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The Loewner differential equation provides a way of encoding growing families
of sets into continuous real-valued functions. Most famously, Schramm–Loewner
evolution (SLE) consists of the growing random families of sets that are encoded
via the Loewner equation by a multiple of Brownian motion. The purpose of this
paper is to study the families of sets encoded by a multiple of the Weierstrass
function, which is a deterministic analog of Brownian motion. We prove that
there is a phase transition in this setting, just as there is in the SLE setting.
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1. Introduction and results

Charles Loewner introduced his namesake differential equation in 1923, and the
equation subsequently became an important and long-standing tool in complex
analysis. Many decades later Oded Schramm rediscovered the Loewner equation
as he was working on seemingly unrelated problems in probability and statistical
physics. In 2000, Schramm introduced a family of random curves, which he called
stochastic Loewner evolution, or SLE for short (and which have subsequently been
renamed Schramm–Loewner evolution in Schramm’s honor).

Roughly speaking, the Loewner equation provides a correspondence between
2-dimensional curves and continuous 1-dimensional functions (and a more careful
description will be given in the next section). Schramm discovered that the SLE
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Figure 1. The Weierstrass function W (t).

curves (the random 2-dimensional curves that he wanted to study) corresponded
via the Loewner equation to a multiple of a well-known and much-loved random
1-dimensional function: Brownian motion. Thus, properties of Brownian motion
could be leveraged to understand the SLE curves. Schramm’s revolutionary work
led not only to deep results in probability and theoretical physics, but it also inspired
a renewed study of the Loewner equation. There has been particular interest in
how geometric properties of the 2-dimensional curves may be encoded into the
corresponding 1-dimensional functions.

SLE is often written SLEκ to emphasize that it is an infinite family of random
curves depending on a parameter κ ≥ 0. In particular, under the Loewner corre-
spondence, SLEκ corresponds to the continuous function

√
κB(t), where B(t) is

Brownian motion. The SLEκ curves come in three flavors, depending on the value
of κ: when κ ∈ [0, 4], then SLEκ is a simple curve, when κ ∈ (4, 8), then SLEκ is
a curve that hits back on itself, and when κ ∈ [8,∞), then SLEκ is a space-filling
curve [Rohde and Schramm 2005]. Thus there are three geometric phases, with
sharp phase transitions at κ = 4 and κ = 8. See Figure 4, which illustrates the first
two phases.

In this work we look at a deterministic analog of Brownian motion, the Weierstrass
function, which, like Brownian motion, is continuous but nowhere-differentiable.
In particular, we work with

W (t)=
∞∑

n=0

2−n/2 cos(2nt),

which is graphed in Figure 1. In comparison with SLEκ , we seek to understand the
2-dimensional sets that correspond with a multiple of the Weierstrass function via
the Loewner equation. We call this family of sets “the deformations driven by the
Weierstrass function”, and our main theorem establishes the existence of at least
one phase transition, just as in the SLE setting. This transition from simple curve
to nonsimple curve is illustrated in Figure 2, where we show approximations to the
deformations driven by the Weierstrass function.
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Figure 2. Simulations of the hulls generated by cW (t) for c= 0.8
(top left), c = 1 (top middle), c = 1.2 (top right), c = 1.4 (bottom
left), c = 1.6 (bottom middle), and c = 1.8 (bottom right).

Theorem 1.1. The deformations driven by the Weierstrass function W (t) exhibit
a phase transition. In particular, when c is small enough, the hull generated by
cW (t) is a simple curve in H∪ {cW (0)}, and this is not the case when c is large
enough.

In order to prove Theorem 1.1, we will need the following result, which gives a
lower bound on the growth of the Weierstrass function near its local maxima.

Theorem 1.2. Let tm,k = mπ/2k for m, k ∈ N. If 0< |h| ≤ 2−(k+7), then

W (tm,k)−W (tm,k + h)≥ 0.2
√
|h|.

