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James classified the simple modules over the group algebra k6n using modules
denoted Dλ, where λ is a partition of n. In particular, he showed that Dλ is
simple or zero for every partition λ and, furthermore, that for every simple
k6n-module S there exists a partition λ such that Dλ ∼= S. This paper is an
extension of a paper of Dodge and Ellers in which they studied analogous modules
D(λ,µ) over the centralizer algebra k66l

n , where λ is a partition of n and µ a
partition of l. For every positive prime p we find counterexamples to their
conjecture that the k66l

n -modules D(λ,µ) are always simple or zero, where k is
a field of characteristic p. We also study the relationship between D(λ,µ) and
Homk6l (D

µ, res6n
6l

Dλ) in special cases.

1. Introduction

Let n be a positive integer and k an algebraically closed field of characteristic p.
James [1978] studied simple modules over the group algebra k6n , where 6n is the
symmetric group on n letters. He defined for each partition λ ` n the permutation
module Mλ with basis consisting of all λ-tabloids. The Specht module Sλ is defined
to be the submodule of Mλ generated by polytabloids. The kernel intersection
theorem can be used to characterize Sλ as

Sλ =
⋂
{kerϕ | ϕ : Mλ

→ Mλ′, λ′ B λ},

where C is the dominance order on partitions [James 1998, p. 97]. He also defined
a bilinear form on Mλ using the set of tabloids as an orthonormal basis and proved
in [James 1998, 2.2] using the characterization of Sλ above that

Sλ⊥ =
∑
{imϕ | ϕ : Mλ′

→ Mλ, λ′ B λ}.
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James then defined the module Dλ by

Dλ
= Sλ/(Sλ ∩ Sλ⊥)

and proved that Dλ is always zero or simple, that Dλ
6=0 if and only if λ is p-regular,

and that all simple k6n-modules occur exactly once as λ runs through all p-regular
partitions.

Dodge and Ellers applied similar ideas to study representations of centralizer
algebras of the symmetric group. In general, let G be a finite group, let H be a
subgroup of G, and let k be an algebraically closed field of characteristic p. The
centralizer algebra kG H is defined by

kG H
= {a ∈ kG | ah = ha, ∀h ∈ H}.

Given a kG-module M and a kH -module N we can construct a kG H -module in a
very natural way. The space

HomkH (N, resG
H M)

can be given a natural action by kG H in the following manner:

(aϕ)(t)= a(ϕ(t))

for all a ∈ kG H, t ∈ N and ϕ ∈ HomkH (N, resG
H M).

Dodge and Ellers [2016] studied the representation theory of k6n
6l, where 6n is

the symmetric group on n letters, l ≤ n, and 6l is identified with a subgroup of 6n

permuting the first l letters. Here we review the notation and definitions they used.
Let µ ` l and λ ` n. Define a dominance relation on such partition pairs (λ, µ) by

(λ′, µ′)B (λ, µ) if λ′ B λ or (λ′ = λ and µ′ B µ).

Define the k66l
n -module

M(λ,µ)
= (Mµ,Mλ).

This module is designed to be analogous to the permutation modules of the sym-
metric group. They then define the modules

S(λ,µ) =
⋂
{kerϕ | ϕ :M(λ,µ)

→M(λ′,µ′), (λ′, µ′)B (λ, µ)},

S(λ,µ)⊥ =
∑
{imϕ | ϕ :M(λ′,µ′)

→M(λ,µ), (λ′, µ′)B (λ, µ)},

D(λ,µ)
= S(λ,µ)/(S(λ,µ) ∩ S(λ,µ)⊥).

In the above definitions ϕ is a k66l
n -module homomorphism. Note that a bilinear

form on Mλ,µ has not been defined; the notation for the module S(λ,µ)⊥ was chosen
to highlight its similarity to Sλ⊥ in [James 1978]. Paralleling the approach to the
representation theory of k6n in [James 1978], Dodge and Ellers [2016] proved that
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if λ ` n and µ ` l, and l < p, then D(λ,µ) is either simple or zero, in agreement
with James’ result. In addition, they showed that

D(λ,µ) ∼= Homk6l (D
µ, res6n

6l
Dλ)

under the same conditions. They conjectured that these facts hold in general when
λ and µ are p-regular. In this paper we compute explicit examples to test their
conjectures.

For all positive prime p, we explicitly compute the structures of

Hom6p(D
(p), res6p+3

6p
D(p+2,1))

in Sections 3, 4, and 5 and the structures of D((p+2,1),(p)) in Sections 6 and 7. In
particular, we show that the space Hom6p(D

(p), res6p+3
6p

D(p+2,1)) is neither simple
nor zero and prove the following characterizations of D((p+2,1),(p)):

Proposition 1.1. Let k be a field of characteristic p, where p 6= 3. Then

D((p+2,1),(p)) ∼= Homk6p(D
(p), res6p+3

6p
D(p+2,1))

as k66p
p+3-modules and therefore D((p+2,1),(p)) is neither simple nor zero.

Proposition 1.2. Let k be a field of characteristic 3. Then

D((5,1),(3)) ∼= Homk63(D
(3), res66

63
D(5,1))/L

as k663
6 -modules, where L is a submodule isomorphic to M((6),(3)). Moreover,

D((5,1),(3)) is neither simple nor zero.

Thus neither is simple nor zero for any characteristic p, contrary to the conjectures
of Dodge and Ellers. In addition, this shows that the isomorphism conjectured
above does not hold in characteristic 3. Finally, in Section 9 we show that in
characteristic 2 there is no ordering on pairs of partitions for which the conjectures
hold when n = 5 and l = 2.

