this paper we consider a family of elliptic curves of the form y2
= x3
−c2x+a2,

where (a, b, c) is a primitive Pythagorean triple. First we show that the rank is
positive. Then we construct a subfamily with rank ≥ 4.

1. Introduction

As is well known, an elliptic curve E over a field K can be explicitly expressed by
the generalized Weierstrass equation of the form

E : y2
+ a1xy+ a3 y = x3

+ a2x2
+ a4x + a6,

where a1, a2, a3, a4, a6 ∈K. In this paper we are interested in the case where K=Q.
By the Mordell–Weil theorem [Washington 2008], every elliptic curve over Q has a
commutative group E(Q) which is finitely generated, i.e., E(Q)∼= Zr

× E(Q)tors,
where r is a nonnegative integer and E(Q)tors is the subgroup of elements of finite
order in E(Q). This subgroup is called the torsion subgroup of E(Q) and the
integer r is called the rank of E and is denoted by rank E .

By Mazur’s theorem [Silverman and Tate 1992], the torsion subgroup E(Q)tors is
one of the following 15 groups: Z/nZ with 1≤ n≤ 10 or n= 12 or Z/2Z×Z/2mZ

with 1≤ m ≤ 4. Besides, it is not known which values of rank r are possible. The
folklore conjecture is that a rank can be arbitrarily large, but it seems to be very hard
to find examples with large ranks. The current record is an example of an elliptic
curve over Q with rank ≥ 28, found by Elkies in May 2006 (see [Dujella 2012]).
Having classified the torsion part, one is interested in seeing whether or not the rank
is unbounded among all the elliptic curves. There is no known guaranteed algorithm
to determine the rank and it is not known which integers can occur as ranks.

Specialization is a significant technique for finding a lower bound for the rank of a
family of elliptic curves. One can consider an elliptic curve on the rational function
field Q(T ) and then obtain elliptic curves over Q by specializing the variable T to
suitable values t ∈Q (see [Silverman 1994, Chapter III, Theorem 11.4] for more
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details). Using this technique, Nagao and Kouya [1994] found curves of rank ≥ 21,
and Fermigier [1996] obtained a curve of rank ≥ 22.

In order to determine r , one should find the generators of the free part of the
Mordell–Weil group. Determining the associated height matrix is a useful technique
for finding a set of generators. In the following, we briefly describe it.

Let m/n ∈Q, where gcd(m, n)= 1. Then the height of m/n is defined by

h
(m

n

)
= log

(
max{|m|, |n|}

)
.

Corresponding to P = (x, y) ∈ E(Q), we define

H(P)= h(x) and ĥ(P)= 1
2

lim
N→∞

H(2N
· P)

4N ,

where H(P) is called the canonical height of P ∈ E(Q). The Néron–Tate pairing
to an elliptic curve is defined by

〈 · , · 〉 : E(Q)× E(Q)→ R, 〈P, Q〉 = ĥ(P + Q)− ĥ(P)− ĥ(Q).

The associated height matrix to {Pi }
r
i=1 is

H :=
(
〈Pi , Pj 〉

)
1≤i≤r, 1≤ j≤r .

If detH 6= 0, then the points {Pi }
r
i=1 are linearly independent and rank E(Q) ≥ r

(see[Silverman 1994, Chapter III] for more details and proofs).
In this work we deal with a family of elliptic curves which are related to the

Pythagorean triples and, by using both the specialization and, the associated height
matrix techniques, prove the following theorem.

Main Theorem 1.1. Let (a, b, c) be a primitive Pythagorean triple. Then, there
are infinitely many elliptic curves of the form

E : y2
= x3
− c2x + a2 (1-1)

with rank ≥ 4.

If (a, b, c) is a primitive Pythagorean triple, then one can easily check that
a = i2

− j2, b = 2i j , and c = i2
+ j2, where gcd(i, j)= 1, and i, j have opposite

parity. So, we can consider (1-1) as

Ei, j : y2
= x3
− (i2

+ j2)2x + (i2
− j2)2. (1-2)

It is clear that two points Pi, j = (0, i2
− j2) and Qi, j = (i2

+ j2, i2
− j2) are on (1-2)

and so rank Ei, j > 0. In the next section, we construct a subfamily with rank ≥ 3.