This result implies that W (t) has local maxima at the points 2−kmπ . These
times 2−kmπ , which will feature in our proof of Theorem 1.1, correspond to the
rightward-pointing “beaks” seen in the curves of Figure 2. One difference between
Brownian motion and the Weierstrass function is that Brownian motion behaves
similarly at its local maximums and local minimums, while the Weierstrass function
favors its local maximums (that is, there is greater increase as one moves towards
the local maximums than there is decrease moving towards the local minimums).
This is also visually discernible in Figure 2 in the fact that there are obvious “beaks”
to the right but not to the left.

Although we chose to focus on the Weierstrass function in this paper, we wish
to note that our approach applies more generally. In fact, any Lip

( 1
2

)
function that

has the behavior shown in Theorem 1.2 will exhibit a phase transition.
This paper is organized as follows. We discuss the Loewner equation in Section 2,

with a focus on the particular aspects of the Loewner theory that will be needed
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to prove Theorem 1.1. Section 3 regards the Weierstrass function and contains
the proof of Theorem 1.2. In Section 4 we bring the Weierstrass function and the
Loewner equation together to prove Theorem 1.1.

2. A look at the Loewner equation

In this section, we introduce the Loewner equation, consider some examples, and
discuss the features of the Loewner equation that will be relevant for our work. We
refer interested readers to the survey article [Gruzberg and Kadanoff 2004] and the
references therein for more information about the Loewner equation and SLE.

Background and examples. The Loewner equation gives a correspondence be-
tween continuous, real-valued functions and certain growing families of sets in
the complex plane. Given a function, we will describe how to obtain the family
of sets via the Loewner equation. To that end, let λ be a continuous, real-valued
function defined on [0, T ], and choose an initial point z0 ∈ H \ {λ(0)}, where
H = {x + iy : y > 0} denotes the upper half-plane. Then the chordal Loewner
differential equation is the initial value problem

d
dt

z(t)=
2

z(t)− λ(t)
, z(0)= z0. (2-1)

A unique solution z(t) exists on some time interval, by the existence and uniqueness
theorem for differential equations. In fact, the solution z(t) will continue to exist
unless the denominator in (2-1) is zero, which occurs if z(s) = λ(s) for some s.
When this happens, we say that z0 is captured by λ at time s. We define the hull at
time t , notated Kt , to be the collection of captured points:

Kt = {z0 ∈ H : z(s)= λ(s) for some s ≤ t}.

This family of hulls, {Kt }t∈[0,T ], is the increasing family of sets that correspond to
λ(t) via the Loewner equation. We call λ the driving function, and we say that Kt

is generated by λ.
We wish to take a moment to discuss the Loewner equation further in an informal

manner. To begin, think of watching the movement of two particles in the plane. One
particle moves only on R (and its position is given by λ(t)), and the other particle
(described by z(t)) moves in H but its movement is controlled by its relationship
to the first particle via (2-1). To put a little action into our story, we think of the
second particle as trying to escape from the first, while the first is trying to capture
the second. To justify this storyline, let’s suppose that z0 ∈ R, in which case both
particles are moving along R. Then (2-1) implies that the particle described by z(t)
is always moving away from the other particle (i.e., “trying to escape”). As we will
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Figure 3. The hulls K1 generated by c− c
√

1− t for c = 3 (left)
and c = 5 (right).

see later, if the particle described by λ(t) moves quickly enough, it can catch up to
the second particle and “capture” it (meaning that λ(s)= z(s) at some time s).

We will briefly discuss some examples (and we refer the reader to [Kager et al.
2004] for the detailed analysis of these examples).

Example 1. When λ(t)≡ 0, then Kt = {iy : 0≤ y ≤ 2
√

t }, a growing vertical line
segment. To see why this might be true, we decompose (2-1) with λ(t)≡ 0 into its
real and imaginary parts:

d
dt

Re(z(t))=
2 Re(z(t))
|z(t)|2

and
d
dt

Im(z(t))=−
2 Im(z(t))
|z(t)|2

.

This implies that Im(z(t)) is decreasing, and Re(z(t)) is increasing when Re(z0)> 0
and decreasing when Re(z0) < 0. In other words, points to the right of λ stay to
the right, and points to the left of λ stay to the left. Thus the only possible points
that could be captured by λ are those along the imaginary axis, since these points
follow a downward trajectory toward λ.

