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Given a connected reductive group G̃ over a finite field k, and a semisimple
k-automorphism ε of G̃ of finite order, let G denote the connected part of the
group of ε-fixed points. Two of the authors have previously shown that there
exists a natural lifting from series of representations of G(k) to series for G̃(k).
In the case of Deligne–Lusztig representations, we show that this lifting satisfies
a character relation analogous to that of Shintani.

0. Introduction

Suppose k is a finite field, G̃ is a connected reductive k-group, and ε is a semisimple
k-automorphism of G̃ of finite order `. Let G be the connected part of the group G̃ε

of ε-fixed points of G̃. We will see (Proposition 1) that G is also a connected
reductive k-group. Two of the authors have constructed a natural lifting [Adler and
Lansky 2014] from series of irreducible representations of G(k) to analogous series
for G̃(k). In certain cases, this lifting is known to coincide with the Shintani lifting
(see [Gyoja 1979, Theorem 7.2], [Digne 1987, Corollary 3.6], or [Silberger and
Zink 2005, Proposition B4.4], for example), so it is natural to ask whether there is a
relation, analogous to that of Shintani, between the character of a representation π
of G(k) and the ε-twisted character of its lift π̃ . The purpose of this note is to prove
an affirmative answer in the case where π is a Deligne–Lusztig representation,
irreducible or not.

Let G̃∗ and G∗ denote the duals of G̃ and G. For each semisimple element
z ∈G∗(k), one obtains a collection Ez(G(k)) of irreducible representations of G(k),
and these collections, known as rational Lusztig series, partition the set E(G(k)) of
(equivalence classes of) irreducible representations of G(k) [Lusztig 1984, §14.1].
For example, suppose that z is regular in G∗, and let T ∗⊆G∗ be the unique maximal
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k-torus containing z. Then the pair (T ∗, z) corresponds to a pair (T, θ), where T ⊆G
is a maximal k-torus, and θ is a complex-valued character of T (k). This latter
pair is uniquely determined up to G(k)-conjugacy. The Lusztig series Ez(G(k))
corresponding to z is the set of irreducible components of the Deligne–Lusztig virtual
representation whose character is RG

T θ . An earlier work [Adler and Lansky 2014,
Corollary 11.3] presents a natural map from semisimple conjugacy classes in G∗(k)
to semisimple classes in G̃∗(k), thus lifting each Lusztig series for G(k) to one
for G̃(k). The series of representations coming from ±RG

T θ lifts to that coming
from ±RG̃

T̃
θ̃ , where we will see that T̃ := CG̃(T ) is a maximal k-torus in G̃,

and θ̃ = θ ◦N, where N : T̃ → T is the norm map defined by

N (t)= tε(t) · · · ε`−1(t).

(Of course, one could define a similar map N on any ε-invariant torus in G̃.) In
order to understand better this lifting of representations, one would like to have
a relation between the character RG

T θ (for θ an arbitrary character of T (k), not
necessarily associated to a regular element of G∗(k)) and the ε-twisted character
(RG̃

T̃
θ̃ )ε associated to the ε-invariant character RG̃

T̃
θ̃ . We prove that such a relation

holds at sufficiently regular points, provided that one gathers together a “packet” of
characters of G(k), including RG

T θ , that each lift to RG̃
T̃
θ̃ .

Suppose we have a Borel-torus pair (B, T ) for G; that is, we have a maximal
k-torus T ⊆G, together with a Borel subgroup B ⊆G containing T , not necessarily
defined over k. From Proposition 1, we will obtain an ε-invariant Borel-torus pair
(B̃, T̃ ) in G̃, where T̃ = CG̃(T ) as above. Let 〈ε〉 be the group generated by ε.
Recall that an element of a reductive group is regular if the connected part of its
centralizer is a torus.

Theorem. Suppose s̃ ∈ G̃(k) belongs to an ε-invariant, maximal k-torus S̃ and
N (s̃) is regular in G̃. Then

(RG̃
T̃ θ̃ )ε(s̃)=

( ∑
g̃∈G(k)\(G̃(k)/T̃ (k))ε

RG
g̃T

g̃θ

)
(N (s̃)). (0-1)

Remark. Let us comment on some of the terms in (0-1).