2. M(( p+3),µ) in arbitrary characteristic p

We consider the relationship between the spaces Homk6p(D
(p), res6p+3

6p
D(p+2,1))

andD((p+2,1),(p)) when p is a positive prime. Since the pairs of partitions (λ, µ) such
that (λ, µ)B ((p+ 2, 1), (p)) are those of the form ((p+ 3), µ), where µ ` p, we
first study the modules corresponding to such pairs.

Proposition 2.1. Let k be a field of characteristic p. Then all modules of the
form M((p+3),µ), where µ ` p, are one-dimensional and mutually isomorphic as
k66p

p+3-modules.
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Proof. Fix a partition µ ` p and a nonzero tabloid y0 ∈ Mµ. From [James 1978,
Theorem 13.19] we know that M((p+3),µ) is nonzero, so we may choose a nonzero
f ∈M((p+3),µ). Since f (y0) ∈ M (p+3) ∼= k, we have

f (y0)= σ f (y0)= f (σ y0)

for all σ ∈ 6p, and since Mµ is a cyclic k6p-module generated by any nonzero
tabloid, it follows that f (y)= f (y0) for any tabloid y ∈Mµ. Thus if f0 ∈M

((p+3),µ)

is defined by f0(y0)= 1 then M((p+3),µ)
= span{ f0} as a k66p

p+3-module. In partic-
ular, it is one-dimensional.

We now describe a generating set for k66p
p+3. From [Kleshchev 2005, Proposi-

tion 2.1.1] we have

k66p
p+3 =

〈
Z(k6p), (p+1 p+2), (p+1 p+2 p+3), L p+1, L p+2, L p+3

〉
,

where Z(k6p) is the center of k6p and Lk is the Jucys–Murphy element defined as

Lk =
∑

1≤m<k

(m k).

It is well known that Z(k6p) is spanned by elements sτ ∈ k6p for τ a partition
of p, where sτ denotes the sum of all elements in 6p with cycle type corre-
sponding to the partition τ . Let Kτ denote the conjugacy class corresponding
to the partition τ . Since any element of 6p+3 acts trivially on the codomain
of Homk6p(D

µ, res6p+3
6p

D(p+3))=M((p+3),µ), we deduce that the action of the
module is described by the table

f0

sτ |Kτ | f0

(p+1 p+2) f0

(p+1 p+2 p+3) f0

L p+1 0
L p+2 f0

L p+3 2 f0

Since our choice of µ was arbitrary, it follows that all modules of the form
M((p+3),µ) are mutually isomorphic, as claimed. �

3. Homk62(D(2), res65
62

D(4,1)) in characteristic 2

Next we determine the structure of Homk62(D
(2), res65

62
D(4,1)). In this and all fol-

lowing sections, when Dλ∼= Sλ we will identify a coset in Dλ with its corresponding
element in Sλ as an abuse of notation. We first note that D(2) is trivial by definition.
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We have that M (4,1) is spanned by{
2 3 4 5
1 ,

1 3 4 5
2 ,

1 2 4 5
3 ,

1 2 3 5
4 ,

1 2 3 4
5

}
.

We will denote these tabloids by x1, x2, x3, x4, x5, respectively. Since x2, . . . , x5

correspond to the standard tableau in M (4,1), we know from [James 1978, Theo-
rem 8.4] that the Specht module S(4,1) has basis {x2−x1, x3−x1, x4−x1, x5−x1}.
For simplicity we denote each element in this basis by ci = xi − x1 for 2≤ i ≤ 5.
To compute S(4,1)⊥, note that since the map M((5),(2))

→ M((4,1),(2)) defined by
1 7→ x1 + x2 + x3 + x4 + x5 is a k662

5 -module homomorphism, it follows that
x1+ x2+ x3+ x4+ x5 ∈ S(4,1)⊥. Moreover, since S(4,1) is four-dimensional we can
conclude from [James 1978, 1.3] that S(4,1)⊥ has dimension 1 and hence that S(4,1)⊥

has basis {x1 + x2 + x3 + x4 + x5}. Notice that Sλ ∩ Sλ⊥ = 0, so D(4,1) ∼= S(4,1).
Now, fix z ∈ D(2) with z 6= 0, and let

f : D(2)
→ res65

62
D(4,1)

be defined by

f (z)= a2c2+ a3c3+ a4c4+ a5c5.

Observe that since D(2) ∼= k and k is a field of characteristic 2, we have f ∈
Homk62(D

(2), res65
62

D(4,1)) if and only if [(1)+ (12)] f = 0. Therefore, we need

[(1)+ (12)] f (z)= a2c2+ a3c3+ a4c4+ a5c5− a2c2

+ a3(c3− c2)+ a4(c4− c2)+ a5(c5− c2)

=−a3c2− a4c2− a5c2

=−(a3+ a4+ a5)c2 = 0.

Thus f is a k62-module homomorphism exactly when a3+ a4+ a5 = 0. Hence f
has the form

f (z)= a2c2+ a3c3+ a4c4+ (−a3− a4)c5

= a2c2+ a3(c3− c5)+ a4(c4− c5).

Therefore a basis for Homk62(D
(2), res65

62
D(4,1)) is

α(z)= c2 = x1+ x2, β(z)= c3− c5 = x3− x5, γ (z)= c4− c5 = x4− x5.

