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Zeckendorf’s theorem states that every positive integer can be uniquely decom-
posed as a sum of nonconsecutive Fibonacci numbers, where the Fibonacci
numbers satisfy F1= 1, F2= 2, and Fn = Fn−1+Fn−2 for n≥ 3. The distribution
of the number of summands in such a decomposition converges to a Gaussian,
the gaps between summands converge to geometric decay, and the distribution of
the longest gap is similar to that of the longest run of heads in a biased coin; these
results also hold more generally, though for technical reasons previous work is
needed to assume the coefficients in the recurrence relation are nonnegative and
the first term is positive.

We extend these results by creating an infinite family of integer sequences
called the m-gonal sequences arising from a geometric construction using cir-
cumscribed m-gons. They satisfy a recurrence where the first m+1 leading
terms vanish, and thus cannot be handled by existing techniques. We provide
a notion of a legal decomposition, and prove that the decompositions exist and
are unique. We then examine the distribution of the number of summands used
in the decompositions and prove that it displays Gaussian behavior. There is
geometric decay in the distribution of gaps, both for gaps taken from all integers
in an interval and almost surely in distribution for the individual gap measures
associated to each integer in the interval. We end by proving that the distribution
of the longest gap between summands is strongly concentrated about its mean,
behaving similarly as in the longest run of heads in tosses of a coin.

1. Introduction

The Fibonacci numbers are a heavily studied sequence which arises in many different
ways and places. By defining them as F1 = 1, F2 = 2 and Fn+1 = Fn + Fn−1, we
have the remarkable property that every positive integer can be uniquely written as
a sum of nonconsecutive Fibonacci numbers; further, this property is equivalent
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to the definition of the Fibonacci numbers (i.e., if {an} is a sequence of numbers
such that every integer can be written uniquely as a sum of nonadjacent terms in
the sequence, then {an} = {Fn}). Zeckendorf [1972] proved this in 1939, though he
did not publish this result until much later.

In recent years many have studied generalizations to Zeckendorf’s theorem by
exploring different notions of decompositions and the properties of the associated
sequences; see among others [Alpert 2009; Daykin 1960; Demontigny et al. 2014a;
2014b; Drmota and Gajdosik 1998; Filipponi et al. 1994; Grabner and Tichy 1990;
Grabner et al. 1994; Keller 1972; Lengyel 2006; Miller and Wang 2012; 2014;
Steiner 2002; 2005]. Despite the vast literature in this area, the majority of the
research on generalized Zeckendorf decompositions has involved sequences with
positive linear recurrences. Positive linear recurrence sequences {Gn} satisfy a
linear recurrence relation where the coefficients are nonnegative with the first and
last term coefficients being positive.1

There has been little research which considers cases where the leading coefficient
in the recurrence is zero; one such case is found in [Catral et al. 2014]. They studied
what they call the Kentucky sequence, which is defined by the recurrence relation
Hn+1 = Hn−1+ 2Hn−3 and Hi = i for i ≤ 4. While the behavior there is similar
to the positive linear recurrences, there are sequences with very different behavior.
One such is the Fibonacci quilt, which arises from creating a decomposition rule
from the Fibonacci spiral2 (see [Catral et al. 2016a; 2016b]), where the number
of decompositions is not unique but in fact grows exponentially. This leads to the
major motivation of this paper (as well as the motivation for the three papers just
mentioned): how important is the assumption that the leading term is positive? The
work mentioned above shows that it is not just a technically convenient assumption;
markedly different behavior can emerge. Our goal is to try and determine when
we have each type of behavior, and thus the purpose of this paper is to explore
infinitely many recurrences with absent leading term and see the effect that has on
the properties of the decompositions.

Specifically, we consider an infinite family of integer sequences called the
m-gonal sequences, where m≥ 3. These sequences arise from a geometric construc-
tion using circumscribed m-gons, and after defining them below we state our results.

Definition of the m-gonal sequence. One interpretation of Zeckendorf’s theorem,
which states that every positive integer can be written uniquely as a sum of non-
consecutive Fibonacci numbers, is that we have infinitely many bins with just one

1 Thus Gn+1 = c1Gn + · · ·+ cL Gn−(L−1) with c1cL > 0 and ci ≥ 0.
2Let fn = Fn−1, the standard definition of the Fibonacci numbers. Then the plane can be tiled in

a spiral where the dimensions of the n-th square are fn × fn ; we declare a decomposition legal if no
two summands used share an edge.
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Figure 1. Circumscribed m-gons.

number per bin, and if we choose a bin to contribute a summand to a number’s
decomposition then we cannot choose a summand from an adjacent bin. We can
generalize to bins with more elements, as well as disallow two bins to be used
if they are within a given distance (see [Catral et al. 2014; 2016a; 2016b]). The
m-gonal sequences are similar to these constructions, but have a two-dimensional
structure arising from circumscribing m-gons about one central m-gon.

Briefly we view the decomposition rule corresponding to the m-gonal sequence
for m ≥ 1 by saying the sequence is partitioned into bins bi of length |bi |, where
|b0| = 1 and |bi | = m for all i ≥ 1. A valid decomposition has no two summands
being elements from the same bin. We refer to this decomposition as a legal m-gonal
decomposition of a positive integer z. We now give details and examples of this
construction.

The m-gonal sequence was initially constructed by circumscribing m-gons. For
m ≥ 3 we let M0 denote a regular m-gon. Circumscribe the m-gon M1 onto M0

such that the vertices of M0 bisect the edges of M1. Note that this adds m faces to
the resulting figure. We continue this process indefinitely, where we circumscribe
the m-gon Mi onto Mi−1 such that the vertices of Mi−1 bisect the edges of Mi . At
each step we have added an additional m faces to the resulting figure. We depict
these initial iterations in Figure 1. Let M denote all of the faces created through
the process of circumscribing m-gons. Then

M = { f0} ∪

( ∞⋃
i=1

{
f (i, 1), f (i, 2), . . . , f (i,m)

})
, (1-1)

where f0 is the face of the m-gon M0 and f (i, 1), f (i, 2), . . . , f (i,m) are the faces
added to M when Mi is circumscribed onto Mi−1 for i ≥ 1.