(a) Here is what we mean by (RG̃
T̃
θ̃ )ε. Since θ̃ is an ε-invariant character of T̃ (k),

we have that ε acts on the Deligne–Lusztig variety corresponding to (B̃, T̃ , θ̃ ),
and thus on the virtual representation whose character is RG̃

T̃
θ̃ . That is, even if this

representation is reducible, we can form its ε-twisted character. To do so, extend θ̃ to
a character of T̃ (k)o 〈ε〉 by setting θ̃ (ε)= 1. Define the ε-twisted Deligne–Lusztig
character (RG̃

T̃
θ̃ )ε induced from θ̃ by (RG̃

T̃
θ̃ )ε(g) = (RG̃o〈ε〉

T̃o〈ε〉 θ̃ )(gε) for g ∈ G̃(k).
(See [Digne and Michel 1994] for the definition of Deligne–Lusztig induction for
nonconnected groups.)
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Note that if ε is quasicentral, i.e., the Weyl groups W (G, T ) and W (G̃, T̃ ) satisfy
W (G, T )=W (G̃, T̃ )ε (see [Digne and Michel 1994, Définition-Théorème 1.15]
for equivalent formulations), then (RG̃

T̃
θ̃ )ε doesn’t depend on the choice of B̃, from

the remark after [Digne and Michel 1994, Théorème 4.5]. More generally, there
could be several Borel subgroups B̃ ⊆ G̃ such that (B̃ε)◦ = B, and we don’t know
if the twisted character is independent of the choice of B̃. However, our theorem
will remain valid for any such choice.

(b) On the right-hand side of (0-1), g̃ runs over a set of double coset representatives.
For each such g̃, we have that g̃T is a maximal k-torus in G and g̃θ is a complex-
valued character of g̃T (k). The choice of representative g̃ affects the pair (g̃T, g̃θ)

only up to G(k)-conjugacy, so it does not affect the character RG
g̃T

g̃θ appearing in
the corresponding summand.

(c) We note that G(k)\(G̃(k)/T̃ (k))ε can be viewed as the set of G(k)-conjugacy
classes of ε-invariant Borel-torus pairs that are G̃(k)-conjugate to (B̃, T̃ ). As g̃
runs over a set of double coset representatives, the k-tori g̃T ⊂ G are related in a
way that is analogous to stable conjugacy, where G̃(k) plays the role usually played
by G(k̄), where k̄ is an algebraic closure of k. Moreover, the set of characters
appearing in the right-hand side of (0-1) is analogous to an L-packet, and their
sum is “stable”, in the sense that it is constant on the intersections with G(k) of
appropriate conjugacy classes in G̃(k).

Now let’s consider some special cases.

(a) One can show that when ε is quasicentral, the index set for the summation is a
singleton, so the theorem asserts that (RG̃

T̃
θ̃ )ε(s̃)= (RG

T θ)(N (s̃)).

(b) In particular, suppose G̃ = RE/k G is obtained from G via restriction of scalars
over a cyclic extension E/k and ε is the algebraic k-automorphism of G̃ associated
to the action of a generator of the Galois group Gal(E/k). Given a representation π
of G(k), one often has an associated representation π̃ of G̃(k), known as the
Shintani lift of π . (See [Kawanaka 1987] for a discussion.) The character of π and
the ε-twisted character of π̃ satisfy the Shintani relation 2π̃ ,ε =2π ◦N, where N
has been extended to a map on all (not necessarily semisimple) conjugacy classes.
From work of Digne [1999, Corollaire 3.6], one already knows that if RG

T θ has a
Shintani lift, then it must be RG̃

T̃
θ̃ . Thus, if one restricts attention to Deligne–Lusztig

characters and to the kind of elements that we consider, our character relation is a
generalization of Shintani’s.

(c) Consider the automorphism of GL(2) given by ε(g) = tg−1. Then a relation
analogous to that in our theorem holds for all irreducible characters, not just those of
Deligne–Lusztig type. Moreover, the relation can be extended to unipotent elements,
but it fails if s̃ is regular but N (s̃) is singular.
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Comparing our theorem with [Digne and Michel 1994, Proposition 2.12], we
see the latter shows that the restriction to G(k) of a twisted character of G̃(k) is a
certain twisted character of G(k), at least in the case where ε is quasicentral. On
the other hand, our theorem concerns a lifting of characters from G(k) to G̃(k) via
the norm map, and this lifting is not an inverse of restriction. As expected, the two
formulas agree in those situations where both are applicable, but such situations
are rare. Moreover, while we make regularity assumptions on our element s̃, we do
not assume that ε is quasicentral.

1. Preliminary results

Given any algebraic group H , we denote by H◦ the connected component of the
identity in H . If S is an algebraic subgroup of H , then CH (S) denotes the centralizer
of S in H . Similarly, for an element h ∈ H , we let CH (h) denote its centralizer.

