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The mixing time of a convergent Markov chain measures the number of steps re-
quired for the state distribution to be within a prescribed distance of the stationary
distribution. In this paper, we illustrate the strength of the probabilistic technique
called coupling and its extension, path coupling, to bound the mixing time of
Markov chains. The application studied is the rook’s walk on an nd -chessboard,
for which the mixing time has recently been studied using the spectral method.
Our path-coupling result improves the previously obtained spectral bounds and
includes an asymptotically tight upper bound in n for the two-dimensional case.

1. Introduction

In the standard game of chess, a rook occupies one of the 82 squares of the board, and
moves by translating any distance along the row or column of its current position.

Suppose one came across a chessboard as in Figure 1 and was told that two
legal rook moves had just been completed. Clearly there is no way to definitively
deduce from this scant information what the position of the rook had been before
the two moves — any of the 64 squares are possibilities — but could one guess the
correct square in such a way as to have better odds than 1

64 ? Certainly! Of the
142
= 196 two-move sequences that a rook can undertake from a given position,

there are 14 that would return it to its original square, six more that would take it to
any given square in the same row or column, and only two such sequences to take
the rook to any of the 49 remaining squares. The optimal strategy, over four times
better than guessing a square uniformly at random, is to guess that the two moves
left the rook in the same square as it started.

In the language of probabilistic processes, we might say that the chessboard is
unmixed after only two moves — the location of the rook after two moves is heavily
influenced by its starting position. In many applications of such processes, one
is interested in the time it takes — the mixing time — in order for the influence of
the starting position to be marginalized. In our chessboard example, this would
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8 0Z0Z0Z0Z
7 Z0Z0Z0Z0
6 0Z0Z0Z0Z
5 Z0Z0Z0Z0
4 0Z0S0Z0Z
3 Z0Z0Z0Z0
2 0Z0Z0Z0Z
1 Z0Z0Z0Z0

a b c d e f g h

Figure 1. The 14 legal rook moves on a standard 8× 8 chessboard.

be the number t such that after t random rook moves, its position is essentially
governed by the uniform distribution. (The word “essentially” is needed here since
the effect of the starting position never completely disappears — we insist only
that the distribution be sufficiently close to the uniform distribution, using metrics
introduced in the next section).

A standard approach to finding and bounding mixing times for processes like the
rook’s walk is via the spectral method: one writes down a 64× 64 transition matrix
encoding the squares of the chessboard and the probabilities of making moves
between them, and one can then bound the mixing time in terms of the eigenvalues
of this matrix. Such a method was used in [Kim 2012] to bound the mixing time of
a rook’s walk on the more general nd-chessboard — a d-dimensional chessboard
comprised of n squares in each dimension, on which a rook can move along precisely
one dimension. Subsequently, in [Li and Tucker 2014], the exact mixing time for
the rook’s walk on n2-chessboards was derived by direct computation, and the exact
results showed how loose the spectral-method bounds were.

Here we take another approach to bounding mixing times from above. Namely,
we use the path coupling method rather than spectral methods, leading to a much
tighter upper bound. In Section 2, we introduce the basic theory of mixing times
and Markov chains, including the metric one uses to measure the distance between
distributions. This leads us to a formal definition of the mixing time. Section 3 spe-
cializes this material to the context of the rook’s walk, and surveys the current state
of knowledge concerning mixing times for the rook’s walk. Sections 4 and 5 respec-
tively introduce and implement path coupling in the context of the rook’s walk, and
Section 6 consists of an analysis and exhibition of the mixing times thus achieved.

2. Mixing times of Markov chains

The rook’s walk studied in this paper is an example of a finite, discrete-time Markov
chain, which, by definition, is a sequence of random variables (X t)

∞

t=0 that take
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values in a finite state space � and satisfy the Markov (or memoryless) property

P
(
X t+1= y | X0= x0, X1= x1, . . . , X t= x

)
= P(X t+1= y | X t= x).