Fix an integer m ≥ 3. Suppose {an}
∞

n=0 is an increasing sequence of positive inte-
gers. We define the ordered lists b0 = [a0] and bi = [am(i−1)+1, am(i−1)+2, . . . , ami ]

for i ≤1, which we refer to as bins. For all i ≥1, we see that bi has size m and b0 has
size 1. The integers in bin bi correspond directly with the integers which we place
on the faces added to M when Mi is circumscribed onto Mi−1. With the elements
of our sequence partitioned into bins, we define a legal m-gonal decomposition of
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any positive integer z. If we have

z = a`t + a`t−1 + · · ·+ a`2 + a`1, (1-2)

where `1 < `2 < · · · < `t and {a` j , a` j+1} 6⊂ bi for any i ≥ 0 and 1 ≤ j ≤ t − 1,
then we call this a legal m-gonal decomposition of z. Namely, a legal m-gonal
decomposition cannot use more than one summand from the same bin. With the
generalized construction of the sequence by partitioning the members into bins
rather than relying solely on the 2-dimensional circumscribed polygons, we make
it a formal definition for m ≥ 1.

Definition 1.1. Let an increasing sequence of positive integers {an}
∞

n=0 be given
and partition the elements into ordered lists

b0 = [a0], bk := [am(k−1)+1, am(k−1)+2, . . . , amk] (1-3)

for m ≥ 1, k ≥ 1, which we call bins. We declare a decomposition of an integer

z = a`t + a`t−1 + · · ·+ a`1, (1-4)

where `1 < `2 < · · · < `t and {a` j , a` j+1} 6⊂ bi for any i, j , to be a legal m-gonal
decomposition.

The following definition details the construction of the m-gonal sequence, which
is the focus of this paper.

Definition 1.2. For m ≥ 1, an increasing sequence of positive integers {an}
∞

n=0 is
called an m-gonal sequence if every ai (i ≥ 0) is the smallest positive integer that
does not have a legal m-gonal decomposition using the elements {a0, a1, . . . , ai−1}.

Example 1.3. For m = 1, all the bins have size 1 and the 1-gonal sequence {ai }
∞

i=0
is defined by ai = 2i. This is equivalent to writing an integer in binary. When m = 2
we have bins bi = [a2i−1, a2i ] for i ≥ 1 and b0 = [a0]. The first few terms of the
sequence are

1︸︷︷︸
b0

, 2, 4︸︷︷︸
b1

, 6, 12︸︷︷︸
b2

, 18, 36︸ ︷︷ ︸
b3

, 54, 108︸ ︷︷ ︸
b4

, 162, 324︸ ︷︷ ︸
b5

, . . . .

In the case where m = 3 the triangle (3-gonal) sequence begins with the terms

1︸︷︷︸
b0

, 2, 4, 6︸ ︷︷ ︸
b1

, 8, 16, 24︸ ︷︷ ︸
b2

, 32, 64, 96︸ ︷︷ ︸
b3

, 128, 256, 384︸ ︷︷ ︸
b4

, 512, 1024, 1536︸ ︷︷ ︸
b5

, . . . .

Figure 2 gives a visualization of the beginning of the triangle sequence when the
integers are placed in the faces of the circumscribed triangles. Moreover, we note
that the triangles used need not be equilateral.

Also one can observe that the triangle decomposition of 2015 is given by

2015= a15+ a12+ a6+ a3+ a0 = 1536+ 384+ 64+ 24+ 6+ 1. (1-5)
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Figure 2. Beginning of triangle sequence.

In Section 2 we derive the recurrence relation and explicit closed form expressions
for the terms of the m-gonal sequence, which we state below.

Theorem 1.4. Let m ≥ 1. If {an}
∞

n=0 is the m-gonal sequence, then

an =


1 if n = 0,
2n if 1≤ n ≤ m,
(m+ 1)an−m if n > m.

(1-6)

Then for n ≥ 1, with n = km+ r , k ≥ 0 and 1≤ r ≤ m,

an = 2r(m+ 1)k. (1-7)

Uniqueness of decomposition. Notice that for m ≥ 2, the recurrence given in
Theorem 1.4 is not a positive linear recurrence, as the leading coefficients of the
first m terms are zero. Therefore past results on positive linear recurrences do not
apply to the m-gonal sequence; however, we do still obtain unique decomposition.

Theorem 1.5 (uniqueness of decompositions). Fix m ≥ 1. Every positive integer
can be written uniquely as a sum of distinct terms from the m-gonal sequence, where
no two summands are in the same bin.

A proof of Theorem 1.5 is given in the Appendix.

Gaussianity. Previous work with positive linear recurrence sequences proved the
number of summands in the decomposition of positive integers converges to a
Gaussian (see among others [Demontigny et al. 2014a; Miller and Wang 2014]).
The same holds for Kentucky decompositions, despite the fact that the Kentucky
sequence is not a positive linear recurrence [Catral et al. 2014], and also for the
m-gonal sequences.

Theorem 1.6 (Gaussian behavior of summands). Let the random variable Yn denote
the number of summands in the (unique) m-gonal decomposition of an integer
picked at random from [0, amn+1) with uniform probability.3 Normalize Yn to

3Using the methods of [Best et al. 2016], these results can be extended to hold almost surely for a
sufficiently large subinterval of [0, amn+1).



130 DORWARD, FORD, FOURAKIS, HARRIS, MILLER, PALSSON AND PAUGH

Y ′n = (Yn −µn)/σn , where µn and σn are the mean and variance of Yn respectively.
Then

µn =
mn

m+ 1
+

1
2
, σ 2

n =
mn

(m+ 1)2
+

1
4
, (1-8)

and Y ′n converges in distribution to the standard normal distribution as n→∞.

The proof of Theorem 1.6 is given in Section 3.

Gaps between summands. Another property of positive linear recurrence sequences
that is studied is the behavior of the gaps between adjacent summands in decompo-
sitions. In many instances, it has been shown that there is exponential decay in the
distribution of gaps; see [Beckwith et al. 2013; Ben-Ari and Miller 2014; Bower
et al. 2015].4 Similarly, the Kentucky sequence displays exponential decay in the
distribution of gaps [Catral et al. 2014]. We obtain similar behavior again, though
now there is a slight dependence on the residue of gap modulo m (if we split by
residue we obtain geometric decay).

Before stating our result we first fix some notation. For the legal m-gonal
decomposition

z = a`k + a`k−1 + · · ·+ a`1 with `1 < `2 < · · ·< `k (1-9)

and z ∈ [0, amn+1), we define the multiset of gaps as

Gapsn(z) := {`2−`1, `3−`2, . . . , `k−`k−1}. (1-10)

Observe that we do not consider `1−0 as a gap. However, doing so would not affect
the limiting behavior. For example, notice z = a15+ a12+ a6+ a3+ a0 contributes
three gaps of length 3, and one gap of length 6.

Considering all the gaps between summands in legal m-gonal decompositions
of all z ∈ [0, amn+1), we let Pn(g) be the fraction of all these gaps that are of
length g. That is, Pn(g) is the probability of a gap of length g among legal m-gonal
decompositions of z ∈ [0, amn+1).

