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Making use of the Guo–Krasnosel’skiı̆ fixed point theorem multiple times, we
establish the existence of at least three positive solutions for the system of second-
order differential equations −u′′(t)= g

(
t, u(t), u′(t), v(t), v′(t)

)
and −v′′(t)=

λ f
(
t, u(t), u′(t), v(t), v′(t)

)
for t ∈ (0, 1) with right focal boundary conditions

u(0)= v(0)= 0, u′(1)= a, and v′(1)= b, where f, g : [0, 1]×[0,∞)4→[0,∞)
are continuous, a, b, λ≥ 0, and a+ b > 0. Our technique involves transforming
the system of differential equations to a new system with homogeneous boundary
conditions prior to applying the aforementioned fixed point theorem.

1. Introduction

Showing the existence of multiple positive solutions for boundary value prob-
lems is an active field of study due to the applications that arise in modeling
real world phenomena. A classic example based on beam analysis, presented
by Agarwal [1989], gives an existence and uniqueness result of the fourth-order
problem x (4) = f (t, x, x ′, x ′′, x (3)). Additionally, do Ó, Lorca, and Ubilla [do Ó
et al. 2008] studied the fourth-order nonhomogeneous boundary value problem,

u(4) = λh(t, u, u′′), t ∈ (0, 1),

u(0)= u′′(0)= 0,

u(1)= a, u′′(1)= b.

Utilizing a technique of rewriting the fourth-order problem as a system of second-
order differential equations, the authors guaranteed existence of multiple posi-
tive solutions by ultimately applying the Guo–Krasnosel’skiı̆ fixed point theorem
[Krasnosel’skiı̆ 1964]. Hopkins [2015] extended this process to establish multiple
solutions to the differential equation u(2n)

= λh(t, u, u′′, . . . , u2(n−1)) satisfying
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right focal boundary conditions. Henderson and Hopkins [2010] applied this same
technique to a similar fourth-order difference equation. In this work, we consider
the system of second-order differential equations

−u′′(t)= g
(
t, u(t), u′(t), v(t), v′(t)

)
, (1)

−v′′(t)= λ f
(
t, u(t), u′(t), v(t), v′(t)

)
, (2)

u(0)= v(0)= 0, (3)

u′(1)= a, v′(1)= b, (4)

where f, g : [0, 1]× [0,∞)4→ [0,∞) are continuous, λ, a, b ≥ 0 and a+ b > 0.
The novelty of our paper is that the functions f and g contain both even- and
odd-order derivatives.

In Section 2 of this paper, we consider a transformation of (1)–(4) that satisfies
homogeneous boundary conditions. We also introduce some preliminaries and the
conditions under which we can eventually apply the Guo–Krasnosel’skiı̆ fixed point
theorem. In Section 3 we introduce and prove a sequence of lemmas giving bounds
on a defined operator. This culminates in the main result, given in Section 4 where
we apply the Guo–Krasnosel’skiı̆ fixed point theorem multiple times, yielding at
least three positive solutions.

2. Preliminaries

We will prove the existence of multiple solutions for the system of second-order
differential equations (1)–(4) by applying the transformation ū(t)= u(t)− at and
v̄(t)= v(t)− bt , which gives

−ū′′(t)= g
(
t, ū(t)+ ta, ū′(t)+a, v̄(t)+ tb, v̄′(t)+b

)
, (5)

−v̄′′(t)= λ f
(
t, ū(t)+ ta, ū′(t)+a, v̄(t)+ tb, v̄′(t)+b

)
, (6)

ū(0)= v̄(0)= 0, (7)

ū′(1)= 0, v̄′(1)= 0, (8)

where a, b, λ≥ 0 and a+ b > 0. Notice that solutions to (5)–(8) are in one-to-one
correspondence with (1)–(4). Furthermore, suppose the following hypotheses on f
and g are satisfied.

(H0) The functions f, g : [0, 1]× [0,∞)4→[0,∞) are continuous and are nonde-
creasing in the second and fourth variables and nonincreasing in the third and fifth
variables.

(H1) There exist α, β ∈ (0, 1), α < β, such that given (x1, x2, x3, x4) ∈ [0,∞)4

with x1+ x2+ x3+ x4 6= 0, there exists k > 0 such that for t ∈ [α, β],

f (t, x1, x2, x3, x4) > k.
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(H2) For t ∈ (0, 1),

lim
x1+x2+x3+x4→0+

f (t, x1, x2, x3, x4)

x1+ x2+ x3+ x4
= 0

uniformly.