The Markov property means that what happens next (i.e., in the (t+1)-th step) only
depends on the state of the current step (X t = x), and not the previous steps. Con-
sequently, Markov chains are fully defined by their one-step transition probabilities
P(X t+1= y | X t=x). We will also only be interested in time-homogeneous Markov
chains, i.e., those for which

P(X t+1= y | X t= x)= P(Xs+1= y | Xs = x) for all s, t .

Therefore, when discussing the one-step transition probabilities, one can just con-
sider the case t = 0, that is, P(X1= y | X0= x). See [Kemeny et al. 1976] for a
reference on the general theory of Markov chains.

The |�| × |�| matrix P consisting of entries P(x, y) = P(X1= y | X0= x)
is called the (one-step) transition matrix of the Markov chain. Note that P is a
stochastic matrix which means that its entries are nonnegative and∑

y∈�

P(x, y)= 1 for all x ∈�.

The x-th row of the transition matrix P is the distribution P(x, · ) on �. By the
Chapman–Kolmogorov equations, we know that the t-step transition probabilities
P(X t= y | X0= x) are just the entries in the matrix P t.

Two important properties of Markov chains are irreducibility and periodicity. A
Markov chain with transition matrix P is irreducible if for any two states x, y ∈�,
there exists t (possibly depending on x and y) such that P t(x, y) > 0. In other
words, for an irreducible Markov chain, it is possible to reach any state from any
other state in the state space �. Let Tx = {t ≥ 1 : P t(x, x) > 0} be the set of times
when it is possible for a Markov chain to return to its starting state x . We call the
greatest common divisor of Tx the period of state x . If a Markov chain consists of
only states with period 1 it is called aperiodic; otherwise, it is called a periodic
chain. The assumptions of irreducibility and aperiodicity lead to the fundamental
result of Markov chains, called the convergence theorem, stated below.

Theorem 2.1 [Levin et al. 2009, Theorem 4.9]. For an irreducible and aperiodic
Markov chain on a finite state space � with transition matrix P, there exists a
unique probability distribution π on �, called its stationary distribution, such that
π P = π and P t(x, · ) converges to π as t→∞ for all initial states x.

By the definition of the stationary distribution, if P is symmetric, then π is the
uniform distribution on � since P is a stochastic matrix.
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The mixing time is then a measure of the convergence rate of the chain to
its stationary distribution, quantified in terms of a choice of a metric. As per the
standard convention, we adopt the total variation distance: given two distributions µ
and ν on a common state space �, the total variation distance is defined by

‖µ− ν‖TV = sup
A⊂�
|µ(A)− ν(A)| = 1

2

∑
x∈�

|µ(x)− ν(x)|. (2-1)

Using this metric, we define the maximal distance to stationary of a Markov chain
with transition matrix P to its stationary distribution π to be

d(t)=max
x∈�
‖P t(x, · )−π‖TV.

Then, given any ε > 0, the mixing time of the Markov chain is defined by

tmix(ε)=min{t : d(t)≤ ε}.

We note that it is somewhat conventional to fix a particular value of ε, and often
specifically the value ε = 1

4 , when comparing mixing-time results. We too will
adhere to this convention at times.

Finally, as we will show in Section 4, rather than obtaining bounds on d(t), it is
sometimes more convenient to bound the standardized maximal distance defined by

d̄(t) := max
x,y∈�

‖P t(x, · )− P t(y, · )‖TV, (2-2)

which satisfies the following result.

Lemma 2.2 [Levin et al. 2009, Lemma 4.11]. With d(t) and d̄(t) defined above,
we have

d(t)≤ d̄(t)≤ 2 d(t).

See [Levin et al. 2009] for more on mixing times of Markov chains.

3. The rook’s walk

The rook’s walk describes a rook moving on an nd-chessboard. The rook moves
according to a uniformly random distribution so that any square available to it has an
equal likelihood of being selected in the next move. The following definition intro-
duces notation to formalize the intuitive notion of a legal move on the nd -chessboard.