Next we examine how k662
5 acts on {α, β, γ }. As our generators for k662

5 , we
will be using the generating set from Proposition 2.1, namely

k662
5 =

〈
(1), (12), (34), (345), L3, L4, L5

〉
.
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The action of the module is described by the table

α β γ

(12) α β γ

(34) α γ β

(345) α γ −β −β

L3 α α 0
L4 0 γ α+β

L5 0 −α− γ −α−β

Thus we can see that span{α} is a submodule of Homk62(D
(2), res65

62
D(4,1)).

Comparing this table with that on page 880 describing M((5),(2)), we see that
span{α} 6∼=M((5),(2)). The quotient by this one-dimensional submodule has basis
{β̄, γ̄ }, and the action of the module is described by the table

β̄ γ̄

(12) β̄ γ̄

(34) γ̄ β̄

(345) γ̄ − β̄ −β̄

L3 0 0
L4 γ̄ β̄

L5 −γ̄ −β̄

We will show that this is a simple two-dimensional module. If this is not
simple, it must contain a one-dimensional submodule. We leave to the reader
the easy confirmation that span{β̄} and span{γ̄ } are not submodules. So suppose
a0, a1 6= 0 and assume for contradiction that the one-dimensional k-vector space
span{a0β̄ + a1γ̄ } is a submodule. It follows then that

((34)+ (345))(a0β̄ + a1γ̄ ) ∈ span{a0β̄ + a1γ̄ },

so we have

((34)+ (345))(a0β̄ + a1γ̄ )= a0(34)β̄ + a1(34)γ̄ + a0(345)β̄ + a1(345)γ̄

= a0γ̄ + a1β̄ + a0γ̄ − a0β̄ − a1β̄

=−a0β̄.

Thus, it must be that a0 = 0, a contradiction. Thus, for all a0, a1 ∈ k, we have that
span{a0β̄ + a1γ̄ } is not a submodule of Homk62(D

(2), res65
62

D(4,1))/ span{α}, so
the quotient is a two-dimensional simple module.
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4. Homk63(D(3), res66
63

D(5,1)) in characteristic 3

Let k be a field of characteristic 3. We now determine the structure of

Homk63(D
(3), res66

63
D(5,1)).

Notice that D(3) is trivial. We have that M (5,1) is spanned by{
2 3 4 5 6
1 ,

1 3 4 5 6
2 ,

1 2 4 5 6
3 ,

1 2 3 5 6
4 ,

1 2 3 4 6
5 ,

1 2 3 4 5
6

}
.

We will again denote these standard tabloids by x1, x2, x3, x4, x5, x6, respectively.
Since x2, . . . , x6 correspond to the standard tableau in M (5,1), we know from [James
1978, Theorem 8.4] that the Specht module S(5,1) is spanned by {x2−x1, x3−x1,

x4−x1, x5−x1, x6−x1}. For simplicity we denote each element in this basis
by ci = xi − x1 for 2 ≤ i ≤ 6. To compute S(5,1)⊥, note that since the map
M((6),(2))

→M((5,1),(2)) defined by 1 7→ x1+x2+x3+x4+x5+x6 is a k663
6 -module

homomorphism, it follows that x1+x2+x3+x4+x5+x6 ∈ S(5,1)⊥. Moreover, since
S(5,1) is five-dimensional, we can conclude from [James 1978, 1.3] that S(5,1)⊥ has
dimension 1 and hence that S(5,1)⊥ has basis {x1+ x2+ x3+ x4+ x5+ x6}. From
this, it is clear that S(5,1)∩ S(5,1)⊥ = 0, so D(5,1) ∼= S(5,1). We now fix z ∈ D(3) with
z 6= 0 and let

f : D(3)
→ res66

63
D(5,1)

be defined by
f (z)= a2c2+ a3c3+ a4c4+ a5c5+ a6c6.

Since 63 is generated by (12) and (13), we have f ∈ Homk63(D
(3), res66

63
D(5,1))

exactly when f (z)= (12) f (z) and f (z)= (13) f (z). Thus we must have

(12) f (z)= a2(−c2)+ a3(c3− c2)+ a4(c4− c2)+ a5(c5− c2)+ a6(c6− c2)

= (−a2− a3− a4− a5− a6)c2+ a3c3+ a4c4+ a5c5+ a6c6,

so a2 =−a2− a3− a4− a5− a6. Similarly,

(13) f (z)= a2(c2− c3)+ a3(−c3)+ a4(c4− c3)+ a5(c5− c3)+ a6(c6− c3)

= a2c2+ (−a2− a3− a4− a5− a6)c3+ a4c4+ a5c5+ a6c6,

so a3=−a2−a3−a4−a5−a6. Thus a2=a3, and since a2=−a2−a3−a4−a5−a6

and k has characteristic 3, we get that 0= a4+ a5+ a6. Consequently,

f (z)= a2c2+a3c3+a4c4+a5c5+a6c6 = a2(c2+c3)+a4(c4−c6)+a5(c5−c6).

Therefore, we get that Homk63(D
(3), res66

63
D(5,1)) is spanned by {α, β, γ }, where

α(z)= c2+c3= x1+x2+x3, β(z)= c4−c6= x4−x6, γ (z)= c5−c6= x5−x6.
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The table describing the action on this basis is

α β γ

(12)+ (13)+ (23) 0 0 0
(123)+ (132) 2α 2β 2γ

(45) α γ β

(456) α 2β + γ 2β
L4 2α α 0
L5 0 γ α+β

L6 α 2α+ 2γ 2α+ 2β

From this table we can deduce that span{α} and span{α+β+γ } are submodules
of Homk63(D

(3), res66
63

D(5,1)). The table describing the action on span{α+β+ γ }
is

α+β + γ

(12)+ (13)+ (23) 0
(123)+ (132) 2(α+β + γ )

(45) α+β + γ

(456) α+β + γ

L4 0
L5 α+β + γ

L6 2(α+β + γ )

Comparing these tables to that on page 880, we see that span{α} 6∼=M((6),(3)) and
span{α+β + γ } ∼=M((6),(3)). The corresponding quotient

Homk63(D
(3), res66

63
D(5,1))/(span{α}⊕ span{α+β + γ })

is one-dimensional with basis {β̄} and the table describing the action on this basis is

β̄

(12)+ (13)+ (23) 0
(123)+ (132) 2β̄

(45) 2β̄
(456) β̄

L4 0
L5 2β̄
L6 β̄

Note that {β̄} is isomorphic to neither span{a} nor M((6),(3)).
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5. Homk6 p(D( p), res6 p+3
6 p

D( p+2,1)) in characteristic p

Let p ≥ 5 be prime, and let k be a field of characteristic p. We determine the
structure of

Homk6p(D
(p), res6p+3

6p
D(p+2,1)).