(H3) For t ∈ (0, 1),

lim
x1+x2+x3+x4→∞

f (t, x1, x2, x3, x4)

x1+ x2+ x3+ x4
= 0

uniformly.

(H4) There exist γ ∈
(
0, 2

3

)
and q > 0 such that for (x1, x2, x3, x4) ∈ [0,∞)4 with

x1+ x2+ x3+ x4 < q ,

g(t, x1, x2, x3, x4)≤ γ (x1+ x2+ x3+ x4) for t ∈ [0, 1].

(H5) There exist η ∈
(
0, 2

3

)
and ρ̂ > 0 such that for (x1, x2, x3, x4) ∈ [0,∞)4 with

x1+ x2+ x3+ x4 > ρ̂,

g(t, x1, x2, x3, x4)≤ η(x1+ x2+ x3+ x4) for t ∈ [0, 1].

Solutions to (5)–(8), provided they exist, are of the form

ū(t)=
∫ 1

0
G(t, s)g

(
s, ū(s)+as, ū′(s)+a, v̄(s)+bs, v̄′(s)+b

)
ds, (9)

v̄(t)= λ
∫ 1

0
G(t, s) f

(
s, ū(s)+as, ū′(s)+a, v̄(s)+bs, v̄′(s)+b

)
ds, (10)

where G(t, s) is the Green’s function

G(t, s)=
{

t if 0≤ t ≤ s ≤ 1,
s if 0≤ s ≤ t ≤ 1.

Since G(t, s) is clearly nonnegative and f and g are nonnegative by assumption,
it follows that solutions u and v are also nonnegative. Some other useful properties
on G(t, s) are that

max
t∈[0,1]

∫ 1

0
G(t, s) ds = 1

2
and max

t∈[0,1]

∫ 1

0

∣∣∣ ∂
∂t

G(t, s)
∣∣∣ ds = 1.

In order to make use of the Guo–Krasnosel’skiı̆ fixed point theorem, we will
need a Banach space and a cone, as well as an operator T. Let (X, ‖ · ‖) denote the
Banach space X = C1([0, 1],R)×C1([0, 1],R) endowed with the norm

‖(ū, v̄)‖ = ‖ū‖∞+‖ū′‖∞+‖v̄‖∞+‖v̄′‖∞,

where ‖ū‖∞ = supt∈[0,1] |ū(t)|.
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Recall that a cone, C , in X is a nonempty, closed, convex subset of X satisfying:

(1) If x ∈ C , and λ > 0, then λx ∈ C .

(2) If x ∈ C and −x ∈ C , then x = 0.

Define C ⊂ X to be the cone

C =
{
(ū, v̄) ∈ X : (ū, v̄)(0)= (ū′, v̄′)(1)= (0, 0) and ū, v̄ are concave

}
.

The fact that C is a cone follows directly from the definition. Moreover, let �p

denote the open set �p = {(ū, v̄) ∈ X : ‖(ū, v̄)‖< p}. Finally, define T : X→ X
to be the operator T (ū, v̄)= (A1(ū, v̄), A2(ū, v̄)), where

A1 =

∫ 1

0
G(t, s)g

(
s, ū(s)+as, ū′(s)+a, v̄(s)+bs, v̄′(s)+b

)
ds

and

A2 = λ

∫ 1

0
G(t, s) f

(
s, ū(s)+as, ū′(s)+a, v̄(s)+bs, v̄′(s)+b

)
ds.

Consider the following lemma, which provides a useful property of T .

Lemma 2.1. The operator T : C→ C is completely continuous.

We note that one can use a standard Arzelà–Ascoli argument to show that T is
completely continuous; see [Hopkins 2009].
In the next section, we will take advantage of the following lemma.

Lemma 2.2. Let ū(t) be a nonnegative concave function which is continuous
on [0, 1]. Then for all α, β ∈ (0, 1), with α < β, we have

inf
t∈[α,β]

ū(t)≥ α(1−β)‖ū‖∞.

For a proof of Lemma 2.2, see [Hopkins 2009].
Since we will be using the Guo–Krasnosel’skiı̆ fixed point theorem multiple

times to acquire our main result, we end the section with the statement of this
theorem.