Definition 3.1. For integers n ≥ 3 and d ≥ 1, the nd rook’s walk is the irreducible,
aperiodic, and symmetric Markov chain on the d-fold Cartesian product {1, . . . , n}d

with the transition probabilities

P(x, y)= 1
d(n−1)

1{‖y−x‖0=1},

where ‖x‖0 =
∑d

i=1 1{x i 6=0} is the Hamming distance.
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By Theorem 2.1, the nd rook’s walk converges to a unique stationary distribution.
Moreover, since the transition matrix for the nd rook’s walk is symmetric, the
stationary distribution is the uniform distribution on the nd possible states.

As mentioned in the introduction, one approach to finding the mixing time of
this Markov chain is the spectral method, bounding the mixing time in terms of the
eigenvalues of the transition matrix P. Following such a method, the bounds below
for the rook’s walk mixing times were obtained in [Kim 2012].

Proposition 3.2. For the nd rook’s walk with n ≥ 3, we have

d(n− 1)
n

log
1
2ε
≤ tmix(ε)≤

d(n− 1)
n

log
nd

ε
. (3-1)

In [Li and Tucker 2014], by direct computation of the maximal distance to
stationary d(t) for the rook’s walk in two dimensions, the authors derived the
following result.

Proposition 3.3. For the n2 rook’s walk with n ≥ 3, we have

tmix

( 1
4

)
=

{
2 for 3≤ n ≤ 7,
3 for n ≥ 8.

That the mixing time for the rook’s walk is asymptotically constant (in n) is
rather intuitive: since the rook can move arbitrarily far along any row or column,
increasing the length of the board does not increase the number of moves required
to reach any square. This renders the length of the board to be of little consequence.

4. Coupling and path coupling methods

One of the advantages of defining the mixing time of a Markov chain in terms of
the total variation distance (2-1) is that the total variation distance can be expressed
in terms of couplings of distributions, which provide a powerful probabilistic tool
in the analysis of mixing times.

A coupling of two distributions µ and ν is a pair (X, Y ) of random variables
defined on a single probability space such that the marginal distribution of X is µ
and the marginal distribution of Y is ν. The relationship between couplings and total
variation distance between two distributions is given by the following proposition:

Proposition 4.1 [Levin et al. 2009, Proposition 4.7]. Let µ and ν be two distribu-
tions on the state space �. Then

‖µ− ν‖TV = inf{P(X 6=Y ) : (X, Y ) is a coupling of µ and ν}.

Moreover, a coupling (X, Y ) which attains the infimum exists and we call such a
coupling the optimal coupling.
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There are several applications of couplings to the analysis of probability distri-
butions (see, e.g., [Lindvall 2002]), but we will be more interested in the extension
of this idea to coupling Markov chains.

Definition 4.2. We define a coupling of a Markov chain with transition matrix P
to be a process (X t , Yt)

∞

t=0 with the property that both (X t) and (Yt) are Markov
chains with common transition matrix P.

Given a coupling of a Markov chain with initial states X0 = x0 and Y0 = y0, we
will write Px0,y0 for the probability on the product space of the process (X t , Yt).
From Proposition 4.1, we get the following bound on the total variation distance of
coupled Markov chains.

Theorem 4.3. If (X t , Yt) is a coupling of a Markov chain transition matrix P and
initial states with X0 = x0 and Y0 = y0, then

‖P t(x0, · )− P t(y0, · )‖TV ≤ Px0,y0(X t 6=Yt).

