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A generalization of the notion of symmetric matrix was introduced by Cassidy and
Vancliff in 2010 and used by them in a construction that produces quadratic regular
algebras of finite global dimension that are generalizations of graded Clifford
algebras. In this article, we further their ideas by introducing a generalization of
the matrix transpose map and use it to generalize the notion of skew-symmetric
matrix. With these definitions, an analogue of the result that every n×n matrix is
a sum of a symmetric matrix and a skew-symmetric matrix holds. We also prove
an analogue of the result that the transpose map is an antiautomorphism of the
algebra of n× n matrices, and show that the antiautomorphism property of our
generalized transpose map is related to the notion of twisting the polynomial ring
on n variables by an automorphism.

Introduction

In [Cassidy and Vancliff 2010], a generalization of the notion of symmetric matrix
was introduced and used in a construction that produces quadratic regular algebras
of finite global dimension that are generalizations of graded Clifford algebras. In the
same paper, it was also shown that such a matrix corresponds to a noncommutative
analogue of a quadratic form. In this article, we further these ideas by introducing
a generalization of the matrix transpose map and use it to generalize the notion of
skew-symmetric matrix. In particular, we prove in Theorem 2.5 an analogue of the
result that every n×n matrix is a sum of a symmetric matrix and a skew-symmetric
matrix. We also prove, in Proposition 2.6 and Corollary 2.16, an analogue of the
result that the transpose map is an antiautomorphism of the algebra of n×n matrices.
This latter property is shown in Corollary 2.16 to be related to the twist of the
polynomial ring on n variables by an automorphism.
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The article is outlined as follows. In Section 1, we define generalizations of
symmetric and skew-symmetric matrices together with a few other concepts that will
be used in the subsequent section. Section 2 is in two parts: the first defines and ex-
plores a generalization of the transpose map, whereas the second ties the behavior of
this transpose map to the notion of twisting a polynomial ring by an automorphism.

1. Definitions

In this section, we recall the generalizations of symmetric matrix and quadratic
form that were introduced in [Cassidy and Vancliff 2010]. We also introduce a
generalization of the notion of skew-symmetric matrix.

Throughout, k denotes a field. We use the notation M(n, k) to denote the vector
space of n× n matrices with entries in k and M(m, r, k) to denote the vector space
of m × r matrices with entries in k. For any matrix N ∈ M(m, r, k), we let Ni j

denote the i j-entry of N .

Definition 1.1. Let µ ∈ M(n, k) be such that µi jµj i = 1 for all distinct i, j . A
matrix M ∈ M(n, k) is said to be

(a) µ-symmetric if Mi j = µi j Mj i for all i, j [Cassidy and Vancliff 2010];

(b) skew-µ-symmetric if Mi j =−µi j Mj i for all i, j .

If µi j = 1 for all i, j , then any µ-symmetric matrix is a symmetric matrix, and
any skew-µ-symmetric matrix is a skew-symmetric matrix. Consequently, we
generalize the notion of transpose in the next section and relate the notions of
µ-symmetry and skew-µ-symmetry to that concept.

The notion of µ-symmetry was used in [Cassidy and Vancliff 2010] to produce
algebras that may be viewed as quantized graded Clifford algebras. In other words,
the main use of µ-symmetry is to “tie together” two or more matrices to a particular
matrix µ, and to do so in a symmetrical manner.

Following [Vancliff and Veerapen 2013], we write Mµ(n, k) for the set of
µ-symmetric n × n matrices with entries in k. Likewise, we write M sµ(n, k)
for the set of skew-µ-symmetric n×n matrices with entries in k. Clearly, Mµ(n, k)
and M sµ(n, k) are subspaces of M(n, k).

Mirroring the theory for symmetric matrices and following [Cassidy and Vancliff
2010], a µ-symmetric matrix corresponds to a noncommutative analogue of a qua-
dratic form, provided µi i = 1 for all i ; this correspondence is summarized as follows.