Theorem 2.3 (Guo–Krasnosel’skiı̆ fixed point theorem). Let (X, ‖ · ‖) be a Banach
space and C ⊂ X be a cone. Suppose �1, �2 are open subsets of X satisfying
0 ∈�1 ⊂�1 ⊂�2. If T : C ∩ (�2 \�1)→ C is a completely continuous operator
such that either

(1) ‖T u‖ ≤ ‖u‖ for u ∈ C ∩ ∂�1 and ‖T u‖ ≥ ‖u‖ for u ∈ C ∩ ∂�2, or

(2) ‖T u‖ ≥ ‖u‖ for u ∈ C ∩ ∂�1 and ‖T u‖ ≤ ‖u‖ for u ∈ C ∩ ∂�2,

then T has a fixed point in C ∩ (�2 \�1).
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3. Technical results

In this section we give a sequence of four lemmas that allow us to obtain the
estimates needed to apply the Guo–Krasnosel’skiı̆ fixed point theorem.

Lemma 3.1. Suppose (H0) and (H1) hold and let ρ∗ > 0. Then there is a 3 > 0
such that, for every λ≥3 and (a, b) ∈ [0,∞)2,

‖T (ū, v̄)‖ ≥ ‖(ū, v̄)‖

for (ū, v̄) ∈ C ∩ ∂�ρ∗ .

Proof. Let ρ∗> 0 and let (ū, v̄)∈C∩∂�ρ∗ . Let r = α(1−β), where α and β are as
in (H1) and note r ∈ (0, 1). Furthermore, choose c≥ 1 so that both ū′+a ≤ c‖ū′‖∞
and v̄′+ b ≤ c‖v̄′‖∞ hold for t ∈ [α, β]. Define

M = inf
{

f (t, ra1, ca2, ra3, ca4)

r(a1+ a3)+ c(a2+ a4)
: t ∈ [α, β], a1, a2, a3 > 0, a4 ≥ 0,

and a1+ a2+ a3+ a4 = p∗
}
.

The existence of a positive M follows from (H1). Set 3≥
[
Mr

∫ β
α

G(1, s) ds
]−1.

As (ū, v̄) ∈ C , by Lemma 2.2, we have ū(t)+ at ≥ ū(t) ≥ r‖ū‖∞. Moreover,
due to the nondecreasing property of f in the second and fourth variables and its
nonincreasing property in the third and fifth variables, we see that

‖T (ū, v̄)‖ ≥ ‖A2(ū, v̄)‖∞

≥ λ

∫ 1

0
G(1, s) f

(
s, ū+sa, ū′+a, v̄+sb, v̄′+b

)
ds

≥ λ

∫ β

α

G(1, s) f
(
s, r‖ū‖∞, c‖ū′‖∞, r‖v̄‖∞, c‖v̄′‖∞

)
ds

≥ λ
[
r(‖ū‖∞+‖v̄‖∞)+c(‖ū′‖∞+‖v̄′‖∞)

]
×

∫ β

α

G(1, s)
f
(
s, r‖ū‖∞, c‖ū′‖∞, r‖v̄‖∞, c‖v̄′‖∞

)
r(‖ū‖∞+‖v̄‖∞)+c(‖ū′‖∞+‖v̄′‖∞)

ds

≥ λM
[
r(‖ū‖∞+‖v̄‖∞)+c(‖ū′‖∞+‖v̄′‖∞)

] ∫ β

α

G(1, s) ds

≥ λMr
(
‖ū‖∞+‖ū′‖∞+‖v̄‖∞+‖v̄′‖∞

) ∫ β

α

G(1, s) ds

≥ λMr‖(ū, v̄)‖
∫ β

α

G(1, s) ds

≥3Mr‖(ū, v̄)‖
∫ β

α

G(1, s) ds

≥ ‖(ū, v̄)‖. �
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Lemma 3.2. Fix 3> 0. Suppose (H0) and (H1) hold. Then, for all λ≥3 and for
all (a, b) ∈ [0,∞)2, with a+ b > 0, there exists a ρ1 = ρ1(3, a, b) such that for
every ρ ∈ (0, ρ1), we have

‖T (ū, v̄)‖ ≥ ‖(ū, v̄)‖

for all (ū, v̄) ∈ C ∩ ∂�ρ .