The coupling method for bounding mixing times of Markov chains is a process
for bounding the value Px0,y0(X t 6=Yt). There are a couple of standard techniques
to bound Px0,y0(X t 6=Yt). The approach we employ is in terms of a given a metric ρ
on the state space �, and in our setting a natural such metric arises. Namely, given
a symmetric, irreducible, and aperiodic Markov chain, we can view the elements
of its state space � as vertices of a connected, undirected graph, with an edge
between x and y precisely when P(x, y) > 0. Every such graph has a natural
metric associated to it: for x, y ∈�, we define ρ(x, y) to be the geodesic distance
from x to y, that is, the length (in number of edges) of the shortest path from x
to y in �. The presence of this geodesic metric ρ allows for the reformulation of
several key ideas: legal moves are encoded as pairs of states with ρ(x, y)= 1; we
can make sense of the diameter of �, defined by diam�=maxx,y∈� ρ(x, y); and,
since the metric only takes values that are natural numbers, the event considered in
Theorem 4.3 is encoded as

Px0,y0(X t 6=Yt)= Px0,y0(ρ(X t , Yt)≥1). (4-1)

Combining Theorem 4.3, Lemma 2.2, (4-1), and (2-2), we see that to bound
mixing times it suffices to bound the probability Px0,y0(ρ(X t , Yt)≥1). Generally
speaking, a strong bound on this probability for arbitrary time step t is not feasible,
and so we turn to the alternative method of deriving a bound of the form

Ex,y[ρ(X1, Y1)] = E
[
ρ(X t , Yt) | X t−1= x, Yt−1= y

]
≤ e−αρ(x, y)

for some α > 0. We refer to the above behavior as contraction of the coupled
Markov chains. Then iterating over the time steps t yields a bound on the maximal
distance to stationary d(t). This result is stated in the following proposition.
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Proposition 4.4. Suppose (X t , Yt) is a coupling of an aperiodic and irreducible
Markov chain on a finite state space �, and let ρ be an integer-valued metric on �.
If for all (x, y) ∈�×�,

Ex,y[ρ(X1, Y1)] ≤ e−αρ(x, y)

for some real number α > 0, then

tmix(ε)≤
⌈ 1
α

log diam�

ε

⌉
.

Proof. Let x0, y0 ∈�. By Theorem 4.3 and (4-1), we have

‖P t(x0, · )− P t(y0, · )‖TV ≤ Px0,y0(X t 6=Yt)= Px0,y0(ρ(X t , Yt)≥1)

and Markov’s inequality yields

Px0,y0(ρ(X t , Yt)≥1)≤ Ex0,y0[ρ(X t , Yt)].

By the contraction assumption Ex,y[ρ(X1, Y1)] ≤ e−αρ(x, y), we have

Ex0,y0[ρ(X t , Yt)] = Ex0,y0

[
Ex0,y0[ρ(X t , Yt) | (X t−1, Yt−1)]

]
≤ e−α Ex0,y0[ρ(X t−1, Yt−1)].

Repeated iteration over t time steps yields

Ex0,y0[ρ(X t , Yt)] ≤ e−αtρ(x0, y0).

Therefore, since x0 and y0 were arbitrary, by Lemma 2.2 we conclude that

d(t)≤ e−αt diam�. �

The above coupling method for bounding mixing times of Markov chains requires
bounding the coupling distance probability Px,y(ρ(X t , Yt)≥1) for all states x and y
which is often nontrivial. For contrast, the path coupling method derived by Bubley
and Dyer [1997], essentially a combination of the coupling method with the triangle
inequality, requires only the demonstration of the contraction bound for adjacent
states. The full path-coupling result is stated in the following proposition.

Proposition 4.5. Suppose (X t , Yt) is a coupling of an irreducible and aperiodic
Markov chain on a finite state space � with its geodesic metric ρ. If for all adjacent
states x and y we have

Ex,y[ρ(X1, Y1)] ≤ e−α

for some constant α > 0, then

tmix(ε)≤
⌈ 1
α

log diam�

ε

⌉
.



58 CAM MCLEMAN, PETER T. OTTO, JOHN RAHMANI AND MATTHEW SUTTER

Proof. Let x, y ∈�, let r = ρ(x, y), and choose a length-r path from x to y

x = x0, x1, . . . , xr−1, xr = y.