Notice that D(p) is trivial. Using notation similar to that in Sections 3 and 4,
M (p+2,1) is spanned by {x1, . . . , x p+3}. From computations entirely analogous
to those in characteristics 2 and 3, we know that the Specht module S(p+2,1) has
basis {c2, . . . , cp+3}, where ci = xi − x1 for 2≤ i ≤ p+ 3, and that S(p+2,1)⊥ has
dimension 1 with basis {x1+x2+· · ·+x p+3}. Consequently S(p+2,1)

∩S(p+2,1)⊥
=0

and D(p+2,1) ∼= S(p+2,1).
Fix z ∈ D(p) with z 6= 0. Let f : D(p)

→ res6p+3
6p

D(p+2,1) be defined by f (z)=
a2c2+ a3c3+ · · ·+ ap+3cp+3. Notice that

f ∈ Homk6p(D
(p), res6p+3

6p
D(p+2,1))

if and only if f (z)= (12) f (z)= (13) f (z)= · · · = (1 p) f (z) since 6p is generated
by (12), . . . , (1 p). Since

(1 i) f (z)= a2(c2− ci )+ a3(c3− ci )+ · · ·+ ai (−ci )+ · · ·+ ap+3(cp+3− ci )

and
f (z)= a2c2+ a3c3+ · · ·+ ap+3cp+3,

it follows that for all 2≤ i ≤ p we must have

a2(c2− ci )+ a3(c3− ci )+ · · ·+ ai (−ci )+ · · ·+ ap+3(cp+3− ci )

= a2c2+ a3c3+ · · ·+ ap+3cp+3.

Simplifying, we have

ai ci =

(
−

p+3∑
k=2

ak

)
ci ,

so ai = −a2 − a3 − · · · − ap+3. Since this holds for arbitrary 2 ≤ i ≤ p, we get
that a2 = a3 = · · · = ap. In particular, substituting this into the above equality with
i = 2 we have

ap+1+ ap+2+ ap+3 =−a2− a2− a3− · · ·− ap =−pa2 = 0

since k has characteristic p. Hence f must have the form

f (z)= a2c2+ a3c3+ · · ·+ ap+3cp+3

= a2(c2+ c3+ · · ·+ cp)+ ap+1(cp+1− cp+3)+ ap+2(cp+2− cp+3).
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From this, we can see that a basis for Homk6p(D
(p), res6p+3

6p
D(p+2,1)) is {α, β, γ },

where
α(z)= c2+ · · ·+ cp = x1+ x2+ · · ·+ x p,

β(z)= cp+1− cp+3 = x p+1− x p+3,

γ (z)= cp+2− cp+3 = x p+2− x p+3.

Recall from Proposition 2.1 that for a partition τ , we let sτ denote the sum of all
elements in 6p with cycle type corresponding to τ and let Kτ denote the conjugacy
class corresponding to τ . Notice that since each element of6p permutes {1, . . . , p},
we can conclude that σα = α, σβ = β, and σγ = γ for any σ ∈6p. From this we
can derive the action of k66p

p+1 on this basis, and the table describing this is

α β γ

sτ |Kτ |α |Kτ |β |Kτ |γ

(p+1 p+2) α γ β

(p+1 p+2 p+3) α γ −β −β

L p+1 −α α 0
L p+2 0 γ α+β

L p+3 α −α− γ −α−β

Notice that span{α} is a submodule. Comparing its action to the action described
in the table on page 880 we see that span{α} 6∼=M((p+3),(p)). The table describing
the action on the corresponding quotient module is

β̄ γ̄

sτ |Kτ |β̄ |Kτ |γ̄

(p+1 p+2) γ̄ β̄

(p+1 p+2 p+3) γ̄ − β̄ −β̄

L p+1 0 0
L p+2 γ̄ β̄

L p+3 −γ̄ −β̄

We now show that this quotient is simple. Since the quotient is two-dimensional,
we can show that it is simple by showing that there are no one-dimensional sub-
modules. We leave it to the reader to confirm that span{β̄} and span{γ̄ } are not
submodules. So let a0, a1 6= 0 and suppose for contradiction that span{a0β̄ + a1γ̄ }

is a submodule. Then(
(p+1 p+2)+(p+1 p+2 p+3)

)
(a0β̄+a1γ̄ )= a0γ̄+a1β̄+a0(γ̄−β̄)+a1(−β̄)

= 2a0γ̄−a0β̄,
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so for some c ∈ k, we have ca0=−a0 and ca1= 2a0. Thus, c=−1 and a1=−2a0.
Similarly,(
(p+1 p+2)−(p+1 p+2 p+3)

)
(a0β̄+a1γ̄ )= a0γ̄+a1β̄−a0(γ̄−β̄)−a1(−β̄)

= (a0+2a1)β̄,

so a0+2a1= 0 since a1 6= 0. Thus, a0=−2a1, and since a1=−2a0, we must have
a1 = 4a1. For char k 6= 3 this is a contradiction. Hence, span{a0β̄ + a1γ̄ } is not a
submodule for all a0, a1 ∈ k and the quotient is a two-dimensional simple module.