Theorem 1.7 (average gap measure). Let g=mα+β, where α ≥ 0 and 0≤ β <m.
For Pn(g) as defined above, the limit P(g) := limn→∞ Pn(g) exists, and

P(g)=


β

m(m+1) if α = 0,
m+1−β
(m+1)α+1 if α > 0.

(1-11)

The proof for Theorem 1.7 is given in Section 4.
Via an application of [Dorward et al. 2015, Theorem 1.1] we extract a result on

individual gaps for the m-gonal case. In order to state the theorem, we need the

4The proofs involve technical arguments concerning roots of polynomials associated to the
recurrence; in many cases one needs to assume all the recurrence coefficients are positive.
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following definitions, as were presented in the above reference, but specialized to the
m-gonal case. Let {an} denote the m-gonal sequence with its unique decomposition
as given in Definition 1.1. Let In := [0, amn+1) for all n > 0 and let δ(x−a) denote
the Dirac delta functional, assigning a mass of 1 to x = a and 0 otherwise.

• Spacing gap measure: We define the spacing gap measure of a z ∈ In with k(z)
summands as

νz,n(x) :=
1

k(z)− 1

k(z)∑
j=2

δ(x − (` j − ` j−1)). (1-12)

• Average spacing gap measure: Note that the total number of gaps for all z ∈ In is

Ngaps(n) :=
amn+1−1∑

z=a0

(k(z)− 1). (1-13)

The average spacing gap measure for all z ∈ In is

νn(x) :=
1

Ngaps(n)

amn+1−1∑
z=a0

k(z)∑
j=2

δ(x − (` j − ` j−1))

=
1

Ngaps(n)

amn+1−1∑
z=a0

(k(z)− 1)νz,n(x). (1-14)

Letting Pn(g) denote the probability of a gap of length g among all gaps from the
decompositions of all z ∈ In , we have

νn(x)=
mn∑
g=0

Pn(g)δ(x − g). (1-15)

• Limiting average spacing gap measure, limiting gap probabilities: If the limits
exist, we let

ν(x)= lim
n→∞

νn(x), P(k)= lim
n→∞

Pn(k). (1-16)

• Indicator function for two gaps: For g1, g2 ≥ 0,

X j1, j1+g1, j2, j2+g2(n):=#
{
z∈ In : a j1,a j1+g1,a j2,a j2+g2 in z’s decomposition,

but not a j1+q ,a j2+p for 0< q < g1, 0< p< g2
}
. (1-17)

• Specific gap length probability: Recall that Pn(g) is the probability

Pn(g) :=
1

Ngaps(n)

mn+1−g∑
i=1

X i,i+g(n). (1-18)

Now can now state the result of the individual gap measure for the m-gonal case.
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Theorem 1.8 (individual gap measure). For z ∈ In , the individual gap measures
νz,n(x) converge almost surely in distribution to the limiting gap measure ν(x).

We give a proof of Theorem 1.8 in Section 5.

Longest gap. Another interesting problem is to determine the distribution of the
longest gap between summands as n →∞. The structure of the legal m-gonal
decompositions allows us to easily prove the following.

Theorem 1.9 (distribution of the longest gap). Consider the m-gonal sequence {an}.
Then as n→∞ the mean of the longest gap between summands in legal m-gonal
decompositions of integers in [an, an+1) is m log2(n/2m)+Om(1), and the variance
is Om(1).

The proof of Theorem 1.9 is given in Section 6 and bypasses many of the
technical arguments used in [Bower et al. 2015]. There the authors had to deduce
properties of somewhat general associated polynomials; the nature of the legal
m-gonal decompositions here allows us to immediately convert this problem to a
simple generalization of the longest run of heads problem.

2. Recurrence relations and generating functions

Let m ≥ 1. We can use the division algorithm to observe that the integer amk+r

is the r-th integer in the bin bk+1 for mk + r ≥ 1. Hence 1 ≤ r ≤ m denotes the
location of the integer within its bin. We let the first bin b0 contain the element
a0 = 1. Then for any k ≥ 0, we let bk+1 denote the set of elements of the (k+1)-th
bin. Namely

a0︸︷︷︸
b0

, a1, a2, . . . , am︸ ︷︷ ︸
b1

, am+1, am+2, . . . , a2m︸ ︷︷ ︸
b2

, . . . , amk+1, amk+2, . . . , am(k+1)︸ ︷︷ ︸
bk+1

, . . . .

(2-1)

We can now begin our work in describing the terms of this sequence.
The following result, which follows immediately from the definition, is used in

many of the proofs in this section. We record it here for easy reference.

Definition 2.1. Let �n denote the largest integer with summands from each bin
b0, b1, b2, . . . , bn . Then

�n =

n∑
i=0

ami . (2-2)

The first result that makes use of Definition 2.1 is given below.

Lemma 2.2. Let m ≥ 1 and k ≥ 1. If amk+1 is the first entry in bin bk+1, then
amk+1 = amk + am(k−1)+1.
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Proof. We note that since amk+1 and am(k−1)+1 are the first numbers in the bins
bk+1 and bk , respectively, by (2-2) we have

amk+1 = 1+�k = 1+
k∑

i=0

ami , (2-3)

am(k−1)+1 = 1+�k−1 = 1+
k−1∑
i=0

ami . (2-4)

Then (2-3) and (2-4) yield

amk+1 = 1+�k = 1+amk+�k−1 = amk+ (1+�k−1)= amk+am(k−1)+1, (2-5)

as claimed. �

We now prove a more general result.

Lemma 2.3. If k ≥ 0 and 1≤ r ≤ m, then amk+r = ramk+1.

Proof. First consider the bin b1. As b0 = [a0] = 1, by construction of the m-gonal
sequence it is straightforward to determine that b1 = [2, 4, . . . , 2m] and ar = ra1

for all 1≤ r ≤ m.
We proceed for bins bk with k ≥ 1 by induction on r , where 1 ≤ r ≤ m. The

base case r = 1 clearly holds.
Let 1≤ x ≤ m− 1 and assume that for any 1≤ r ≤ x , we have amk+r = ramk+1.

We want to show that amk+x+1 = (x + 1)amk+1. Recall that amk+x+1 is the entry
in bin bk+1 after amk+x and by definition amk+x+1 is one more than the largest
integer we can create using the elements of bins b0, b1, . . . , bk along with the
element amk+x . Using (2-2), we have

amk+x+1 = 1+ amk+x +�k = 1+ amk+x +

k∑
i=0

ami . (2-6)

Since 1+�k = amk+1 and by the use of the induction hypothesis, (2-6) yields

amk+x+1 = amk+x + amk+1 = xamk+1+ amk+1 = (x + 1)amk+1 (2-7)

as desired. �

We now provide a closed formula for the terms of the m-gonal sequence.