Example 2. When λ(t)= c
√

t , then Kt is a growing line segment, beginning at 0.
The angle between the line segment and R depends on c. This example is not as
easy to justify as the first. One could either derive this result computationally (as
done in [Kager et al. 2004]) or one could justify it using a scaling property of the
Loewner equation. Neither approach, however, is relevant to the work in our paper,
and we omit it.

In the first two examples, the hulls are growing simple curves in H∪ {λ(0)}, by
which we mean that there exists a simple curve γ : [0, T ] → H∪ {λ(0)} so that
Kt = γ ([0, t]). Initially, one might wonder if this is always true. The next example,
however, shows us otherwise.

Example 3. Let λ(t)= c− c
√

1− t . For 0< c< 4, the hulls Kt are simple curves
for all t ∈ [0, 1]. When c ≥ 4, the same is true for the initial hulls; that is, for t < 1,
Kt are simple curves. At t=1, however, the geometry of the situation changes. Here
the simple curve hits back on R, and forms a “bubble”, and so the final hull K1 con-
tains the curve, the points in H under the curve, and an interval from R. See Figure 3.

Examples 2 and 3 each contain a family of examples, which we call a family of
deformations. Our precise definition follows:
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Figure 4. Simulations of an SLE2 hull (the curve on the left) and
an SLE6 hull (the curve on the right together with all the bubbles
formed).

Definition. Let λ be a continuous function defined on [0, T ]. The family of defor-
mations driven by λ is the family of hulls K c

T generated by cλ for c > 0.

Examples 2 and 3 gave the family of deformations driven by
√

t and 1−
√

1− t . In
Example 2, the hulls are simple curves for all values of c. However, there is a phase
transition in Example 3: the hulls are simple curves for small c, but this fails to be
the case for large c. Although this family is already well understood, we will prove
the existence of this phase transition in Corollary 2.4 as an illustration of our method.

Example 4. SLEκ , the best known example of a family of deformations, consists
of the random hulls generated by

√
κB(t), where B(t) is Brownian motion. As

mentioned in the introduction, this family does exhibit phase transitions [Rohde
and Schramm 2005]. In particular, when κ ≤ 4, the hulls are simple curves (as
illustrated in the left-hand picture of Figure 4), but this fails to be the case for κ > 4.
When 4< κ < 8, the SLEκ hull is the union of a random curve together with all the
bubbles that are formed when the curve hits back on itself or on the real line (see
the right-hand picture of Figure 4.) When κ ≥ 8, there is a second phase transition,
and the hulls become space-filling curves.

Criteria for hull behavior. In order to show that a family of deformations has a
phase transition, we will need to be able to determine whether or not a hull is a
simple curve, based on some feature of the driving function. In particular, our goal
is to find two criteria; the first one (Theorem 2.1) will guarantee a simple-curve
hull, and a second one (Proposition 2.2) will imply a nonsimple-curve hull. As an
example, we will apply both of these to the driving function c− c

√
1− t to verify

the phase transition that we have discussed (see Corollary 2.4).
To formulate the first criterion, we need to define what it means for a function to

be Lip
( 1

2

)
, also known as Hölder continuous with exponent 1

2 .
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Kt0

λ(0)

φ

K̃t

λ̃(0)

Figure 5. An illustration of the concatenation property.

Definition. A function λ(t) defined on an interval [0, T ] is said to be a Lip
( 1

2

)
function if there exists some M <∞ so that

|λ(t)− λ(s)| ≤ M
√
|t − s|

for all t, s ∈ [0, T ]. The smallest such M for which this holds is called the Lip
( 1

2

)
norm of λ, notated ‖λ‖1/2.

Examples of Lip
( 1

2

)
functions include c

√
t and c− c

√
1− t , both of which have

Lip
( 1

2

)
norm |c|. Further, any differentiable function will also be a Lip

( 1
2

)
function.

If λ(t) is a Lip
( 1

2

)
function with norm M, then cλ(t) is also a Lip

( 1
2

)
function and

‖cλ‖1/2 = |c|M.
We use the following criterion when we want to guarantee we have a simple curve.