6. D(( p+2,1),( p)) in characteristic p 6= 3

In this section we compute the structure of D((p+2,1),(p)) over a field of charac-
teristic p when p 6= 3 and prove Proposition 1.1. To compute the structure of
D((p+2,1),(p)) we will need the following lemma.

Lemma 6.1. Let A be a finite-dimensional k-algebra, let S1, . . . , Sn be simple
A-modules, and suppose K and L are A-modules with L having no Si as a compo-
sition factor and K having every Si as a composition factor. Let ϕ : K → L be an
A-module homomorphism, and let M be minimal among submodules of K having
every Si as a composition factor. Then M ⊆ kerϕ.

Proof. Suppose, for contradiction, that M 6⊆kerϕ. Then the inclusion M⊃kerϕ∩M
is strict. Refine the filtration M⊃ (kerϕ∩M)⊇0 into a composition series. Since M
is minimal among submodules of K having every Si as a composition factor, they
cannot all belong to the composition series of kerϕ ∩M . Thus S1, without loss of
generality, is a composition factor of M/(kerϕ ∩M). But

M/(kerϕ ∩M)∼= ϕ(M)⊆ L ,

so S1 is a composition factor of L , a contradiction. �

The remainder of this section will be devoted to the proof of Proposition 1.1.
Suppose k has characteristic p 6= 3. We first compute a basis for M((p+2,1),(p)).

For each 1 ≤ i ≤ p+ 3, let ti be the (p+ 2, 1)-tableau with i in the second row,
and let xi = {ti }. Then {x1, . . . , x p+3} forms a basis for M (p+2,1).

Let 0 6= z ∈ M (p) and let f : M (p)
→ res6p+3

6p
M (p+2,1) be defined by

f (z)=
p+3∑
n=1

anxn.

Since the transpositions (1 i) for 1≤ i ≤ p generate the group 6p, for f to be a
6p-homomorphism it is sufficient that [(1)− (1 i)] f = 0 for all 2 ≤ i ≤ p. Fix
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one such i . Then

[(1)− (1 i)] f (z)=
( p+3∑

n=1

anxn

)
−

(
ai x1+ a1xi +

∑
n 6=1,i

anxn

)
= a1x1+ ai xi − ai x1− a1xi

= (a1− ai )(x1− xi ).

Thus we must have a1 = ai . Since this must be true for all 2≤ i ≤ p, we deduce
that M((p+2,1),(p)) has a basis {α, β ′p+1, β

′

p+2, β
′

p+3}, where

α(z)= x1+ · · ·+ x p,

β ′p+1(z)= x p+1,

β ′p+2(z)= x p+2,

β ′p+3(z)= x p+3.

From this it is easy to check that

α(z)= x1+ · · ·+ x p,

βp+1(z)= x p+1− x p+3,

βp+2(z)= x p+2− x p+3,

βp+3(z)= x1+ · · ·+ x p+3

is also a basis for M((p+2,1),(p)). The set {α, βp+1, βp+2} can be identified with the
basis of Homk6p(D

(p), res6p+3
6p

D(p+2,1)) found in Section 5, so we can deduce that

N = span{α, βp+1, βp+2}

is a subspace of M((p+2,1),(p)) isomorphic to Homk6p(D
(p), res6p+3

6p
D(p+2,1)). Fur-

thermore, the table describing the action on βp+3 is

βp+3

sτ |Kτ |βp+3

(p+1 p+2) βp+3

(p+1 p+2 p+3) βp+3

L p+1 0
L p+2 βp+3

L p+3 2βp+3

so K = span{βp+3} is a submodule of M((p+2,1),(p)), and comparing this table to
that on page 880 we see that it is isomorphic to M((p+3),(p)). Hence we have the
direct sum decomposition

M((p+2,1),(p))
= N ⊕ K.

We now compute D((p+2,1),(p)). Since we know from Section 5 that the com-
position factors of Homk6p(D

(p), D(p+2,1)) consist of simple modules not iso-
morphic to M((p+3),(p)), it follows from Lemma 6.1 that N ⊆ kerϕ for every
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ϕ :M((p+2,1),(p))
→M((p+3),(p)), so that N ⊆ S((p+2,1),(p)). The reverse inclusion

follows from the fact that N is the kernel of the projection of M((p+2,1),(p)) onto
K ∼=M((p+3),(p)). Hence

S((p+2,1),(p))
= N.

We can deduce that K ⊆ S((p+2,1),(p))⊥ since K is the image of the map

M((p+3),(p))
→M((p+2,1),(p))

consisting of the isomorphism to K followed by injection. For the reverse inclusion,
let ϕ : M((p+3),(p))

→ M((p+2,1),(p)) be nonzero. Since imϕ ∼= M((p+3),(p)) by
Schur’s lemma and K is the only composition factor of M((p+2,1),(p)) isomorphic
to M((p+3),(p)), we must have imϕ = K. Consequently K ⊆ S((p+2,1),(p))⊥ by
definition. Thus

S((p+2,1),(p))⊥
= K.

Since K ∩ N = {0}, we have

D((p+2,1),(p))
= S((p+2,1),(p))/{0} ∼= N ∼= Homk6p(D

(p), res6p+3
6p

D(p+2,1))

as claimed. We showed in Sections 3 and 5 that Homk6p(D
(p), res6p+3

6p
D(p+2,1)) was

neither simple nor zero for p 6= 3, and so the same must be true of D((p+2,1),(p)).