Proof. Fix 3> 0. By (H1) and the nonincreasing/nondecreasing properties of f ,
there exists k > 0 such that

f
(
t, ū+ ta, ū′+a, v̄+ tb, v̄′+b

)
≥ f

(
t, αa, ‖ū′‖∞+a, αb, ‖v̄′‖∞+b

)
> k

for all t ∈ (α, β), where α and β are as in (H1). Take ρ1 =3k
∫ β
α

G(1, s) ds. Then,
for (ū, v̄) ∈ C ∩ ∂�ρ where ρ ≤ ρ1,

‖T (ū, v̄)‖ ≥ ‖A2(ū, v̄)‖∞ ≥ λ
∫ 1

0
G(1, s) f

(
s, ū+sa, ū′+a, v̄+sb, v̄′+b

)
ds

≥ λ

∫ β

α

G(1, s) f
(
s, αa‖ū′‖∞+a, αb, ‖v̄′‖∞+b

)
ds

> λk
∫ β

α

G(1, s) ds

= λk‖(ū, v̄)‖
∫ β

α

G(1, s)
‖(ū, v̄)‖

ds

≥3k‖(ū, v̄)‖
∫ β

α

G(1, s)
‖(ū, v̄)‖

ds

=
ρ1

ρ
‖(ū, v̄)‖

≥ ‖(ū, v̄)‖. �

Lemma 3.3. Suppose (H0), (H2) and (H4) hold and let ρ∗ > 0 be fixed. Then given
λ > 0, there is a ρ2 ∈ (0, ρ∗) and a δ > 0 such that for every (a, b) ∈ [0,∞)2, with
0< a+ b < δ, we have

‖T (ū, v̄)‖ ≤ ‖(ū, v̄)‖

for (ū, v̄) ∈ C ∩ ∂�ρ2 .

Proof. Let λ > 0. Pick ε > 0 so that λε < 1
3 . Then, by (H2), we can find a

ρ2 ∈ (0, ρ∗) such that, for all (x1, x2, x3, x4) ∈ [0,∞)4 with x1+ x2+ x3+ x4 = ρ2

and a+ b ≤ ρ2 with ρ2 <
1
2q , where q > 0 is as in (H4), we have

f (t, x1+ a, x2, x3+ b, x4) < ε
[
(x1+ a)+ x2+ (x3+ b)+ x4

]
for t ∈ [0, 1].
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Take (ū, v̄)∈C∩∂�ρ2 , and suppose a+b≤ρ2. Notice that there exists c∈ (0, 1]
such that ū′+ a ≥ c‖ū′‖∞ and v̄′+ b ≥ c‖v̄′‖∞. Then, for t ∈ [0, 1], we have

A2(ū, v̄)(t)= λ
∫ 1

0
G(t, s) f

(
s, ū+sa, ū′+a, v̄+sb, v̄′+b

)
ds

≤ λ

∫ 1

0
G(t, s) f

(
s, ‖ū‖∞+a, c‖ū′‖∞, ‖v̄‖∞+b, c‖v̄′‖∞

)
ds

< λε
[
‖ū‖∞+c‖ū′‖∞+‖v̄‖∞+c‖v̄′‖∞+(a+b)

] ∫ 1

0
G(t, s) ds

≤ λε
[
‖(ū, v̄)‖+(a+b)

] ∫ 1

0
G(t, s) ds

≤ 2λε‖(ū, v̄)‖
∫ 1

0
G(t, s) ds

≤ λε‖(ū, v̄)‖.

Using a similar argument to the one above, we see that

A′2(ū, v̄)(t)= λ
∫ 1

0

∂

∂t
G(t, s) f

(
s, ū+sa, ū′+a, v̄+sb, v̄′+b

)
ds

≤ 2λε‖(ū, v̄)‖
∫ 1

0

∂

∂t
G(t, s) ds

≤ 2λε‖(ū, v̄)‖.

In other words,

‖A2(ū, v̄)‖∞+‖A′2(ū, v̄)‖∞ ≤ 3λε‖(ū, v̄)‖.

By (H4), since
[
(‖ū‖∞+a)+‖ū′‖∞+(‖v̄‖∞+b)+‖v̄′‖∞

]
≤ 2ρ2 < q , we have

g
(
t, ‖ū‖∞+a, ‖ū′‖∞, ‖v̄‖∞+b, ‖v̄′‖∞

)
≤ γ

(
‖ū‖∞+ a+‖ū′‖∞+‖v̄‖∞+ b+‖v̄′‖∞

)
.