Theorem 2.1 [Lind 2005, Theorem 2]. If λ is a Lip
( 1

2

)
function with ‖λ‖1/2 < 4,

then the hulls generated by λ are all simple curves contained in H∪ {λ(0)}.

Next, we wish to formulate a criterion that will imply that a particular hull is
not a simple curve. Consider Example 3, where the driving function is c− c

√
1− t .

If we compare the final hulls generated when c = 3 and when c = 5, we notice
one key difference: the latter hull contains an interval along the real line, whereas
the former contains no real-valued points except for the initial point. This means
that in the second situation, there exists a real-valued point that is captured by λ at
time 1. This observation, combined with the following property of the Loewner
equation, leads to our second criterion, Proposition 2.2 below.

Concatenation property of the Loewner equation. Let λ be a continuous func-
tion defined on [0, T ] and let Kt be the hulls generated by λ. For t0 ∈ (0, T ), let
K̃t be the hulls generated by the time-shifted driving function λ̃(t)= λ(t0+ t) for
t ∈ [0, T − t0]. Then K̃t = φ(Kt0+t \ Kt0), where φ is the unique conformal map
from H\Kt0 onto H with the following normalization at infinity: φ(z)= z+O(1/z).

Note that a conformal map between two domains is a homeomorphism that is
also complex differentiable. The concatenation property is illustrated in Figure 5.
Here the black curve is Kt0 , and φ is a conformal map from H \ Kt0 (that is, H
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with the black curve removed) onto H. The orange curve on the left represents
Kt0+t \ Kt0 , and the image of this set under φ is the orange curve on the right.

Proposition 2.2. Let λ be a continuous function defined on [0, T ]. Suppose there
exists some t0 ∈ [0, T ) and some s ∈ (0, T − t0] so that the time-shifted driving
function λ̃(t)= λ(t0+ t) captures a real-valued point at time s. Then the hull Kt0+s

generated by λ is not a simple curve contained in H∪ {λ(0)}.

Proof. Since λ̃(t) captures a real-valued point at time s, the corresponding hull K̃s

must contain at least one point in R that is not the initial point λ̃(0). But this implies
that K̃s cannot be a simple curve in H∪ {λ̃(0)}.

If Kt0+s is a simple curve in H∪{λ(0)}, then Kt0+s \ Kt0 must be a simple curve
in H \ Kt0 . The concatenation property implies that K̃s is the image of Kt0+s \ Kt0
under a homeomorphism taking H \ Kt0 to H, and so K̃t must also be a simple
curve in H∪ {λ̃(0)}. Since this is not the case, Kt0+s cannot be a simple curve in
H∪ {λ(0)}. �

As an example, we wish to apply Theorem 2.1 and Proposition 2.2 to the hulls
generated by c − c

√
1− t to prove that this family has a phase transition. The

following lemma, which we will use again later, provides part of the argument.

Lemma 2.3. Let c ≥ 4, τ > 0, and a ∈ R, and set b = 1
2(−c+

√
c2− 16). Then

x(t)= a+ b
√
τ − t is a solution to (2-1) when λ(t)= a− c

√
τ − t . In particular,

the driving function a− c
√
τ − t captures a real-valued point at time τ .

Proof. To show the first statement, we must simply verify that

x ′(t)=
2

x(t)− λ(t)
. (2-2)

The left-hand side of (2-2) is x ′(t)=−b/(2
√
τ − t), and the right-hand side is

2
(a+ b

√
τ − t )− (a− c

√
τ − t )

=
2

(b+ c)
√
τ − t

.

Thus (2-2) holds as long as −b/2= 2/(b+ c), which can be easily verified.
The second statement follows from the fact that x(τ )= a = λ(τ). �

Now Theorem 2.1 and Proposition 2.2 imply the following:

Corollary 2.4. The deformations driven by 1−
√

1− t exhibit a phase transition.
In particular, the hull K c

1 generated by c− c
√

1− t is a simple curve in H \ {0}
when 0≤ c < 4, and this is not the case when c ≥ 4.