7. D((5,1),(3)) in characteristic 3

In this section we compute the structure of D((5,1),(3)) over a field of characteris-
tic 3 and prove Proposition 1.2. This module has a structure different from the
analogous modules D((p+2,1),(p)) in other characteristics because the spanning set
{α, βp+1, βp+2, βp+3} in M((p+2,1),(p)) fails to be linearly independent in character-
istic 3. The remainder of this section will be devoted to the proof of Proposition 1.2.

The method used in the proof of Proposition 1.1 to find a basis for M((p+2,1),(p))

works when p = 3, so we have a basis

α(z)= x1+ x2+ x3, β ′4(z)= x4, β ′5(z)= x5, β ′6(z)= x6

for M((5,1),(3)). However, since

(x1+ x2+ x3)+ (x4− x6)+ (x5− x6)= x1+ x2+ x3+ x4+ x5− 2x6

= x1+ x2+ x3+ x4+ x5+ x6

in characteristic 3, the set {α, βp+1, βp+2, βp+3} used for the characteristic p 6= 3
case in Section 6 fails to be independent. Thus we use the basis

α(z)= x1+ x2+ x3, β4(z)= x4− x6, β5(z)= x5− x6, γ6(z)= x6.
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The set {α, β4, β5} can be identified with the basis of Homk63(D
(3), res66

63
D(5,1))

found in Section 4. Thus we can deduce that N = span{α, β4, β5} is a submodule of
M((5,1),(3)) isomorphic to Homk63(D

(3), res66
63

D(5,1)). The corresponding quotient
has basis {γ6} and the table describing the action on this basis is

γ6

(12)+ (13)+ (23) 0
(123)+ (132) 2γ6

(45) γ6

(456) γ6

L4 0
L5 γ6

L6 2γ6

Comparing this table with that on page 880 we see that

span{β6} ∼=M((6),(3)).

We now compute D((5,1),(3)). Recall that Homk63(D
(3), res66

63
D(5,1)) has two

composition factors S1 and S2 not isomorphic to M((6),(3)), so that the same is true
of N. Since N is the kernel of the projection

M((5,1),(3))
→M((5,1),(3))/N ∼=M((6),(3)),

we have S((5,1),(3)) ⊆ N. To show the reverse inclusion, fix a homomorphism

ϕ :M((5,1),(3))
→M((6),µ),

where µ ` 3; by Proposition 2.1 we know that M((6),µ) ∼= resk66

k6
63
6

k. Suppose
ϕ(β ′4)= a. Then

ϕ(α)= ϕ(L4x)= L4a = 0,

ϕ(β4)= ϕ((1− (46))β ′4)= (1− (46))a = 0,

ϕ(β5)= ϕ(((45)− (46))β ′4)= ((45)− (46))a = 0,

so ϕ(N )= 0. Thus N ⊆ kerϕ, and since our choice of ϕ was arbitrary, it follows
that N ⊆ S((5,1),(3)). Consequently

S((5,1),(3)) = N.

From Section 4 we know that Homk63(D
(3), res66

63
D(5,1)) has a submodule L

isomorphic to M((6),(3)). Since

N ∼= Homk63(D
(3), res66

63
D(5,1)),
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it follows that N also has a corresponding submodule K isomorphic to M((6),(3)).
We can deduce that K ⊆ S((5,1),(3))⊥ since K is the image of the map

M((6),(3))
→M((5,1),(3))

consisting of the isomorphism to K followed by injection. Since the image of any
homomorphism M((6),(3))

→M((5,1),(3)) must be isomorphic to M((6),(3)) and the
only composition factor of N isomorphic to M((6),(3)) is K, it follows that

S((5,1),(3)) ∩ S((5,1),(3))⊥ = K.

Thus
D((5,1),(3))

= N/K ∼= Homk63(D
(3), res66

63
D(5,1))/L

as claimed.

8. M(λ,µ) for λ ` 5, µ ` 2

The above computations show that in every positive characteristic there are pairs
of partitions (λ, µ) for which D(λ,µ) is neither simple nor zero, as conjectured in
[Dodge and Ellers 2016]. However, it may be the case that this may be fixed by
choosing a different ordering on pairs of partitions; that is, it may be the case that
there exists a different ordering on pairs of partitions for which D(λ,µ) is always
simple or zero. In this section we use the computer algebra system Magma [Bosma
et al. 1997] to generate the structure of the k662

5 -module M (λ,µ) when λ ` 5 and
µ ` 2, and in the next section use this information to show that there does not exist
any such ordering in characteristic 2.

We will treat the cases when µ= (2) and µ= (12) separately.

Case 1: µ= (12). Since M (12) ∼= k62 as k62-modules, we have

M(λ,12)
= Homk62(k62, res65

62
Mλ)∼= res65

62
Mλ

so we may compute in Mλ. This can be defined in Magma as a k65-module through
the command

K := PERMUTATIONMODULE(SYM(5), YOUNGSUBGROUP(λ : FULL := 5), GF(2)) ;

However, we wish to define M(λ,12) as a k662
5 -module. To do this we will find

the matrices of the action of the generators of k662
5 on the basis of Mλ, and then

create a module over the matrix algebra that they generate.
Given an x ∈ k662

5 we may find the matrix of x acting on the basis of Mλ

through the function

mapmatrix := func<x | MATRIX(GF(2), DIMENSION(K ), DIMENSION(K ),
[(VECTORSPACE(GF(2), DIMENSION(K )) ! (K .i ∗ x )) : i in {1. .DIMENSION(K )}])> ;
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This function simply creates the matrix of x in the natural way. Magma has a
default basis for K, namely the elements K.i for 1≤ i ≤ dim K. Thus, for the i-th
basis vector K.i of K, we find K.i ∗ x in terms of the basis of K and set it as the
i-th row of the matrix.