Let δ′ < 1 and set δ = δ′ρ2. Then for a+ b < δ, (ū, v̄) ∈ C ∩ ∂�ρ2 , and t ∈ [0, 1],
we have

A1(ū, v̄)(t)=
∫ 1

0
G(t, s)g

(
s, ū+sa, ū′+a, v̄+sb, v̄′+b

)
ds

≤

∫ 1

0
G(t, s)g

(
s, ‖ū‖∞+a, c‖ū′‖∞, ‖v̄‖∞+b, c‖v̄′‖∞

)
ds

≤ γ
[
‖ū‖∞+c‖ū′‖∞+‖v̄‖∞+c‖v̄′‖∞+(a+b)

] ∫ 1

0
G(t, s) ds

≤ γ
[
‖(ū, v̄)‖+(a+b)

]∫ 1

0
G(t, s) ds
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< γ (1+δ′)‖(ū, v̄)‖
∫ 1

0
G(t, s) ds

≤
1
2γ (1+δ

′)‖(ū, v̄)‖,

where c is as above. And similarly,

A′1(ū, v̄)(t)=
∫ 1

0

∂

∂t
G(t, s)g

(
s, ū+ sa, ū′+ a, v̄+ sb, v̄′+ b

)
ds

< γ (1+ δ′)‖(ū, v̄)‖
∫ 1

0

∂

∂t
G(t, s) ds

≤ γ (1+ δ′)‖(ū, v̄)‖.

Hence,

‖A1(ū, v̄)‖∞+‖A′1(ū, v̄)‖∞ <
3
2γ (1+ δ

′)‖(ū, v̄)‖.

Thus, for a+ b < δ, we have

‖T (ū, v̄)‖ = ‖A1(ū, v̄)‖∞+‖A′1(ū, v̄)‖∞+‖A2(ū, v̄)‖∞+‖A′2(ū, v̄)‖∞

<
[ 3

2γ (1+ δ
′)+ 3λε

]
‖(ū, v̄)‖.

For small enough ε and δ′, it follows that ‖T (ū, v̄)‖ ≤ ‖(ū, v̄)‖. �

Lemma 3.4. Let δ > 0. Suppose 0< a+b<δ and (H0), (H3) and (H5) hold. Then,
for every λ > 0, there is a ρ3 = ρ3(δ, λ) such that for all ρ ≥ ρ3,

‖T (ū, v̄)‖ ≤ ‖(ū, v̄)‖,

where (ū, v̄) ∈ C ∩ ∂�ρ .

Proof. Let δ > 0, 0< a+ b< δ and let (x1, x2, x3, x4) ∈ [0,∞)4. By (H5) and the
nondecreasing/nonincreasing properties of g as in (H0), given any q1 ≥ ρ̂, we have

g(t, x1+a, x2, x3+a, x4)≤ η(x1+a+ x2+ x3+b+ x4)

for x1+ x2+ x3+ x4 ≥ q1 and t ∈ [0, 1].
Let ε>0 and pick q1≥ ρ̂ large enough so that ε>ηδ/q1. Let x1+x2+x3+x4≥q1.

Then

g(t, x1+a, x2, x3+a, x4)≤ η(x1+ x2+ x3+ x4)+η(a+b)

< η(x1+ x2+ x3+ x4)+ε(x1+ x2+ x3+ x4)

= (η+ε)(x1+ x2+ x3+ x4).
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Let (ū, v̄) ∈ C ∩ ∂�q1 . Pick c ∈ (0, 1] such that ū′+ a ≥ c‖ū′‖∞ and v̄′+ b ≥
c‖v̄′‖∞. Then for t ∈ [0, 1],

A1(ū, v̄)(t)=
∫ 1

0
G(t, s)g

(
s, ū+sa, ū′+a, v̄+sb, v̄′+b

)
ds

≤

∫ 1

0
G(t, s)g

(
s, ‖ū‖∞+a, c‖ū′‖∞, ‖v̄‖∞+b, c‖v̄′‖∞

)
ds

< (η+ε)‖(ū, v̄)‖
∫ 1

0
G(t, s) ds.

A similar argument shows that

A′1(ū, v̄)(t)=
∫ 1

0

∂

∂t
G(t, s)g

(
s, ū+sa, ū′+a, v̄+sb, v̄′+b

)
ds

< (η+ε)‖(ū, v̄)‖
∫ 1

0

∂

∂t
G(t, s) ds.

Combining these inequalities, we see that

‖A1(ū, v̄)‖∞+‖A′1(ū, v̄)‖∞ <
3
2(η+ ε)‖(ū, v̄)‖.