Proof. Since c− c
√

1− t is a Lip
( 1

2

)
function with norm c, Theorem 2.1 implies

that K c
1 is a simple curve in H \ {0} when 0≤ c < 4.

Now suppose that c ≥ 4. Then Lemma 2.3 implies that c− c
√

1− t captures a
real-valued point at time 1. Thus, applying Proposition 2.2 with t0 = 0 and s = 1
gives that K c

1 is not a simple curve in H \ {0}. �
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3. The Weierstrass function

Karl Weierstrass introduced the Weierstrass function in 1872,1 giving the first
published example of a continuous function that is nowhere differentiable. The
function can be written as

Fa,b(t)=
∞∑

n=0

an cos(bnt),

depending on two parameters a ∈ (0, 1) and b ≥ 1/a.2 In this paper we will work
with b = 2 and a = 1/

√
2, and so we define

W (t)=
∞∑

n=0

2−n/2 cos(2nt),

which is graphed in Figure 1. With this choice of parameters, G. H. Hardy [1916,
Theorem 1.33] proved that W (t) is a Lip

(1
2

)
function. We will give a proof

of Hardy’s result that allows us to calculate the following upper bound on the
Lip

( 1
2

)
norm of W (t).

Proposition 3.1. The Lip
( 1

2

)
norm of W (t)=

∑
∞

n=0 2−n/2 cos(2nt) satisfies

‖W‖1/2 ≤ 12.

This result complements Theorem 1.2, which gives a lower bound for a local
version of the Lip

(1
2

)
norm. The two results are illustrated in Figures 6 and 7, where

we have plotted
W (tm,k)−W (tm,k + h)√

|h|

as a function of h for two choices of tm,k = 2−kmπ . The left-hand picture for each
figure shows h ∈ [−1, 1] while the right-hand image is a “zoomed-in” picture with
h ∈ [−0.0001, 0.0001]. We wish to point out a few features of these pictures. First,
notice that the output values have an upper bound that is unaffected by the zooming.
The existence of this global upper bound is a result of the bound on the Lip

( 1
2

)
norm

in Proposition 3.1. A more interesting feature is the fact that the output values in
the zoomed-in picture fall in a band that is bounded below. Theorem 1.2 guarantees
that this lower bound exists for any tm,k = 2−kmπ , once we zoom in far enough.

The bounds we obtain in Theorem 1.2 and Proposition 3.1 are far from optimal
when compared with our experimental data. This is evident in the right-hand

1Weierstrass introduced his namesake function in a presentation on July 18, 1872, but his published
work regarding this function [Weierstrass 1895] appeared later.

2These particular parameter values are due to Hardy [1916]; Weierstrass originally had more
restrictions on the parameters.
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Figure 6. The graph of (W (π/2) − W (π/2 + h))/
√
|h| for

h ∈ [−1, 1] (left) and for h ∈ [−0.0001, 0.0001] (right).

pictures of Figures 6 and 7, which appear to be contained in a band between 2 and 5,
a much more restrictive interval than the bounds we obtain of 0.2 and 12. The
trade-off for our imprecision, however, is that our proofs are fairly straightforward.

Proof of Proposition 3.1. Set a = 1/
√

2. Note that

|W (t + h)−W (t)| ≤ 2 max
s∈R
|W (s)| = 2

∞∑
n=0

an
=

2
1− a

≈ 6.8.

Therefore, when |h| ≥ 1, we certainly have that |W (t + h)−W (t)| ≤ 12
√
|h|.

For the rest of the proof, assume 0 < |h| < 1. The trigonometric identity
cos(x)− cos(y)=−2 sin

( 1
2(x + y)

)
sin
( 1

2(x − y)
)

implies that

|W (t+h)−W (t)|≤2
∞∑

n=0

an
∣∣sin

( 1
2 2n(2t+h)

)∣∣∣∣sin
( 1

2 2nh
)∣∣≤2

∞∑
n=0

an
|sin(2n−1h)|.