As in Section 0, let k denote a finite field, G̃ a connected reductive k-group,
and ε a semisimple k-automorphism of G̃ of finite order `, and let G = (G̃ε)◦.

Most of the following result appears in the statement or proof of [Steinberg 1968,
Theorem 8.2]. Other versions appear in [Kottwitz and Shelstad 1999, Theorem 1.1.A;
Digne and Michel 1994, Théorème 1.8]. A version that includes the rationality
of G is in [Adler and Lansky 2014, Proposition 3.5].

Proposition 1. With notation as above, one has:

• G is a connected reductive k-group.

• For every ε-invariant Borel-torus pair (B̃, T̃ ) for G̃, one has a Borel-torus
pair ((B̃ε)◦, (T̃ ε)◦) for G. Moreover, (T̃ ε)◦ = T̃ ∩G.

• For every Borel-torus pair (B, T ) for G, one has an ε-invariant Borel-torus
pair (B̃, T̃ ), where T̃ = CG̃(T ) and such that (B̃ε)◦ = B.

From now on, we fix a maximal k-torus T ⊆ G, and thus obtain an ε-invariant
maximal k-torus T̃ = CG̃(T ) as in Proposition 1, and a norm map N : T̃ → T as
in Section 0.

The following result concerns conjugacy and twisted conjugacy in G and G̃.

Lemma 2. Suppose S̃ is an ε-invariant maximal k-torus in G̃. Let S = S̃ ∩ G.
Suppose that s̃ ∈ S̃(k) and that s :=N (s̃) ∈ S(k) is regular in G̃. Let g̃ ∈ G̃(k).

(i) There is an ε-invariant Borel subgroup of G̃ containing S̃.

(ii) If g̃−1sg̃ ∈ T (k), then g̃−1 S̃g̃ = T̃ .

(iii) If g̃−1s̃ g̃ ∈ T̃ (k) and g̃−1ε(g̃) ∈ T̃ (k), then g̃−1Sg̃ = T .

(iv) If g̃−1s̃ε(g̃) ∈ T̃ (k), then g̃−1ε(g̃) ∈ T̃ (k).
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Proof. To prove (i), let S′ be a maximal k-torus in G such that s ∈ S′(k), and let
S̃′ =CG̃(S

′). From Proposition 1, we have that S̃′ is a maximal torus in G̃, and it is
contained in an ε-invariant Borel subgroup of G̃. But S̃′ = CG̃(S

′)⊆ CG̃(s)
◦
= S̃,

and therefore, S̃′ = S̃.
To prove (ii), note that g̃−1 S̃g̃ = g̃−1CG̃(s)

◦g̃ = CG̃(g̃
−1sg̃)◦ = T̃ .

For (iii), it follows immediately from the assumptions that g̃−1s̃ε(g̃) ∈ T̃ (k).
Then g̃−1sg̃ =N (g̃−1s̃ε(g̃)) ∈N (T̃ (k))⊆ T (k). From (ii), g̃−1 S̃g̃ = T̃ . From (i)
and Proposition 1, it is thus enough to show that (g̃−1 S̃g̃)ε = g̃−1 S̃ε g̃. For x ∈ S̃(k̄),

ε(g̃−1x g̃)= ε(g̃)−1ε(x)ε(g̃)

= [g̃−1ε(g̃)]−1
· g̃−1ε(x)g̃ · [g̃−1ε(g̃)]

= g̃−1ε(x)g̃,

so ε(x)= x if and only if ε(g̃−1x g̃)= g̃−1x g̃.
To prove (iv), note that as above, g̃−1s̃ε(g̃)∈ T̃ (k) implies g̃−1sg̃ ∈ T (k). By (ii),

we have g̃−1s̃ g̃ ∈ T̃ (k). Therefore,

g̃−1ε(g̃)= (g̃−1s̃ g̃) (g̃−1s̃ε(g̃))−1
∈ T̃ (k). �

Now we consider a property of certain double coset spaces, whose proof is
straightforward.

Lemma 3. Let R̃ denote a set of representatives for the double coset space

G(k)\(G̃(k)/T̃ (k))ε.

Define the map φ : G(k)× R̃→ (G̃(k)/T̃ (k))ε by (g, r̃) 7→ gr̃ T̃ (k). Then

(i) the map φ is surjective;

(ii) we have φ(g, r̃)= φ(g′, r̃ ′) if and only if r̃ = r̃ ′ and g−1g′ ∈ r̃ T (k).

Now we recall some facts about Deligne–Lusztig virtual characters.