Proposition 2.4. Let m ≥ 2, k ≥ 0, and 1≤ r ≤m. Then amk+r = 2r(m+ 1)k. For
m = 1, we have ai = 2i.

Proof. For the case where m = 1, each of our bins have size 1 and a legal decompo-
sition has distinct summands. Thus the rule for legal decomposition is precisely a
description of writing the positive integers in binary.
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We will proceed by induction on k, the subscript on the bin, and r , the location of
amk+r within the bin considered. The base case k = 0 and r = 1 gives the expected
result, am·0+1 = 2(1)(m+1)0 = 2. We now assume that for some k ≥ 0 and some r ,
1≤ r ≤ m, we have

amk+r = 2r(m+ 1)k. (2-8)

We need to show that the following two equations hold:

amk+r+1 = 2(r + 1)(m+ 1)k, (2-9)

am(k+1)+r = 2r(m+ 1)k+1. (2-10)

Suppose 1≤ r ≤m−1. To show (2-9) holds it suffices to observe that by Lemma 2.3
and our induction hypothesis we have

amk+r+1 = (r + 1)amk+1 = (r + 1) · 2(1)(m+ 1)k = 2(r + 1)(m+ 1)k. (2-11)

When r = m, we use Lemma 2.2 and our induction hypothesis to quickly deduce

amk+m+1 = 2(m+ 1)k+1. (2-12)

By iterating (2-11) until r =m− 1, we find that (2-12) holds. Then (2-10) holds
by Lemma 2.3. �

The final result gives the recurrence relation stated in Theorem 1.4.

Corollary 2.5. If n > m, then an = (m+ 1)an−m .

Proof. Let n > m and write n = mk + r , where k ≥ 1 and 1 ≤ r ≤ m. By
Proposition 2.4, an = amk+r = 2r(m+ 1)k and an−m = am(k−1)+r = 2r(m+ 1)k−1.
So it directly follows that an = (m+ 1)an−m . �

Counting integers with exactly k summands. Koloğlu, Kopp, Miller and Wang
[Koloğlu et al. 2011] introduced a very useful combinatorial perspective to attack
Zeckendorf decomposition problems by partitioning the integers z ∈ [Fn, Fn+1)

into sets based on the number of summands in their Zeckendorf decompositions.
We use a similar technique to prove that the distribution of the average number of
summands in the m-gonal decomposition displays Gaussian behavior.

Let pn,k denote the number of integers in In := [0, amn+1) whose m-gonal
decomposition contains exactly k summands, where k ≥ 0. We begin our analysis
with the following result.

Proposition 2.6. If n, k ≥ 0, then

pn,k =


1 if k = 0,
mk
(n

k

)
+mk−1

( n
k−1

)
if 1≤ k ≤ n+ 1,

0 if k > n+ 1.
(2-13)
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Proof. Let n, k ≥ 0. Observe that the unique integer in the interval In = [0, amn+1)

which has zero summands is zero itself. Thus pn,0 = 1. Now if k is larger than the
number of available bins, it would be impossible to have k summands, as one can
draw no more than one summand per bin. Therefore pn,k = 0 whenever k > n+ 1.

We now show that for 1≤ k ≤ n+1, we have pn,k =mk
(n

k

)
+mk−1

( n
k−1

)
. There

are two cases to consider:

• Case 1: One of the k summands is chosen from b0.

• Case 2: None of the k summands are chosen from b0.

Case 1: Since one of the k summands is coming from b0 there are k− 1 available
summands to take from the bins b1, . . . , bn . The number of ways to select k−1 bins
from n bins is

( n
k−1

)
. As each of the bins b1, . . . , bn has exactly m elements and

|b0| = 1, once the k− 1 bins are selected, the number of ways to select an element
from these bins is mk−1. Thus the number of z ∈ In which have exactly k summands
with one summand coming from bin b0 is mk−1

( n
k−1

)
.

Case 2: We choose k summands from any bin but b0. Using a similar argument to
that in Case 1, we can see that the total number of ways to select these k summands
is mk

(n
k

)
.

As the two cases are disjoint, we have shown that the total number of integers in
the interval In with exactly k summands is

pn,k = mk
(n

k

)
+mk−1

( n
k−1

)
(2-14)

as desired. �

We also provide a recursive formula for the value of pn,k , as it is used in the
proof of Proposition 2.8.

Proposition 2.7. If 0< k < n+ 1, then pn,k = mpn−1,k−1+ pn−1,k .

We omit the proof of Proposition 2.7, as it is a straightforward application of the
combinatorial identity

(n
k

)
=
(n−1

k

)
+
(n−1

k−1

)
. With the recursive formula at hand, we

now create a generating function for pn,k .

Proposition 2.8. Let

F(x, y) :=
∑

n,k≥0

pn,k xn yk (2-15)

be the generating function of the pn,k arising from m-gonal decompositions. Then

F(x, y)=
1+ y

1− (my+ 1)x
. (2-16)
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Proof. Noting that pn,k = 0 if either n < 0 or k < 0, using explicit values of pn,k

and the recurrence relation from Proposition 2.7, and after some straightforward
algebra, we obtain

F(x, y)= mxyF(x, y)+ x F(x, y)+ 1+ y. (2-17)

From this, (2-16) follows. �

3. Gaussian behavior

To motivate this section’s main result, we point the reader to the following experimen-
tal observations. Taking samples of 200,000 integers from the intervals [0, 2 · 4600),
[0, 2 · 5600), [0, 2 · 6600) and [0, 2 · 7600), in Figure 3 we provide a histogram for
the distribution of the number of summands in the m-gonal decomposition of these
integers, when m = 3, 4, 5 and 6, respectively. Moreover, Figure 3 provides the
histograms and Gaussian curves (associated to the respective value of m and n; the
interval is [0, amn+1) so n = 600 in all experiments). In Table 1 we give the values
of the predicted means and variances (as computed using Proposition 3.2), as well
as the sample means and variances, for each of the cases considered.

From these observations it is expected that, for any m ≥ 1, the distribution of the
number of summands in the m-gonal decompositions of integers in the interval In

will display Gaussian behavior. This is in fact the statement of Theorem 1.6. We
begin by proving a technical result and follow it with the formulas for the mean
and variance, which make use of some properties associated with the generating
function for the pn,k .

Proposition 3.1. If gn(y) denotes the coefficient of xn in F(x, y), then

gn(y)= (1+ y)(my+ 1)n. (3-1)

Proof. Using the fact that F(x, y)= (1+ y)/(1−mxy− x) we have by geometric
series that

F(x, y)=
∞∑

n=0

(1+ y)(my+ 1)nxn. (3-2)

Thus the coefficient of xn in F(x, y) is (1+ y)(my+ 1)n . �

We can now use gn(y) to find the mean and variance for the number of summands
for integers z ∈ In .