Figure 7. The graph of (W (3π/8) − W (3π/8 + h))/
√
|h| for

h ∈ [−1, 1] (left) and for h ∈ [−0.0001, 0.0001] (right).
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We wish to find some integer p so that 2−p
≈|h|; then we will break the sum into two

pieces based on p. The interval (0, 1] can be decomposed into the union of the dyadic
intervals

[1
2 , 1

]
,
[ 1

4 ,
1
2

]
,
[1

8 ,
1
4

]
, . . . . Since |h| ∈ (0, 1), we must have that |h| is in

one of these dyadic intervals; that is, there exists p∈N such that 2−p
≤ |h| ≤ 2−p+1.

Using this p, we split the sum into two pieces and bound each piece:

|W (t + h)−W (t)| ≤ 2
p−1∑
n=0

an
|sin(2n−1h)| + 2

∞∑
n=p

an
|sin(2n−1h)|

≤ 2
p−1∑
n=0

an2n−1
|h| + 2

∞∑
n=p

an

= |h|
(2a)p

− 1
2a− 1

+ 2
a p

1− a
,

using the facts that |sin(x)| ≤ |x | and that

p−1∑
n=0

rn
=

r p
− 1

r − 1
.

Since 2−p
≤ |h| ≤ 2−p+1, we have that 2p

|h| ≤ 2 and a p
=
√

2−p ≤
√
|h|. Thus

|W (t+h)−W (t)|≤
(

2
2a−1

+
2

1−a

)
a p
≤

(
2

2a−1
+

2
1−a

)√
|h|≈11.66

√
|h|. �

Proof of Theorem 1.2. Set a = 1/
√

2 and tm,k = mπ/2k for fixed m, k ∈ N. Let
0< |h| ≤ 2−(k+7). As in the previous proof, we begin by applying the trigonometric
identity cos(y)− cos(x)= 2 sin

( 1
2 x + y

)
sin
( 1

2 x − y
)

to obtain

W (tm,k)−W (tm,k + h)= 2
∞∑

n=0

an sin(2ntm,k + 2n−1h) sin(2n−1h).

When n ≥ k + 1, we know 2ntm,k = 2n−kmπ is a multiple of 2π , and so by the
periodicity of the sine function, sin(2ntm,k + 2n−1h) = sin(2n−1h). We split the
sum into two pieces, the beginning and the tail:

W (tm,k)−W (tm,k + h)= B+ T,

where

B = 2
k∑

n=0

an sin(2ntm,k + 2n−1h) sin(2n−1h) and T = 2
∞∑

n=k+1

an sin2(2n−1h).

We will have established the theorem once we show the two bounds

B ≥−0.31
√
|h| and T ≥ 0.54

√
|h|. (3-1)
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We begin by showing the bound on B in (3-1), following similar reasoning to
the previous proof:

B ≥−2
k∑

n=0

an
|sin(2n−1h)| ≥ −2

k∑
n=0

an2n−1
|h| ≥ −|h|

(2a)k+1

2a− 1
,

since |sin(x)| ≤ |x | and
k∑

n=0

rn
=

r k+1
− 1

r − 1
.

Recall our assumption that |h| ≤ 2−(k+7) and the fact that 2a =
√

2. Therefore,

B ≥−
√
|h|

√
|h| 2(k+1)/2

√
2− 1

≥−
√
|h|

2−3
√

2− 1
≈−0.302

√
|h|.

Now we will show the bound on T in (3-1). In proving this, we will assume,
without loss of generality, that h > 0 (because sin2(−x)= sin2(x)). Since all the
terms in T are positive, we can bound the infinite sum below by a partial sum;
that is,

T = 2
∞∑

n=k+1

an sin2(2n−1h)≥ 2
p∑

n=k+1

an sin2(2n−1h),

where p ∈N satisfies 2−p
≤ h ≤ 2−p+1. To show that this is well-defined, we need

to know that p ≥ k+ 1. This follows from the assumption that h ≤ 2−(k+7), which
implies that 2−p

≤ 2−(k+7) and subsequently p ≥ k+ 7.
Our next step is to bound the sine terms. When 0 ≤ x ≤ 1, we have sin(x) ≥

sin(1) · x . To apply this to our situation, we need to verify that the argument of the
sine terms is in the interval [0, 1]: for n ≤ p we have that 0≤ 2n−1h ≤ 2p−1h ≤ 1.
Therefore

T ≥ 2
p∑

n=k+1

an sin2(2n−1h)≥ 2
p∑

n=k+1

an(sin(1) ·2n−1h)2=
sin2(1)

2
h2

p∑
n=k+1

(4a)n.