Such a path exists by the definition of ρ, and we have ρ(xi , xi−1) = 1 for all
i=1, . . . , r . If we denote by (X1,i , X1,i−1) the coupling corresponding to (xi , xi−1),
then by the hypotheses of the theorem, there is a positive constant α such that

Exi ,xi−1[ρ(X1,i , X1,i−1)] ≤ e−α

for each i . Then by the triangle inequality we have

Ex,y[ρ(X1, Y1)] ≤

r∑
i=1

Exi ,xi−1[ρ(X1,i , X1,i−1)] ≤ ρ(x, y)e−α.

The result then follows from Proposition 4.4. �

In the case of rooks moving on an nd -chessboard, the geodesic metric is described
easily in terms of the motion of the rooks — the distance between two states/squares
is simply the minimum number of rook moves to connect two such squares. Al-
ternatively, viewing our chessboard as being coordinatized by the d principal axes,
the distance between two states is simply the number of coordinates in which the
two states’ components differ (i.e., the Hamming distance between their coordinate
vectors). That is, if we let x = [x1, . . . , xd

] and y = [y1, . . . , yd
] be squares in the

d-dimensional chessboard state space�, then the geodesic metric ρ on� is given by

ρ(x, y)=
d∑

i=1

1{yi−x i 6=0}.

It is worth briefly unpacking this in the language of two rooks occupying two
states on the standard two-dimensional board. The case ρ = 2 means that the two
rooks have neither a column nor row in common. Similarly ρ = 1 means that the
two rooks share either a row or a column, and we have ρ = 0 if and only if two
rooks occupy the same space on the board. Note that this trichotomy of metric
values is precisely the trichotomy we used in the introduction to count two-move
sequences.

5. Coupling of the rook’s walk

The key to obtaining a good bound on the mixing time of a Markov chain using the
coupling method is to construct an optimal or near-optimal coupling, i.e., one with
very small values of P(X t 6=Yt). In other words, you want to construct a coupling
that encourages the coordinate processes of (X t , Yt) to meet as fast as possible.
Below we will construct a Markov chain Y that accomplishes this for the rook’s walk
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on the d-dimensional chessboard �, and use the path coupling technique derived in
the previous section to bound the mixing time. We will continue to use subscripts
to denote the time step of the chain, and superscripts to denote the components of
the vector describing the state; i.e., X i

t denotes the i-th component of X at time t .

Definition 5.1 (rook’s walk coupling). Let (X t) denote the rook’s walk, and (X t , Yt)

be a process with current states X t = xt and Yt = yt , and let X t+1 = xt+1. Then for
t ≥ 0, we define Yt+1 using xt , yt , and xt+1. Since ρ(xt , xt+1) = 1 for all values
of xt+1, there is a unique l such that x l

t 6= x l
t+1.

• If x l
t+1 6= yl

t , set

Y i
t+1 =

{
yi

t for i 6= l,

x i
t+1 for i = l.

• Suppose x l
t+1 = yl

t . If xt+1 = yt , set Yt+1 = xt . Otherwise choose uniformly
one of the indices m for which ym

t 6= xm
t+1, and set

Y i
t+1 =

{
yi

t for i 6= m,

x i
t+1 for i = m.

Let us give a more informal and intuitive explanation in the language of rooks
moving on an n-dimensional chessboard. Slightly abusing terminology and notation,
let X and Y denote two rooks moving on a board, with X moving according to
the standard rook’s walk. Then the movement of Y is to respond a move of X as
directed by the following rule:

When X moves in a given dimension, move Y along that same dimension
so as to match X ’s component in that dimension, unless those components
already match, in which case:
• randomly choose another dimension for Y to move along, and match

X ’s component in that dimension; unless
• X moves to the square currently inhabited by Y , then lacking anything

more clever to do, Y moves to X ’s previous location.

In short, Y will move so as to decrease ρ(X, Y ) by 1 whenever possible, moving
along the same dimension as X unless X and Y agree in that dimension. In this
case, X moves along a dimension chosen uniformly between all other axes in which
their components differ. Once Y occupies the same square as X , it will move to
mirror X ’s move every turn. In particular, note that ρ(X, Y ) is nonincreasing, and
decreases by 0 or 1 each move until the two rooks occupy the same state.