We will be using the generating set for k662
5 given in Section 3, namely

k662
5 =

〈
(12), (34), (345), L3, L4, L5

〉
.

Using the function mapmatrix we can create the matrix algebra generated by the
matrices of the actions of these generators through the command

A := MATRIXALGEBRA<GF(2), DIMENSION(K ) |
mapmatrix ((SYM(5) ! (1, 2))),
mapmatrix ((SYM(5) ! (3, 4))),
mapmatrix ((SYM(5) ! (3, 4, 5))),
mapmatrix ((SYM(5) ! (1, 3))) + mapmatrix ((SYM(5) ! (2, 3))),
mapmatrix ((SYM(5) ! (1, 4))) +

mapmatrix ((SYM(5) ! (2, 4))) + mapmatrix ((SYM(5) ! (3, 4))),
mapmatrix ((SYM(5) ! (1, 5))) + mapmatrix ((SYM(5) ! (2, 5))) +

mapmatrix ((SYM(5) ! (3, 5))) + mapmatrix ((SYM(5) ! (4, 5)))> ;

We can then generate M(λ,12) as a k662
5 -module through the command

M := RMODULE(A) ;

and find its constituents with multiplicities via

CONSTITUENTSWITHMULTIPLICITIES(M ) ;

Case 2: µ= (2). We first find a basis for M(λ,(2)).

Proposition 8.1. Suppose k is a field of characteristic 2, let λ` 5, and fix a nonzero
z ∈ M (2) ∼= k. Then the functions defined by

fx(z)=
{

x + (12)x if x 6= (12)x,
x if x = (12)x,

where x is a λ-tabloid, constitute a basis for M(λ,(2)).

Proof. The independence of the functions fx follows immediately from the inde-
pendence of the tableau in Mλ. Fix a nonzero z ∈ M (2) ∼= k and let

f : M (2)
→ res65

62
Mλ

be defined by

f (z)=
∑

x a λ-tabloid

ax x .
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To have f ∈M(λ,(2)) it is necessary and sufficient that [(1)− (12)] f (z)= 0. Thus
we need

0= [(1)− (12)] f (z)=
∑

x a λ-tabloid

ax x−
∑

x a λ-tabloid

ax(12)x

=

∑
x a λ-tabloid

ax x−
∑

x a λ-tabloid

a(12)x x =
∑

x a λ-tabloid

(ax −a(12)x)x .

Thus we must have ax =a(12)x for all x . This means that f (z) is a linear combination
of the functions fx(z), as needed. �

As before, we generate K = Mλ as a permutation module over k65. To find a
basis for M(λ,(2)) we first create a list consisting of sums of elements which are
mapped to each other via the transposition (12). We accomplish this through the
procedure below:

BASISSET := [] ;
BASISGEN := procedure(∼BASISSET, K )

for i in {1. .DIMENSION(K )} do
if K .i + K .i ∗ (SYM(5) ! (1, 2)) eq ZERO(K ) then

APPEND(∼BASISSET, K .i ) ;
elif K .i + K .i ∗ (SYM(5) ! (1, 2)) in BASISSET then

print “Skip” ;
else

APPEND(∼BASISSET, K .i + K .i ∗ (SYM(5) ! (1, 2))) ;
end if ;

end for ;
end procedure ;
BASISGEN(∼BASISSET, K ) ;

For every basis element K.i of K, we add K.i((1)+ (1, 2)) to the list BasisGen of
basis elements if K.i((1)+ (1, 2)) is nonzero and K.i if it is zero. This constitutes
a basis for M(λ,(2)) by Proposition 8.1. The elif statement excludes duplicate basis
elements.

Having created a list of basis elements for M(λ,(2)), we create the space spanned
by them as a subspace of the vector space of appropriate dimension. We can do
this through

W := sub<VECTORSPACE(GF(2), DIMENSION(K )) | [ELTSEQ(s) : s in BASISSET]> ;

The Eltseq command coerces each basis element into a tuple so that it can be
embedded into the vector space.

Although our basis vectors are now elements of a vector space and not a permu-
tation module, we can still act on them by elements of k65 by coercing vectors
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in W back into Mλ. We exploit this property to find the matrix of the action of
generators of k662

5 on M(λ,(2)) as follows:

A := MATRIXALGEBRA<GF(2), DIMENSION(W ) |
MATRIX(GF(2), DIMENSION(W ), DIMENSION(W ), [COORDINATES(W , W ! (

(K ! BASIS(W )[i ]) ∗ (SYM(5) ! (1, 2))))
: i in {1. .DIMENSION(W )}]),

MATRIX(GF(2), DIMENSION(W ), DIMENSION(W ), [COORDINATES(W , W ! (
(K ! BASIS(W )[i ]) ∗ (SYM(5) ! (3, 4))))
: i in {1. .DIMENSION(W )}]),

MATRIX(GF(2), DIMENSION(W ), DIMENSION(W ), [COORDINATES(W , W ! (
(K ! BASIS(W )[i ]) ∗ (SYM(5) ! (3, 4, 5))))
: i in {1. .DIMENSION(W )}]),

MATRIX(GF(2), DIMENSION(W ), DIMENSION(W ), [COORDINATES(W , W ! (
(K ! BASIS(W )[i ]) ∗ (SYM(5) ! (1, 3)) +
(K ! BASIS(W )[i ]) ∗ (SYM(5) ! (2, 3))))
: i in {1. .DIMENSION(W )}]),

MATRIX(GF(2), DIMENSION(W ), DIMENSION(W ), [COORDINATES(W , W ! (
(K ! BASIS(W )[i ]) ∗ (SYM(5) ! (1, 4)) +
(K ! BASIS(W )[i ]) ∗ (SYM(5) ! (2, 4)) +
(K ! BASIS(W )[i ]) ∗ (SYM(5) ! (3, 4))))
: i in {1. .DIMENSION(W )}])> ;