Proposition 3.2. Let Yn be the number of summands in the m-gonal decomposition
of a randomly chosen integer in the interval In , where each integer has an equal
probability of being chosen. Let µn and σ 2

n denote the mean and variance of Yn .
Then

µn =
nm

m+ 1
+

1
2
, σ 2

n =
nm

(m+ 1)2
+

1
4
. (3-3)
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Figure 3. Distributions for the number of summands in the
m-gonal decomposition for a random sample with n = 600.

Figure m Predicted mean Sample mean Predicted variance Sample variance

3(a) 3 450.50 450.49 112.75 112.34
3(b) 4 480.50 480.52 96.25 95.73
3(c) 5 500.50 450.49 83.58 83.38
3(d) 6 514.79 514.76 73.72 73.64

Table 1. Predicted means and variances versus sample means and
variances for simulation from Figure 3.

Proof. By Propositions 4.7 and 4.8 in [Demontigny et al. 2014a] the mean and
variance of Yn are

µn =

n∑
i=0

i P(Yn = i)=
n∑

i=0

i
pn,i∑n

k=0 pn,k
=

g′n(1)
gn(1)

, (3-4)

σ 2
n =

n∑
i=0

(i −µn)
2 P(Yn = i)=

n∑
i=0

i2 pn,i∑n
k=0 pn,k

−µ2
n =

d
dy [yg′n(y)]|y=1

gn(1)
−µ2

n.

(3-5)

Our result follows from these formulas and the fact that gn(y)= (1+y)(my+1)n. �
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Normalize Yn to Y ′n = (Yn−µn)/σn , where µn and σn are the mean and variance
of Yn respectively, as given in Proposition 3.2. We are now ready to prove that Y ′n
converges in distribution to the standard normal distribution as n→∞.

Proof of Theorem 1.6. For convenience we set r := t/σn . Since

σn =

√
nm

(m+ 1)2
+

1
4
,

we know that r→ 0 as n→∞ for any fixed value of t . Hence we will expand er

using its power series expansion. We start with

MY ′n (t)=
gn(et/σn )e−tµn/σn

gn(1)
. (3-6)

Taking the logarithm of (3-6), we have

log(MY ′n (t))= log[gn(er )] − log[gn(1)] −
tµn

σn
. (3-7)

We proceed using Taylor expansions of the exponential and logarithmic functions
to expand the following:

log[gn(er )] = log(1+er )+n log(mer
+1)

= log
(
1+
(
1+r+ 1

2r2))
+n log

(
m
(
1+r+ 1

2r2)
+1
)
+O(r3)

= log(2)+ 1
2

(
r+ 1

2r2)
−

1
8

(
r+ 1

2r2)2

+n
(

log(m+1)+

(
mr+ 1

2 mr2
)

m+1
−

(
mr+ 1

2 mr2
)2

2(m+1)2

)
+O(r3)

= log(2(m+1)n)+ 1
2r+ 1

8r2
+

nmr
m+1

+
nmr2

2(m+1)2
+O(r3). (3-8)

From Proposition 3.1 we have gn(1)= 2(m+ 1)n , hence

log[2(m+ 1)n] = log[gn(1)]. (3-9)

Substituting (3-8) and (3-9) and the values

µn =
nm

m+ 1
+

1
2

and σn =

√
nm

(m+ 1)2
+

1
4

into (3-7) yields

log(MY ′n (t))=
1
2r + 1

8r2
+

nmr
m+ 1

+
nmr2

2(m+ 1)2
−

t
( nm

m+1 +
1
2

)√
nm

(m+1)2 +
1
4

+ O(r3). (3-10)
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After some straightforward algebra we arrive at

log(MY ′n (t))=
1
2 t2
+ o(1); (3-11)

the moment-generating proof of the central limit theorem now yields that the
distribution converges to that of the standard normal distribution as n→∞. �

4. Average gap measure

We now turn our attention to our final result in which we determine the behavior
of gaps between summands. We begin with some preliminary notation in order to
make our approach precise. For a positive integer z ∈ In = [0, amn+1) with m-gonal
decomposition

z = a`t + a`t−1 + · · ·+ a`1, (4-1)

where `1 < `2 < · · ·< `t , we define the multiset of gaps of z as

Gapsn(z) := {`2− `1, `3− `2, . . . , `t − `t−1}. (4-2)

Our result will average over all z ∈ [0, amn+1) since we are interested in the
average gap measure arising from m-gonal decompositions.

We follow the methods of [Beckwith et al. 2013; Bower et al. 2015]. In order to
have a gap of length exactly g in the decomposition of z, there must be some index i
such that ai and ai+g occur in z’s decomposition, but a j does not for any j between i
and i + g. Thus for each i we count how many z have ai and ai+g but not a j for
i < j < i + g; summing this count over i gives the number of occurrences of a gap
of length g among all the decompositions of z in our interval of interest. We want
to compute the fraction of the gaps (of length g) arising from the decompositions
of all z ∈ In . This probability is given by

Pn(g) :=
1

(µn − 1)amn+1

amn+1−1∑
z=0

mn+1−g∑
i=0

X i,g(z), (4-3)

where X i,g(z) is the indicator function.5

We are now ready to prove the result on the exponential decay in the distribution
of gaps. The arguments in the proof of our main result (Theorem 1.7) are quite
straightforward, but a bit tedious. To simplify our arguments, we write the gap
length g as mα+β, where α ≥ 0 and 0≤ β < m.

5For 1≤ i, g≤mn Xi,g(z) denotes whether the decomposition of z has a gap of length g beginning
at index i . That is, for z = a`t + a`t−1 + · · ·+ a`1 ,

Xi,g(z)=
{

1 if ∃ j, 1≤ j ≤ t with i = ` j and i + g = ` j+1,

0 otherwise.
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Proof of Theorem 1.7. Let g = mα+β, where α ≥ 0 and 0≤ β < m. We proceed
by considering the following two cases:

• Case 1: α = 0.

• Case 2: α > 0.

Case 1: Let α = 0. Hence g = β, where 0< β <m, and so our gap is less than the
size of each bin bi for i > 0 (α= 0 and β = 0 would give us a gap of length 0 which
is not m-gonal legal). We first consider gaps of length g=β beginning at index 0. If
ai = a0 then the only way to have a gap of length g= β is if ai+1= aβ . Now we are
counting integers with m-gonal decompositions of the form a`t +· · ·+a`3+aβ+a0.
The number of z ∈ In with summands a`3, . . . , a`t coming from bins b2, b3, . . . , bn

is (m+ 1)n−1.
If ai = amk+r , k ≥ 0 and 1≤ r ≤ m, then ai+g = amk+r+β . Notice that the case

r + β ≤ m cannot occur as this would force {ai , ai+g} ⊂ bk+1, which leads to a
decomposition that is not m-gonal legal, as only one summand can be taken per
bin. Now if r +β > m, then ai+g ∈ bk+2.