Now consider A2(ū, v̄)(t). Let δ′ > 0. Then, by (H0) and (H3), there is a q2 > 0
such that for all (x1, x2, x3, x4) ∈ [0,∞)4 with x1+ x2+ x3+ x4 ≥ q2, we have

f (t, x1+a, x2, x3+b, x4)≤ δ
′(x1+a+ x2+ x3+b+ x4)

for every t ∈ [0, 1]. Let q3=max{δ, q2}. Noting that a+b<δ, for (x1, x2, x3, x4)∈

[0,∞)4 with x1+ x2+ x3+ x4 ≥ q3, we have

f (t, x1+a, x2, x3+b, x4)≤ δ
′
[
(x1+ x2+ x3+ x4)+q3

]
≤ 2δ′(x1+ x2+ x3+ x4).

Then for t ∈ [0, 1] and any (ū, v̄) ∈ C ∩ ∂�q3 ,

A2(ū, v̄)= λ
∫ 1

0
G(t, s) f

(
s, ū+sa, ū′+a, v̄+sb, v̄′+b

)
ds

≤ λ

∫ 1

0
G(t, s) f

(
s, ‖ū‖∞+a, c‖ū′‖∞, ‖v̄‖∞+b, c‖v̄′‖∞

)
ds

< λ ·2δ′‖(ū, v̄)‖
∫ 1

0
G(t, s) ds,
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where c is as above. And similarly,

A2(ū, v̄)= λ
∫ 1

0

∂

∂t
G(t, s) f

(
s, ū+sa, ū′+a, v̄+sb, v̄′+b

)
ds

< λ ·2δ′‖(ū, v̄)‖
∫ 1

0

∂

∂t
G(t, s) ds.

Combining these inequalities, we see that

‖A2(ū, v̄)‖∞+‖A′2(ū, v̄)‖∞ < 3λδ′‖(ū, v̄)‖.

Take ρ3 =max{q1, q3} and let ρ ≥ ρ3. Then given (ū, v̄) ∈ C ∩ ∂�ρ , we see that

‖T (ū, v̄)‖ = ‖A1(ū, v̄)‖∞+‖A′1(ū, v̄)‖∞+‖A2(ū, v̄)‖∞+‖A′2(ū, v̄)‖∞

<
[ 1

2(6λδ
′
+ 3(η+ ε))

]
‖(ū, v̄)‖.

Recall by (H5) that η∈
(
0, 2

3

)
. Pick ε and δ′ small enough that 6λδ′+3ε≤ 2−3η.

Thus, we have the desired result. �

4. The main result

Theorem 4.1. Let continuous functions f, g : [0, 1] × [0,∞)4 → [0,∞) satisfy
hypotheses (H0)–(H5). Then there exists 3> 0 such that given λ≥3, there exists
δ > 0 such that for every a, b ≥ 0 satisfying 0< a+ b < δ, the system (5)–(8) has
at least three positive solutions.

Proof. Suppose f, g satisfy hypotheses (H0)–(H5). Let ρ∗ > 0 be fixed. By
Lemma 3.1, there is 3> 0 such that, for every λ≥3 and a, b ≥ 0,

‖T (ū, v̄)‖ ≥ ‖(ū, v̄)‖ for (ū, v̄) ∈ C ∩ ∂�ρ∗ .

Now, fix λ≥3. Lemmas 3.2 through 3.4 give that there is δ > 0 and ρ1, ρ2, ρ3 > 0
satisfying ρ1 < ρ2 < ρ

∗ < ρ3 such that for (a, b) ∈ [0,∞)2 with 0< a+ b < δ,

‖T (ū, v̄)‖ ≥ ‖(ū, v̄)‖ for (ū, v̄) ∈ C ∩ ∂�ρ1,

‖T (ū, v̄)‖ ≤ ‖(ū, v̄)‖ for (ū, v̄) ∈ C ∩ ∂�ρ2,

‖T (ū, v̄)‖ ≤ ‖(ū, v̄)‖ for (ū, v̄) ∈ C ∩ ∂�ρ3 .

Applying the Guo–Krasnosel’skiı̆ fixed point theorem three times, we get the
existence of three positive solutions, (ū1, v̄1), (ū2, v̄2), (ū3, v̄3) ∈ C such that

ρ1 < ‖(ū1, v̄1)‖< ρ2 < ‖(ū2, v̄2)‖< ρ
∗ < ‖(ū3, v̄3)‖< ρ3. �

Recall that solutions to the system (5)–(8) are in one-to-one correspondence with
those of the system (1)–(4). Thus we have our desired result.
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