Definition 1.2 [Cassidy and Vancliff 2010]. Let µ∈M(n, k) be as in Definition 1.1,
with the additional assumption that µi i = 1 for all i . Let (S, µ) denote the quadratic
k-algebra on generators z1, . . . , zn with defining relations z j zi = µi j zi z j for all
i, j = 1, . . . , n, and let S2 denote the span of the homogeneous elements of (S, µ) of
degree two. A (noncommutative) quadratic form is defined to be any element of S2.
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The algebra (S, µ) has no zero divisors and has the same Hilbert series as the
polynomial ring on n variables. By [Cassidy and Vancliff 2010], if µi i = 1 for
all i , then Mµ(n, k)∼= S2, as vector spaces, via the map M 7→ zT Mz ∈ S2, where
z = (z1, . . . , zn)

T.
In the next section, the algebra (S, µ) will be considered in the special case where

µi j = µikµk j for all i, j, k = 1, . . . , n. By [Nafari and Vancliff 2015, Lemma 2.2],
(S, µ) is a twist (see Definition 1.3 below) of the polynomial ring R on n variables
by a graded automorphism of R of degree zero if and only if this condition on µ
holds.

Definition 1.3 [Artin et al. 1991, §8]. Let A =
⊕

k≥0 Ak be a graded k-algebra
and let φ be a graded degree-zero automorphism of A. The twist A′ of A by φ is
a graded k-algebra that is the vector space

⊕
k≥0 Ak with a new multiplication ∗

defined as follows: if a′ ∈ A′i = Ai and b′ ∈ A′j = Aj , then a′∗b′= (aφi (b))′, where
the right-hand side is computed using the original multiplication in A and a, b are
the images of a′, b′, respectively, in A.

Clearly, the twist of a quadratic algebra is again a quadratic algebra. Moreover,
this notion of twist is reflexive and symmetric.

2. Main results

In this section, we define a generalization of the notion of transpose of a matrix and
explore properties of this new concept. Our main results are given in Theorem 2.5,
Proposition 2.6, Theorem 2.15 and Corollary 2.16.

2A. The transpose map.

Definition 2.1. If ν ∈ M(r,m, k) and N ∈ M(m, r, k), we define the ν-transpose
of N, denoted N νT, to be the r ×m matrix with i j -entry given by νi j Nj i for all i, j .

Clearly, if νi j = 1 for all i, j , then the ν-transpose map is the transpose map.
Alternatively, we may view the ν-transpose as a composition of maps; for this
purpose, let ν̂ : M(r,m, k)→ M(r,m, k) be defined by ν̂(K ) = (νi j ki j ), where
K = (ki j ) ∈ M(r,m, k).

Lemma 2.2. If ν, ν̂ and N are as above, then N νT
= ν̂(N T ), where N T denotes the

transpose of N. In particular, the ν-transpose map is a linear transformation. �

Lemma 2.3. Let µ be as in Definition 1.1. A matrix M ∈ M(n, k) is µ-symmetric
if and only if MµT

= M. Additionally, M is skew-µ-symmetric if and only if
MµT

=−M.

Proof. If M ∈M(n, k) is µ-symmetric, then Mi j =µi j Mj i for all i, j , so M =MµT ;
reversing the argument proves the converse. The proof of skew-µ-symmetric case
is similar. �
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Proposition 2.4. Let µ ∈ M(n, k) be such that µi jµj i = 1 for all i, j . If M ∈
M(n, k), then

(a) (MµT )µT
= M ,

(b) M +MµT
∈ Mµ(n, k),

(c) M −MµT
∈ M sµ(n, k).

Proof. (a) We have [MµT
]
µT
= (µi j Mj i )

µT
= (µi jµj i Mi j )= (Mi j )= M .

(b)–(c) We have M ±MµT
= (Mi j ±µi j Mj i )=

(
±µi j (Mj i ±µj i Mi j )

)
. Thus,

[M±MµT
]
µT
=
(
±µi jµj i (Mi j±µi j Mj i )

)
=
(
±(Mi j±µi j Mj i )

)
=±[M±MµT

],

and so the result follows from Lemma 2.3. �

Theorem 2.5. Suppose char(k) 6= 2. If µ ∈ M(n, k) is such that µi jµj i = 1 for
all i, j , then

M(n, k)= Mµ(n, k)⊕M sµ(n, k).