Notice that in this case ai = amk+r is one of the largest β entries in bin bk+1 and
thus there are β many choices for r , namely r ∈ {m−β+1,m−β+2, . . . ,m}.

Now we need to count the number of z ∈ In \ {0} = [1, amn+1) which have
summands ai ∈ bk+1 and ai+g ∈ bk+2. We must have 0≤ k ≤ n− 2.

As we have already used bins bk+1 and bk+2, it follows from a straightforward
combinatorial counting argument that the total number of integers z ∈ In that can be
created with summands ai ∈ bk+1 and ai+g ∈ bk+2 (with no summands in between)
is given by

2β(m+ 1)n−2, (4-4)

where the factor of β comes from the β possible choices of ai within the bin bk+1.
As we can vary k from 0 to n− 2, we find that the total number of integers z ∈ In

which contribute a gap between ai (i 6= 0) and ai+g (assuming that r +β > m) is
given by

2(n− 1)β(m+ 1)n−2. (4-5)

Observe that (4-5) does not account for the case when i = 0, which adds an extra
factor of (m+ 1)n−1. Therefore

amn+1−1∑
z=0

mn+1−g∑
i=0

X i,g(z)= 2β(n− 1)(m+ 1)n−2
+ (m+ 1)n−1. (4-6)

Using Proposition 3.2 and Proposition 2.4 we have

(µn−1)amn+1=

(
mn

m+ 1
−

1
2

)
(2(m+1)n)= (m+1)n−1(2mn− (m+1)). (4-7)
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By (4-6) and (4-7), for g = β, with 0≤ β < m, we have

Pn(g)=
2β(n− 1)

(m+ 1)(2mn−m− 1)
+

1
2mn−m− 1

. (4-8)

Now recall that P(g)= limn→∞ Pn(g), so by letting n→∞ in (4-8) we have

P(g)=
β

m(m+ 1)
(4-9)

whenever g = β and 0≤ β < m. This completes Case 1.

Case 2: Let g = mα + β, where α ≥ 1 and 0 ≤ β < m. First consider when
ai = a0. If β = 0, then ai+g = amα ∈ bα. Otherwise, when 0 < β < m, we have
ai+g=amα+β ∈bα+1. In the case of the former, the number of z∈ In with summands
coming from bins bα+1, bα+2, . . . , bn is (m+ 1)n−α. In the latter case, the number
of z ∈ In with summands coming from bins bα+2, bα+3, . . . , bn is (m+ 1)n−(α+1).

Now if ai = amk+r , with k ≥ 0 and 1≤ r ≤ m, then ai+g = am(k+α)+r+β . Hence
ai ∈ bk+1 and ai+g ∈ bk+α+1 whenever 1≤ r +β ≤m, or ai+g ∈ bk+α+2 whenever
m < r +β < 2m. Hence we consider the following subcases:
• Subcase 1: Let 1≤ r +β ≤ m.

• Subcase 2: Let m < r +β < 2m.

Subcase 1: Let 1 ≤ r + β ≤ m. In this case ai ∈ bk+1 and ai+g ∈ bk+α+1. Notice
that in this case ai must be one of the smallest m−β entries in bin bk+1. Namely
r = 1, 2, . . . ,m−β.

Now we need to count the number of z ∈ In which have summands ai ∈ bk+1 and
ai+g ∈ bk+α+1 (and no summands in between). For the decomposition to only have
summands from bins b0, . . . ,bk+1,bk+α+1, . . . ,bn , we must have 0≤ k ≤ n−(α+1).

In order to have a gap created by ai ∈ bk+1 and ai+g ∈ bk+α+1, there must be no
summands taken from bj , where k+1< j < k+α+1. Again using a straightforward
combinatorial counting argument, the total number of integers z ∈ In which have
summands ai ∈ bk+1 and ai+g ∈ bk+α+1 (with no summands in between) is given by

2(m−β)(m+ 1)n−α−1, (4-10)

where the factor of m−β comes from the m−β possible choices of ai within the
bin bk+1.

As we can vary k from 0 to n− (α+ 1) we find that the total number of integers
z ∈ In which contribute a gap between ai (i 6= 0) and ai+g in this case is

2(n−α)(m−β)(m+ 1)n−α−1. (4-11)

Subcase 2: Let m < r +β < 2m. In this case ai ∈ bk+1 and ai+g ∈ bk+α+2. Notice
that in this case ai can be any of the largest β entries in bin bk+1 so ai ∈ bk+1 and
ai+g ∈ bk+α+2. Namely r = m+1−β, m+2−β, . . . , m.
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Using the same reasoning as in Subcase 1, we determine that the total number
of integers meeting the conditions is

2β(n−α− 1)(m+ 1)n−α−2. (4-12)

This completes Subcase 2.
We still need to account for the number of integers z ∈ In which contribute a

gap of length g =mα+β (α ≥ 1 and 0≤ β <m) beginning at index a0. Recall we
previously computed this quantity to be (m+1)n−α−1 when β > 0 and the quantity
is (m+ 1)n−α when β = 0.

Therefore we need to sum the values of (4-11) and (4-12) along with (m+1)n−α−1

when β > 0 to get

amn+1−1∑
z=0

mn+1−g∑
i=0

X i,g(z)= 2(n−α)(m−β)(m+1)n−α−1

+2β(n−α−1)(m+1)n−α−2
+(m+1)n−α−1. (4-13)

By (4-13) and (4-7), for g = mα+β, with α ≥ 1 and 0< β < m, we have

Pn(g)=
2(n−α)(m−β)

(m+ 1)α(2mn−m− 1)
+

2β(n−α− 1)
(m+ 1)α+1(2mn−m− 1)

+
1

(m+ 1)α(2mn−m− 1)
. (4-14)

Now recall that P(g)= limn→∞ Pn(g), so by letting n→∞ in (4-14) we have

P(g)=
2(m−β)

(m+ 1)α(2m)
+

2β
(m+ 1)α+1(2m)