Example 5.2. Figure 2 shows a two-dimensional walk according to this coupling
for n = 4. The white rook moves at random via the uniform distribution on the
set of legal moves, and the black rook moves deterministically via the rules of
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4 0Z0Z
3 Z0Z0
2 0Z0s
1 S0Z0

a b c d

4 0Z0Z
3 Z0Z0
2 0ZrZ
1 Z0S0

a b c d

4 0Z0Z
3 Z0Z0
2 0s0Z
1 ZRZ0

a b c d

4 0Z0Z
3 Z0Z0
2 0S0Z
1 ZrZ0

a b c d

4 0S0Z
3 Z0Z0
2 0Z0Z
1 ZrZ0

a b c d

Figure 2. An instance of the coupling, with d = 2 and n = 4.

Definition 5.1. In algebraic chess notation, the move order would read 1. Rc1 Rc2
2. Rb1 Rb2 3. Rb2 Rb1 4. Rb4. The move following the last diagram will be
4. . . . Rb4, at which point the two rooks’ positions will coincide from then on.

The content of the following theorem can be paraphrased rather nicely in this
language: if X moves according to the uniform distribution on legal moves, and Y
“follows” X as prescribed by the rules above, then Y ’s position also satisfies the
uniform distribution.

Theorem 5.3. Let (X t) be the rook’s walk with transition matrix P. Then the
process (Yt) described above is also a Markov chain with transition matrix P; i.e.,
(X t , Yt) forms a coupling of the rook’s walk Markov chain.

Proof. The transition probabilities for X are given by the uniform distribution
on legal squares, and we need to show the same is true for Y . By translational
symmetry, we can without loss of generality suppose that Yt = [1, 1, . . . , 1]. For
2 ≤ k ≤ n and 1 ≤ m ≤ d, let yk,m denote the state whose coordinates are all 1,
except for a k in the m-th component. We need to show that

P
(
Yt+1= yk,m | Yt=[1, 1, . . . , 1]

)
=

1
d(n−1)

for each of the d(n− 1) such choices, regardless of the value of X t . Given such
an X t , let r = ρ(X t , Yt). Relabeling the axes if needed, we can also without loss of
generality assume that X t = [x1, x2, . . . , xr , 1, 1, . . . , 1] with each x i > 1.

Now, following the rules set forth in Definition 5.1:

• For m > r , we have Yt+1 = yk,m if and only if

X t+1 = [x1, x2, . . . , xr , 1, . . . , k, . . . , 1],

with the k occurring in the m-th slot, which occurs with probability 1/(d(n−1))
by the transition probabilities for X .

• If r = 1 and X t = [k, 1, 1, . . . , 1], then Yt+1 = yk,1 if and only if X t+1 = Yt ,
which occurs with probability 1/(d(n− 1)).

• If r > 1, m ≤ r and xm 6= k, we have Yt+1 = yk,m if and only if

X t+1 = [x1, . . . , xm−1, k, xm+1, . . . , xr , 1, . . . , 1],

which again occurs with probability 1/(d(n− 1)).
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• Finally, if r > 1, m ≤ r and xm = k, then Yt+1 can only be yk,m if l ≤ r ,
l 6= m, and X l

t+1 = 1, which occurs with probability (r − 1)/(d(n− 1)). In
this case, ρ(Yt , X t+1)= r − 1, and so Yt+1 is obtained from Yt by uniformly
choosing one of the r − 1 components in which xt+1 and yt differ for a total
probability of

1
r − 1

r − 1
d(n− 1)

=
1

d(n− 1)
. �

6. Mixing time of the rook’s walk

Having established that the rook’s walk coupling defined in Definition 5.1 does
indeed provide us a coupling, we will now compute the expected contraction factor α
(in the language of Proposition 4.5) for the coupling, which gives the following
result for the mixing time of the rook’s walk.