Proof. If M ∈ M(n, k), then M = 1
2(M+MµT )+ 1

2(M−MµT ), since char(k) 6= 2.
It follows from Proposition 2.4 that M(n, k)= Mµ(n, k)+M sµ(n, k). However,
the assumption on the characteristic of k ensures that Mµ(n, k)∩M sµ(n, k)= {0},
which completes the proof. �

A well-known result for symmetric matrices is that if X ∈ M(n, k) is symmetric,
then PT X P is also symmetric for all P ∈ M(n, k). This result is a consequence of
the fact that [XY ]T = Y T X T for all X, Y ∈ M(n, k); that is, the transpose map is
an antiautomorphism of M(n, k). However, the analogues of these results are false
in general for µ-symmetry, unless µ satisfies certain conditions as follows.

Proposition 2.6. If µ ∈ M(n, k) is such that µi j = µikµk j for all i, j, k, then
[XY ]µT

= YµT XµT for all X, Y ∈ M(n, k).

Proof. Let X, Y ∈ M(n, k). We have

[XY ]µT
=

( n∑
k=1

X ikYk j

)µT

=

(
µi j

n∑
k=1

X jkYki

)
,

whereas

YµT XµT
= (µikYki )(µk j X jk)=

( n∑
k=1

µikµk j Yki X jk

)
=

(
µi j

n∑
k=1

X jkYki

)
,

where the last equality is a consequence of the condition on µ. �

If µ ∈ M(n, k) satisfies the hypotheses of Propositions 2.4 and 2.6, then µi j =

µikµk j for all i, j, k, and µi i = 1 for all i ; the converse also holds.
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Corollary 2.7. Let µ ∈ M(n, k). If µi j = µikµk j for all i, j, k, and if µi i = 1 for
all i , then PµT X P ∈ Mµ(n, k) for all X ∈ Mµ(n, k) and for all P ∈ M(n, k).

Proof. The conditions on µ imply µikµki = µi i = 1 for all i, k, so that Lemma 2.3
and Propositions 2.4 and 2.6 may be applied to compute [PµT X P]µT; namely,

[PµT X P]µT
= PµT

[PµT X ]µT
= PµT XµT

[PµT
]
µT
= PµT X P

for all X∈Mµ(n,k) and for all P∈M(n,k). The result follows from Lemma 2.3. �

The hypotheses on µ in the last result coincide with the hypotheses required
for the skew polynomial ring (S, µ), defined in Definition 1.2, to be a twist (in
the sense of Definition 1.3) of the polynomial ring R on n variables by a graded
automorphism of R of degree zero. However, the above methods give no insight
as to why this should be the case, so further analysis is required to explain this
relationship and is the purpose of the next subsection.

2B. The transpose map and twisting the polynomial ring. The goal of this sub-
section is to show that the result of Corollary 2.7 is directly related to the algebra
(S, µ) being a twist of the polynomial ring R as mentioned at the end of Section 2A.
Our method will be to show that the result of Corollary 2.7 is directly related to a
certain map µ̄ : M(n, k)→ M(n, k) (see Definition 2.14) being an automorphism,
in which case µ̄ induces an automorphism of (S, µ) that twists (S, µ) to R.

Throughout this subsection, we assume that µi i = 1 for all i and that µi jµj i = 1
for all i, j .

Let V denote the span of the homogeneous elements of (S, µ) of degree one.
Since (S, µ) is a domain, for each k = 1, . . . , n, we may define θk ∈ Aut(S, µ) via
szk = zkθk(s) for all s ∈ (S, µ). In particular, for every k, we have θk(zi )= µki zi

for all i , so if we twist (S, µ) by θk , we obtain a quadratic algebra in which the
image of zk is central.

Let V ∗ denote the vector-space dual of V and let {z∗1, . . . , z∗n} in V ∗ denote the
dual basis to the basis {z1, . . . , zn} of V. For each k, the linear transformation
θk |V : V → V induces a linear map θ∗k : V

∗
→ V ∗, where θ∗k (z

∗

i )= µikz∗i for all i .
Hence θk induces a linear map θ̄k : V ⊗k V ∗→ V ⊗k V ∗ via

θ̄k(v⊗ u)= θk(v)⊗ θ
∗

k (u)

for all v⊗ u ∈ V ⊗k V ∗.