=
m+ 1−β
(m+ 1)α+1 (4-15)

whenever g = mα+β, α ≥ 1 and 0< β < m.
Now for β = 0 we do not need to consider when α = 0, as this would give us a

gap g = 0. Also, as 1≤ r ≤m, we only meet the conditions of Subcase 1. Thus for
α > 0 and β = 0 we need to sum the values of (4-11) along with (m+ 1)n−α to get

amn+1−1∑
z=0

mn+1−g∑
i=0

X i,g(z)= 2(n−α)m(m+ 1)n−α−1
+ (m+ 1)n−α. (4-16)

By (4-16) and (4-7), for g = mα, with α ≥ 1, we have

Pn(g)=
2(n−α)m

(m+ 1)α(2mn−m− 1)
+

1
(m+ 1)α−1(2mn−m− 1)

. (4-17)

Now recall that P(g)= limn→∞ Pn(g), so by letting n→∞ in (4-17) we have

P(g)=
1

(m+ 1)α
=

m+ 1
(m+ 1)α+1 (4-18)

whenever g = mα+β, α ≥ 1 and β = 0. �
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5. Individual gap measure

In this section, we prove Theorem 1.8 by checking that the conditions given in
[Dorward et al. 2015, Theorem 1.1] are satisfied in the m-gonal case. We restate
this theorem below for ease of reference.

Theorem 5.1 [Dorward et al. 2015]. For z ∈ In , the individual gap measures
νz,n(x) converge almost surely in distribution to the average gap measure ν(x) if
the following hold:

(1) The number of summands for decompositions of z ∈ In converges to a Gaussian
with mean µn = cmean n+O(1) and variance σ 2

n = cvar n+O(1) for constants
cmean, cvar > 0, and k(z)� n for all z ∈ In .

(2) We have the following, with limn→∞
∑

g1,g2
error(n, g1, g2)= 0:

2
|In|µ2

n

∑
j1< j2

X j1, j1+g1, j2, j2+g2(n)= P(g1)P(g2)+ error(n, g1, g2). (5-1)

(3) The limits in (1-16) exist.

The above theorem is more general than we need, and in our particular case
our interval of interest is In = [0, amn+1). Now observe that Proposition 3.2 and
Theorem 1.6 ensure that the first criterion is met, and k(z) is clearly at most mn+1
and thus k(z)� n. In addition, the exponential decay seen in Theorem 1.7 shows
that condition (3) is met. It remains to show that condition (2) of Theorem 5.1 holds.

Proposition 5.2. We have

2
|In|µ2

n

∑
j1< j2

X j1, j1+g1, j2, j2+g2(n)= P(g1)P(g2)+ error(n, g1, g2) (5-2)

and the sum of the error over all pairs (g1, g2) goes to zero as n→∞.

Proof. Let

g1 = α1m+β1, g2 = α2m+β2, j1 = k1m+ r1, j2 = k2m+ r2,

where 0≤β1, β2<m, 1≤ k1, k2≤m and k1< k2. Thus a j1 and a j2 are in bins bk1+1

and bk2+1 respectively. There are a number of cases to consider when determining∑
j1< j2 X j1, j1+g1, j2, j2+g2(n), depending on whether or not α1 = 0 or α2 = 0. We

include only the case when both α1, α2 ≥ 1, as the other cases are similar.
There are several cases to consider. We will first consider the four cases which

contribute to the main term and then bound the remaining cases. In all of the cases
contributing to the main term we have j1+ g1 6= j2 and j1 6= 0 and thus we will
suppose these conditions hold below.
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Case 1: Let 1 ≤ r1 + β1 ≤ m and 1 ≤ r2 + β2 ≤ m. First we determine the
possible values of k1 and k2. In this case, the gap from g1 spans α1 + 1 bins
and the gap from g2 spans α2 + 1 bins. Thus 0 ≤ k1 ≤ n − α1 − α2 − 3 and
k1+α1+2≤ k2≤ n−α2−1 and the number of choices for k1 and k2 is 1

2 n2
+O(n).

Because of the restrictions of 1 ≤ r1+ β1 ≤ m and 1 ≤ r2+ β2 ≤ m, within each
bin there are m−β1 choices for where to place a j1 and m−β2 choices for where
to place a j2 . Lastly, we determine the number of ways to choose the remaining
elements for the decomposition. Because we are spanning α1+ 1 bins for the gap
from g1 and α2+ 1 bins for the gap from g2, using a straightforward combinatorial
counting argument, the number of integers that can be made using what remains is
2(m+1)n−α1−α2−2. Thus the total number of integers that can be made in this case is

2(m−β1)(m−β2)(m+ 1)n−α1−α2−2(n2/2+ O(n))

= (m−β1)(m−β2)(m+ 1)n−α1−α2−2(n2
+ O(n)). (5-3)

Through similar arguments we can obtain the remaining three cases that contribute
to the main term.

Case 2: Let 1≤ r1+β1 ≤ m and m < r2+β2 < 2m. Then the number of integers
that can be made in this case is

(m−β1)β2(m+ 1)n−α1−α2−3(n2
+ O(n)). (5-4)

Case 3: Let m < r1+β1 < 2m and 1≤ r2+β2 ≤ m. Then the number of integers
that can be made in this case is

(m−β2)β1(m+ 1)n−α1−α2−3(n2
+ O(n)). (5-5)

Case 4: Let m < r1+β1 < 2m and m < r2+β2 < 2m. Then the number of integers
that can be made in this case is

β1β2(m+ 1)n−α1−α2−4(n2
+ O(n)). (5-6)

The remaining cases occur when j1+g1= j2 or j1=0. In these cases, the number
of choices for k1 and k2 is on the order of n instead of n2 and thus the number of
integers that can be made in these cases is O(n(m + 1)n−α1−α2). Combining all
cases, we have∑

j1< j2

X j1, j1+g1, j2, j2+g2(n)= n2(m−β1)(m−β2)(m+1)n−α1−α2−2

+n2(m−β1)β2(m+1)n−α1−α2−3

+n2(m−β2)β1(m+1)n−α1−α2−3

+n2β1β2(m+1)n−α1−α2−4

+O(n(m+1)n−α1−α2). (5-7)
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Next, recall that by Proposition 3.2 we have µn = nm/(m + 1)+ 1
2 . In addition,

|In| = amn+1 = 2(m+ 1)n. Thus in our case we have

2
|In|µ2

n

∑
j1< j2

X j1, j1+g1, j2, j2+g2(n)

=
1

(m+ 1)n
( nm

m+1 +
1
2

)2

∑
j1< j2

X j1, j1+g1, j2, j2+g2(n)

=

(
1

(m+ 1)n
( nm

m+1 +
1
2

)2

)(
n2(m−β1)(m−β2)(m+ 1)n−α1−α2−2

+ n2(m−β1)β2(m+ 1)n−α1−α2−3
+ n2(m−β2)β1(m+ 1)n−α1−α2−3

+ n2β1β2(m+ 1)n−α1−α2−4
+ O(n(m+ 1)n−α1−α2)