Theorem 6.1. For the nd rook’s walk, we have

tmix(ε)≤

⌈
log d

ε

log d(n−1)
(d−1)(n−1)+1

⌉
. (6-1)

Proof. Let x and y be adjacent states. Then since ρ(x, y)= 1, there exists a unique
component l for which x l

6= yl . Then, in the language of rooks, from Definition 5.1,
ρ(X t , Yt)= 0 if and only if X makes one of the n− 2 moves along that axis and
not onto y, and ρ(X t , Yt)= 1 otherwise. This gives an expected value of

E
[
ρ(X t , Yt) | X t−1= x, Yt−1= y

]
= 0 ·

n− 2
d(n− 1)

+ 1 ·
d(n− 1)− (n− 2)

d(n− 1)
.

In the notation of Proposition 4.4, this says that we may take the value

α = log
d(n− 1)

(d − 1)(n− 1)+ 1
.

Thus, combined with the observation that diam�= d, we obtain the result from
Proposition 4.4. �

Taking ε = 1
4 , we have the numerical data in Table 1.

We note that:

• For fixed d , the upper bound in (3-1) grows logarithmically with n as n→∞,
whereas (6-1) is asymptotically constant, approaching⌈

log d
ε

log d
(d−1)

⌉
.
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d↓ n → 3 4 5 6 7 8 100 1000

2 8 6 5 5 4 4 4 4
3 14 10 9 9 8 8 7 7
4 21 16 14 13 12 12 10 10
5 29 21 19 18 17 16 14 14

10 72 54 48 45 43 42 36 36
100 1196 896 796 746 716 697 603 597

Table 1. Coupling bounds for tmix

( 1
4

)
for various n and d .

• For fixed n, the upper bound in (3-1) grows quadratically with d as d→∞,
whereas our bound⌈

log d
ε

log d(n−1)
(d−1)(n−1)+1

⌉
≈

1

1− log(d−1)
log d

grows like d log d, regardless of n. (Try this as an exercise!) It is interesting
to note that this value of d log d agrees with the asymptotic solution to the
coupon collector’s problem with d coupons. This suggests that a necessary
and sufficient condition for the rook’s walk to be thoroughly mixed is that our
rook has moved at least once in each of the d dimensions.

As the motivating example, let us pay extra attention to generalizations of the
standard 82-chessboard. For the case where we fix the dimension as d = 2, the
actual values of tmix

(
as always, for ε = 1

4

)
are known from Proposition 3.3 for all

lengths n, and so serve as a litmus test for the accuracy of a given bound. Let us
denote by tc the “unceilinged” version of the coupling bound given in Theorem 6.1,
and by ts the upper bound obtained by the spectral method in Proposition 3.2.
Figure 3 demonstrates the two upper bounds ts and tc in conjunction with the exact
values of tmix

( 1
4

)
from Proposition 3.3.

In particular, it is easy to show that for d = 2, we have

lim
n→∞

tc ≤ 1− log2 ε,

and so for ε = 1
4 , we get an asymptotic mixing time of precisely 3, making the

upper bound (6-1) asymptotically tight.
On the other hand, if we fix the length as n = 8 and vary instead the dimension

of the board, it quickly becomes computationally difficult to evaluate exact values —
we were only able to easily compute the exact mixing times for d = 2, 3, 4 (with
respective mixing times of 3, 5, and 7). See Figure 4.

In short, it seems that the coupling method provides a stronger alternative to the
standard spectral method for bounding mixing times of rook’s walk Markov chains
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Figure 3. Bounds and actual values for tmix

( 1
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)
, d = 2, n varying.
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Figure 4. Bounds and actual values for tmix

( 1
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)
, n = 8, d varying.

from above. Further, in the two-dimensional case, the coupling bounds are asymptot-
ically tight. There are natural extensions to the rook’s walk that would be interesting
to pursue. In particular, future work will address the case where the rook’s moves
are restricted to traversing at most k squares per move, and the case where the
transition probabilities to all the allowable squares are not uniform.
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