Remark 2.8. As is well known, V ⊗k V ∗ is a k-algebra under the usual addition
and with multiplication given by (v⊗ u)(v′⊗ u′)= (uv′)(v⊗ u′) for all v, v′ ∈ V,
u, u′ ∈ V ∗. In fact, V ⊗k V ∗ ∼= M(n, k), as k-algebras, via the map that sends
zi ⊗ z∗j to the n× n matrix with 1 in the i j-entry and zeros elsewhere.

Lemma 2.9. For every k = 1, . . . , n, the linear map θ̄k is in Aut(V ⊗k V ∗).
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Proof. Since θ̄k is linear and bijective, it remains to prove that θ̄k respects multi-
plication, and it suffices to consider products of pure tensors. Let v, v′ ∈ V and
u, u′ ∈ V ∗, and write v′=

∑n
i=1 vi zi and u=

∑n
j=1 u j z∗j , where vi , u j ∈k for all i, j .

In particular, uv′ =
∑n

i=1 uivi and

θ∗k (u)θk(v
′)=

( n∑
j=1

u jµjkz∗j

)( n∑
i=1

viµki zi

)
=

n∑
i=1

uivi = uv′.

It follows that
θ̄k
(
(v⊗ u)(v′⊗ u′)

)
= θ̄k

(
(uv′)(v⊗ u′)

)
= uv′θk(v)⊗ θ

∗

k (u
′),

whereas
θ̄k(v⊗ u)θ̄k(v

′
⊗ u′)=

(
θk(v)⊗ θ

∗

k (u)
)(
θk(v

′)⊗ θ∗k (u
′)
)

= θ∗k (u)θk(v
′)
(
θk(v)⊗ θ

∗

k (u
′)
)
,

so the result follows. �

In the following, k× denotes the nonzero elements of k.

Lemma 2.10. For all k, i , we have θ̄k = θ̄i if and only if θk ∈ k×θi .

Proof. We have θk = λθi for some λ ∈ k× if and only if θ∗k = λ
−1θ∗i . The result

follows from the definitions of θ̄k and θ̄i . �

Proposition 2.11. The map θk is in k×θ1 for all k if and only if the algebra (S, µ)
is a twist (in the sense of Definition 1.3) of the polynomial ring on n variables.

Proof. As mentioned above, for each k, the twist of (S, µ) by θk yields an algebra
in which the image of zk is central. Hence, if θk ∈ k×θ1 for all k, then twisting
by θk produces an algebra R in which the image of zi is central for all i . Since
the relations of R are induced by the relations of (S, µ), it follows that R is the
polynomial ring on n variables.

Conversely, suppose (S, µ) is a twist of the polynomial ring R on n variables. It
follows that there exists a degree-zero map θ ∈ Aut(S, µ) such that twisting (S, µ)
by θ renders the image of zk central in R for all k. Writing “·” for the multiplication
in R, this implies

zkθ(zi )= zk · zi = zi · zk = ziθ(zk)

for all i, k. However, since S is a quadratic algebra and since S2 has a k-basis
{z j zl : 1≤ j ≤ l ≤ n}, it follows that θ(zk) ∈ k×zk for all k. Writing θ(zk)= λkzk ,
where λk ∈ k× for all k, we have µik = λk/λi for all i, k and λiθi = θ for all i .
Thus, θk ∈ k×θ1 for all k. �

Corollary 2.12. We have θ̄k = θ̄1 for all k if and only if (S, µ) is a twist (in the
sense of Definition 1.3) of the polynomial ring on n variables.

Proof. The result follows by combining Lemma 2.10 with Proposition 2.11. �
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Lemma 2.13. If θ̄k = θ̄1 for all k, then θ̄k((ai j )) = (µj i ai j ) for all k and for all
(ai j ) ∈ M(n, k), where M(n, k) is identified with V ⊗k V ∗ as in Remark 2.8.