)
=

(
1

(m+ 1)α1+α2+2m2n2+ O(n)

)(
n2(m−β1)(m−β2)(m+ 1)2

+ n2(m−β1)β2(m+ 1)+ n2(m−β2)β1(m+ 1)+ n2β1β2

)
+ O

(
1

n(m+ 1)α1+α2

)
. (5-8)

Taking the limit as n→∞ and rearranging we obtain

m2(m+ 1−β1)(m+ 1−β2)

m2(m+ 1)α1+α2+2 = P(g1)P(g2). (5-9)

The fact that the error term decays exponentially in g1 and g2 ensures that the error
summed over all g1 and g2 goes to zero. �

6. Longest gap

Using the techniques introduced by Bower, Insoft, Li, Miller and Tosteson [Bower
et al. 2015], we can determine the mean and variance of the distribution of the
longest gap between summands in the decomposition of integers in [an, an+1) as
n →∞. There are no obstructions to using those methods; however, there are
some bookkeeping issues due to the nature of our legal m-gonal decomposition.
Specifically, we have to worry a little about the residue of the longest gap modulo m.
This is a minor issue, as with probability 1 the longest gap is much larger than m
and thus we will not have two items in the same bin. Rather than going through
the technical argument, we instead give a very short proof that captures the correct
main term of the mean of the longest gap, which grows linearly with log n; our
error is at the level of the constant term for the mean. We are able to handle the
variance similarly, and compute that up to an error it is Om(1).
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Proof of Theorem 1.9. The proof follows immediately from results on the longest
run of heads in tosses of a fair coin; we sketch the details below. If a coin has
probability p of heads and q = 1− p of tails, the expected longest run of heads
and its variance in n tosses is

µn = log1/p(nq)−
γ

log p
−

1
2+r1(n)+ε1(n), σ 2

n =
π2

6 log2 p
+

1
12+r2(n)+ε2(n);

(6-1)
here γ is Euler’s constant, the ri (n) are at most .000016, and the εi (n) tend to zero
as n→∞. Note the variance is bounded independently of n (by essentially 3.5);
see [Schilling 1990] for a proof.

Note that for legal m-gonal decompositions we either have an element in a bin, or
we do not. As all decompositions are equally likely, we see that these expansions are
equivalent to flipping a coin with probability 1

2 for each bin, and choosing exactly
one of the m possible summands in that bin if we have a tail. As the probability that
the longest gap is at the very beginning or very end of a sequence of coin tosses is
negligible, we can ignore the fact that the first bin has size 1 and that we may only
use part of the last bin if n+ 1 is not a multiple of m. Thus gaps between bins used
in a decomposition correspond to strings of consecutive heads.

As our integers lie in [an, an+1), we have bn/mc + O(1) = n/m + O(1) bins
(again, we ignore the presence or absence of the initial bin of length 1 or a partial
bin at the end). We now invoke the results on the length of the longest run for tosses
of a fair coin. For us, this translates not to a result on the longest gap between
summands, but to a result on the longest number of bins between summands. It is
trivial to pass from this to our desired result, as all we must do is multiply by m (the
error will be at most O(m) coming from the location of where the summands are
in the two bins). This completes the proof of our claim on the mean; the variance
follows similarly. �

Appendix: Proof of Theorem 1.5

Our proof is constructive. We build our sequence by only adjoining terms that
ensure that we can uniquely decompose a number while never using more than one
summand from the same bin. For a fixed m ≥ 1 the sequence begins

1︸︷︷︸
b0

,2,4,6, . . . ,2m︸ ︷︷ ︸
b1

, 2(m+ 1),4(m+ 1),6(m+ 1), . . . ,2m(m+ 1)︸ ︷︷ ︸
b2

, . . . . (A-1)

Note we would not adjoin 7 because then there would be two legal m-gonal decom-
positions for 7, one using 7= 7 and the other being 7= 6+ 1. The next number
in the sequence must be the smallest integer which cannot be legally decomposed
using the current terms of the sequence.
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We can now proceed with proof by induction. The integers 1, 2, 3, . . . , 2m have
unique decompositions as they are either in the sequence or are the sum of an even
number from bin b1 plus the 1 from bin b0. The sequence continues

. . . , am(n−2)+1,am(n−2)+2, . . . ,am(n−1)︸ ︷︷ ︸
bn−1

, am(n−1)+1, . . . ,amn︸ ︷︷ ︸
bn

, amn+1, . . . ,am(n+1)︸ ︷︷ ︸
bn+1

, . . . .

(A-2)
By induction we assume that there exists a unique decomposition for all integers
z≤amn+�n−1, where�n−1 is the maximum integer that can be legally decomposed
using terms in the set {a0, a1, a2, a3, . . . , am(n−1)}.

By construction we have

�n = amn +�n−1 = amn + am(n−1)+1− 1.

Let x be the maximum integer that can be legally decomposed using terms in
the set {a1, a2, a3, . . . , am(n−1)}. Note x = am(n−1)+1−1, as this is why we include
am(n−1)+1 in the sequence.

Claim. We have amn+1 =�n + 1 and this decomposition is unique.

By induction we know that �n is the largest value that we can legally decompose
using only terms in {a0, a1, a2, . . . , amn}. Hence we choose �n + 1 as amn+1 and
�n + 1 has a unique decomposition.

Claim. Every N ∈ [�n+1, �n+1+x] = [amn+1, amn+1+x] has a unique decom-
position.

We can legally and uniquely decompose the integers 1, 2, 3, . . . , x using elements
in the set {a0, a1, a2, . . . , am(n−1)}. Adding amn+1 to the decomposition of any of
these integers would still yield a legal m-gonal decomposition since amn+1 is not
in any of the bins b0, b1, b2, . . . , bn−1. The uniqueness of these decompositions
follows from the fact that if amn+1 is not included as a summand, then the decom-
position does not yield a number big enough to exceed �n + 1.

Claim. We have amn+2 =�n + 1+ x + 1= amn+1+ x + 1 and this decomposition
is unique.

By construction the largest integer that can be legally decomposed using terms
{a0, a1, a2, . . . , amn+1} is �n + 1+ x .

Claim. Every N ∈ [amn+2, amn+2+ x] has a unique decomposition.

First note that the decomposition exists, as we can legally and uniquely construct
amn+2+ v, where 0≤ v ≤ x . For uniqueness, we note that if we do not use amn+2,
then the summation would be too small.

Claim. We know amn+2+ x is the largest integer that can be legally decomposed
using terms {a0, a1, a2, . . . , amn+2}.

This follows from construction. �
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