2. A subfamily with rank ≥ 3

First, we look at (1-2) as a one-parameter family by letting

a = t2
− 1, b = 2t, c = t2

+ 1, (2-1)
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where t ∈Q. Then, instead of (1-2) one can take

Et : y2
= x3
− (t2

+ 1)2x + (t2
− 1)2, t ∈Q. (2-2)

Lemma 2.1. There are infinitely many elliptic curves of the form (2-2) with rank ≥ 3.

Proof. Clearly we have two points

Pt = (0, t2
− 1), Qt = (t2

+ 1, t2
− 1). (2-3)

We impose another point in (2-2) with x-coordinate 1. This implies 1− 4t2 is a
square, say v2. Then 1−4t2

= v2 defines a circle of the form (2t)2+v2
= 1. Hence

t =
α

α2+ 1
, v =

α2
− 1

α2+ 1
, (2-4)

with α ∈Q. Then, instead of (2-2), one can take

Eα : y2
= x3
−

((
α

α2+ 1

)2

+ 1
)2

x +
((

α

α2+ 1

)2

− 1
)2

, (2-5)

having three points

Pα=
(

0,
(

α

α2+1

)2

−1
)
, Qα=

((
α

α2+1

)2

+1,
(

α

α2+1

)2

−1
)
, Rα=

(
1,
α2
−1

α2+1

)
.

When we specialize to α = 2, we obtain a set of points S = {P2, Q2, R2} ={(
0, −21

25

)
,
(29

25 ,
−21
25

)
,
(
1, 3

5

)}
on

E2 : y2
= x3
−

841
25 x + 44

25 . (2-6)

Using SAGE, one can easily check that the associated height matrix of S has nonzero
determinant ≈ 22.879895 6= 0 showing that these three points are independent and
so rank E2 ≥ 3. The specialization result of Silverman [1994] implies that for all
but finitely many rational numbers, rank Eα ≥ 3. �

3. Proof of the main theorem

We impose another point with x-coordinate −2α/(α2
+1) in (2-5). Hence we want

1+2α/(α2
+1) to be a square. It suffices that α2

+1 is a square, say β2. Therefore,

α =
2m

1−m2 , β =
m2
+ 1

1−m2 , (3-1)

where m ∈Q. From the above expressions, one can transform (2-5) to

Em : y2
= x3
−
(m8
+ 8m6

− 2m4
+ 8m2

+ 1)2

(2m2+m4+ 1)4
x +

(m8
+ 14m4

+ 1)2

(2m2+m4+ 1)4
. (3-2)
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So we get the four points

Pm=(0, γ ),

Rm=

(
1,
(m2
−2m−1)(m2

+2m−1)
(m2+1)2

)
,

Qm=

(
m8
+8m6

−2m4
+8m2

+1
(m2+1)4

, γ

)
,

Sm=

(
4m(m2

−1)
m4+2m2+1

,
(m2
−2m−1)
m2+1

γ

)
,

where

γ =
(m4
− 2m3

+ 2m2
+ 2m+ 1)(m4

+ 2m3
+ 2m2

− 2m+ 1)
(m2+ 1)4

.

By specialization to m = 2 in (3-2), we have

E2 : y2
= x3
−

591361
390625 x + 231361

390625 , (3-3)

and the set of points S={P2,Q2, R2, S2}=
{(

0, 481
625

)
,
( 769

625 ,
481
625

)
,
(
1, 7

5

)
,
( 24

25 ,
481
3125

)}
on it. The associated height matrix of these four points has nonzero determinant
≈ 722.7181 6= 0 showing that these points are independent and so rank E2≥ 4. How-
ever, by using SAGE we see that rank E2= 5. Again, by specialization, we can con-
clude that for all but finitely many elliptic curves of the form (3-2), we have rank≥ 4.
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