Proof. By identifying M(n, k) with V ⊗k V ∗, we may write (ai j ) ∈ M(n, k) as

(ai j )=

(
z1⊗

n∑
i=1

a1i z∗i

)
+

(
z2⊗

n∑
i=1

a2i z∗i

)
+ · · ·+

(
zn ⊗

n∑
i=1

ani z∗i

)
.

If θ̄k = θ̄1 for all k, then

θ̄k((ai j ))=

n∑
j=1

θ̄k

(
z j⊗

n∑
i=1

aj i z∗i

)
=

n∑
j=1

θ̄j

(
z j⊗

n∑
i=1

aj i z∗i

)

=

n∑
j=1

(
θj (z j )⊗

n∑
i=1

aj i θ
∗

j (z
∗

i )

)
=

n∑
j=1

(
z j⊗

n∑
i=1

µi j aj i z∗i

)
= (µj i ai j ). �

Lemma 2.13 motivates the following definition.

Definition 2.14. Define µ̄ : M(n, k) → M(n, k) by µ̄((ai j )) = (µj i ai j ) for all
(ai j ) ∈ M(n, k).

Moreover, µ̄= ( )T ◦µ̂◦( )T, where µ̂ is defined just prior to Lemma 2.2. Clearly,
µ̄ is linear; with the assumption on µ at the start of Section 2B, µ̄ is also invertible.

Theorem 2.15. The map µ̄ is an automorphism of M(n, k) if and only if the
algebra (S, µ) is a twist of the polynomial ring on n variables.

Proof. Identify M(n, k) with V ⊗ V ∗ as in Remark 2.8, so that we may view
µ̄ : V ⊗V ∗→ V ⊗V ∗. In particular, µ̄(zi ⊗ z∗j )=µj i (zi ⊗ z∗j ) for all i, j . If (S, µ)
is a twist of the polynomial ring, then µ̄ = θ̄k for all k by Corollary 2.12 and
Lemma 2.13. Hence µ̄ is an automorphism by Lemma 2.9.

Conversely, suppose µ̄ is an automorphism. It follows that

µ̄
(
(z j ⊗ z∗k)(zk ⊗ z∗i )

)
= µ̄(z j ⊗ z∗k)µ̄(zk ⊗ z∗i )

for all i, j, k. Hence,

µ̄
(
z∗k zk(z j ⊗ z∗i )

)
= µk j (z j ⊗ z∗k)µik(zk ⊗ z∗i )

for all i, j, k, so that we have

µi j (z j ⊗ z∗i )= µikµk j (z j ⊗ z∗i )

for all i, j, k. It follows that µi j = µikµk j for all i, j, k, so that (S, µ) is a twist of
the polynomial ring by [Nafari and Vancliff 2015, Lemma 2.2]. �

Corollary 2.16. The algebra (S, µ) is a twist of the polynomial ring if and only if
[XY ]µT

= YµT XµT for all X, Y ∈ M(n, k).
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Proof. Identify M(n, k) with V ⊗V ∗ as in Remark 2.8. Considering Definitions 2.1
and 2.14, XµT

= [µ̄(X)]T for all X ∈ M(n, k). By Theorem 2.15, (S, µ) is a twist
of the polynomial ring if and only if µ̄ is an automorphism, that is, if and only if
µ̄(XY ) = µ̄(X)µ̄(Y ) for all X, Y ∈ M(n, k). However, this holds if and only if
[µ̄(XY )]T = [µ̄(X)µ̄(Y )]T = [µ̄(Y )]T [µ̄(X)]T for all X, Y ∈ M(n, k), that is, if
and only if [XY ]µT

= YµT XµT for all X, Y ∈ M(n, k). �

In view of this last result, it is clearer why the technical condition on µ is required
in Corollary 2.7; the insight is that µ̄ needs to be an automorphism in order to
have the µ-transpose map be an antiautomorphism, but that condition on µ̄ allows
n automorphisms of (S, µ) to “merge” into one automorphism (denoted θ in the
proof of Proposition 2.11) that twists (S, µ) to the polynomial ring.
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