Lemma 4. One has the following:

(i) If x ∈ G(k) is a regular element and θ is a complex character of T (k), then

(RG
T θ)(x)=

∑
g∈G(k)/T (k)
g−1xg∈T (k)

θ(g−1xg).

(ii) Suppose that x̃ ∈ G̃(k) and that x̃ε is a regular element of G̃(k)o 〈ε〉. Let θ̃
be an ε-invariant character of T̃ (k), extended trivially to T̃ (k)o 〈ε〉. Then

(RG̃
T̃ θ̃ )ε(x̃)=

1

|T̃ (k)o 〈ε〉|

∑
h̃∈G̃(k)o〈ε〉

x̃ε∈h̃(T̃ (k)o〈ε〉)h̃−1

θ̃ (h̃−1(x̃ε)h̃).
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Proof. For each formula, see [Digne and Michel 1994, Proposition 2.6]. For the
second formula, note that CG̃(x̃ε) contains no nontrivial unipotent elements. Thus,
if we let S denote its connected part, then S is a torus, and the Green function QS(k)

S(k)
that arises in this proposition takes the value |S(k)| at (1, 1). �

2. Proof of the main theorem

From Lemma 2(i), we know S̃ is contained in an ε-invariant Borel subgroup of G̃,
so it follows from Proposition 1 that S := S̃ ∩G is a maximal k-torus in G, and
S̃ = CG̃(S).

Since (s̃ε)`=N (s̃), which is assumed regular in G̃ and thus in G̃o〈ε〉, we must
have that s̃ε is also regular in G̃ o 〈ε〉. Lemma 4(ii) then implies that the left-hand
side of (0-1) (hereafter denoted LHS) is equal to

1

`|T̃ (k)|

∑
θ̃ (h̃−1(s̃ε)h̃)=

1

`|T̃ (k)|

∑
θ̃ (h̃−1

· s̃ · ε(h̃) · ε),

where each sum is over the set{
h̃ ∈ G̃(k)o 〈ε〉

∣∣ s̃ε ∈ h̃(T̃ (k)o 〈ε〉)h̃−1}.
If g̃ ∈ G̃(k), then g̃εi belongs to the index set if and only if g̃−1s̃ε(g̃) ∈ T̃ (k). The
set of such elements g̃ is a union of left cosets of T̃ (k). Thus,

LHS=
1

`|T̃ (k)|

`−1∑
i=0

∑
g̃∈G̃(k)

g̃−1 s̃ε(g̃)∈T̃ (k)

θ̃
(
(g̃εi )−1

· s̃ · ε(g̃εi ) · ε
)

=
1

|T̃ (k)|

∑
g̃∈G̃(k)

g̃−1 s̃ε(g̃)∈T̃ (k)

θ̃ (g̃−1s̃ε(g̃))

=

∑
g̃∈G̃(k)/T̃ (k)

g̃−1 s̃ε(g̃)∈T̃ (k)

θ̃ (g̃−1s̃ε(g̃))

=

∑
g̃∈(G̃(k)/T̃ (k))ε

g̃−1 s̃ g̃∈T̃ (k)

θ̃ (g̃−1s̃ε(g̃)),

where the last equality follows from Lemma 2(iv). Let s = N (s̃) and note that
N (g̃−1s̃ε(g̃))= g̃−1sg̃ for g̃ ∈ G̃(k). Thus LHS is equal to∑

g̃∈(G̃(k)/T̃ (k))ε

g̃−1 s̃ g̃∈T̃ (k)

g̃θ(s). (2-1)
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On the other hand, it follows from Lemma 4(i) that the right-hand side of (0-1)
is equal to ∑

x̃∈G(k)\(G̃(k)/T̃ (k))ε

(RG
x̃T

x̃θ)(s)=
∑

x̃∈G(k)\(G̃(k)/T̃ (k))ε

∑
g∈G(k)/x̃T (k)
g−1sg∈x̃T (k)

x̃θ(g−1sg)

=

∑
x̃∈G(k)\(G̃(k)/T̃ (k))ε

∑
g∈G(k)/x̃T (k)

(gx̃)−1s(gx̃)∈T (k)

gx̃θ(s)

=

∑
g̃∈(G̃(k)/T̃ (k))ε

g̃−1sg̃∈T (k)

g̃θ(s),

where the final equality follows from Lemma 3. The last sum above is equal to (2-1)
by Lemma 2(ii) and (iii), which together imply that for g̃ ∈ (G̃(k)/T̃ (k))ε, we have
g̃−1sg̃ ∈ T (k) if and only if g̃−1s̃ g̃ ∈ T̃ (k).
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