MATRIX(GF(2), DIMENSION(W ), DIMENSION(W ), [COORDINATES(W , W ! (
(K ! BASIS(W )[i ]) ∗ (SYM(5) ! (1, 5)) +
(K ! BASIS(W )[i ]) ∗ (SYM(5) ! (2, 5)) +
(K ! BASIS(W )[i ]) ∗ (SYM(5) ! (3, 5)) +
(K ! BASIS(W )[i ]) ∗ (SYM(5) ! (4, 5))))
: i in {1. .DIMENSION(W )}])> ;

The principle is identical to the algorithm used in the case µ = (12). The only
difference is that we are working in the intermediary vector space W rather than
directly in Mλ.

Having generated the algebra, we can define the desired module and find its
constituents with multiplicities as before.

9. Alternative partial orders

The structures of M(λ,µ) when λ ` 5 and µ ` 2 are compiled in the Appendix. The
key piece of information we will use is that M(λ,µ) has at least three composition
factors, except when (λ, µ) = ((5), (2)) or (λ, µ) = ((5), (12)), in which case
we have M((5),(2)) ∼=M((5),(12)) and both are one-dimensional. In particular, when
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(λ, µ) is neither ((5), (2)) nor ((5), (12)), we know that M(λ,µ) has two composition
factors nonisomorphic to M((5),(2)).

Using this fact, we prove the following:

Proposition 9.1. In characteristic 2, there exists no ordering on pairs of partitions
(λ, µ) for which D(λ,µ) is always simple or zero.

Proof. Let B be an arbitrary total order on pairs of partitions and let (λ0, µ0) be the
most dominant partition such that (λ0, µ0) is not ((5),(2)) or ((5),(12)). If (λ0, µ0)

is the most dominant partition then by definition D(λ0,µ0) ∼= S(λ0,µ0) =M(λ0,µ0), so
D(λ,µ) is neither simple nor zero. Otherwise (λ0, µ0) is dominated by ((5),(2)) or
((5),(12)) or both. Then since M(λ0,µ0) has two composition factors not isomorphic
to M((5),(2)) ∼=M((5),(12)), it follows from [Dodge and Ellers 2016, 1.2] that D(λ0,µ0)

has two composition factors not isomorphic to M((5),(2)) ∼=M((5),(12)). In particular
it is neither simple nor zero, as claimed. �

10. Concluding remarks

In Sections 6 and 7 we showed that the conjecture that D(λ,µ) is always simple or
zero fails in every positive characteristic p, while Section 9 shows that in general a
different choice of partial orders will not correct the conjecture. However, in every
example computed in this paper D(λ,µ) has had at most two composition factors,
and they have always been distinct. This suggests that there may still be a bound
on the composition length of D(λ,µ), even if it is not one as conjectured by Dodge
and Ellers.

In [Danz et al. 2013], Danz, Ellers, and Murray answered in the negative the
question of whether the FG H -module HomFH (S, resG

H T ) is always simple or zero
for G a finite group and H a subgroup, F a field of positive characteristic, S
a simple FH -module, and T a simple FG-module. However, it was still open
whether there were counterexamples when FG and FH were symmetric group
algebras. Our computations in Sections 3, 4, and 5 provided examples of spaces
of the form Homk6l (D

µ, res6n
6l

Dλ) which were neither simple nor zero, answering
this question in the negative as well. The space described in Section 4 has also
provided a counterexample to the conjecture that D(λ,µ) ∼= Homk6l (D

µ, res6n
6l

Dλ)

when µ` l and λ` n, as demonstrated in Section 7. However, unlike the conjecture
on the simplicity of D(λ,µ), we have only been able to provide a counterexample in
characteristic 3: the computations in Section 6 are in agreement with the conjecture.
Although we have shown that isomorphism cannot hold in general, it may be the case
that D(λ,µ) is always isomorphic to a quotient of Homk6l (D

µ, res6n
6l

Dλ).
Finally, Dodge and Ellers [2016] established that every simple k66l

n -module
appears as a composition factor of some D(λ,µ). Though we have shown that those
simple modules are not the modules D(λ,µ) themselves, our calculations may give
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hints as to how the simple modules appear as composition factors of the D(λ,µ).
In particular, in our calculations the modules D(λ,µ) always have a simple head.
Thus it is possible that the simple modules appear as simple heads of the D(λ,µ), in
the same way that the simple k6n-modules Dλ appear as the simple heads of the
Specht module Sλ when λ is p-regular.

Appendix: M(λ,µ) when λ ` 5 and µ ` 2

M(λ,µ) d Multiplicity

M((5),(2)) 1 1

M((5),(12)) 1 1

M((4,1),(2))
1 1
1 1
2 2

M((4,1),(12))

1 2
1 1
2 1

M((3,1,1),(2))

1 2
1 3
2 2
2 2

M((3,1,1),(12))

1 4
1 4
2 2
2 4

M((2,2,1),(2))

1 2
1 4
2 4
2 2

M(λ,µ) d Multiplicity

M((2,2,1),(12))

1 4
1 6
2 8
2 2

M((2,1,1,1),(2))

1 4
1 7
2 3
2 8

M((2,1,1,1),(12))

1 8
1 12
2 4
2 16

M((15),(2))

1 12
1 8
2 16
2 4

M((15),(12))

1 16
1 24
2 8
2 32

Table 1. The constituents of M(λ,µ) are modules of dimension d
(given in the middle column) over GF(2) with corresponding mul-
tiplicities given in the third column.
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