Set r = 4a = 23/2, and recall that

p∑
n=k+1

rn
=

r p+1
− r k+1

r − 1
.

Since h ≥ 2−p,

h2
= h3/2

√
h ≥ (2−p)3/2

√
h = r−p

√
h.
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Putting this together, we have

T ≥
sin2(1)

2
h2

p∑
n=k+1

(4a)n ≥
sin2(1)

2
r−p
√

h
r p+1
− r k+1

r − 1

=
√

h
sin2(1)

2
r − r k+1−p

r − 1

≥
√

h
sin2(1)

2
r − r−6

r − 1
≈ 0.547

√
h,

where the final inequality follows from p ≥ k+ 7. �

4. Proof of the phase transition

We bring together the Loewner equation tools discussed in Section 2 and the prop-
erties of the Weierstrass function established in Section 3 to prove our main result.

Proof of Theorem 1.1. When c < 1
3 , Proposition 3.1 implies that cW (t) is a Lip

( 1
2

)
function with norm below 4. Therefore, Theorem 2.1 ensures that the hull generated
by cW (t) is a simple curve in H∪ {cW (0)}.

When c ≥ 20, we will show that the hull generated by cW (t) is not a simple
curve in H∪ {cW (0)} by applying Proposition 2.2. To set the stage, let c ≥ 20, let
k,m ∈ N, let t0 = 2−kmπ − 2−(k+7), and define the time-shifted driving function
V (t) = cW (t0 + t). Our proof will be complete once we prove that V captures
a real-valued point at or before time s = 2−(k+7), and we will accomplish this by
comparing V to a driving function that we understand well.

Let t ∈ [0, s] and set h = s− t . Then by Theorem 1.2,

V (s)− V (t)= c
(
W (2−kmπ)−W (2−kmπ − h)

)
≥ c · 0.2

√
h ≥ 4

√
s− t .

This implies that V (t)≤ λ(t) for λ(t)= V (s)− 4
√

s− t . Notice also that V (s)=
λ(s). In other words, V and λ end at the same point, but V is below λ prior to this.
Intuitively, this tells us that V must be moving quickly as t→ s, more quickly in fact
than the function λ, which we know to capture a real-valued point (by Lemma 2.3),
and so we should expect V will also capture a real-valued point. We simply need
to adapt this intuition into a proof. We begin by appealing to Lemma 2.3, which
implies that x(t) = V (s)− 2

√
s− t is a solution (2-1) with driving function λ.

Now let u(t) be the solution to (2-1) with driving function V and initial condition
u(0)= x(0). We will assume that u is defined on [0, s], because if not, that means
that V has captured u(0) before time s and we have nothing left to show.

Assume that τ ∈ [0, s] is a time so that u(τ )= x(τ ). Then since V (τ )≤ λ(τ),

u′(τ )=
2

u(τ )− V (τ )
≤

2
x(τ )− λ(τ)

= x ′(τ ).
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x(t)

u(t)
λ(t) V (t)

Figure 8. A sketch of the functions x(t), u(t), λ(t) and V (t) from
the proof of Theorem 1.1.

So at any time when u(τ )= x(τ ), we have x(t) is increasing more quickly than u(t).
This means that u(t) can never pass x(t), and so u(t)≤ x(t) for all t ∈ [0, s]. Note
that u(0)= x(0)= V (s)−2

√
s > V (s)−4

√
s ≥ V (0). In other words, u(t) begins

to the right of V (t), and so u(t) must remain to the right of V (t) for as long as it is
defined. Thus for all t ∈ [0, s],

V (t)≤ u(t)≤ x(t),

as illustrated in Figure 8. At time s, we must have V (s)≤ u(s)≤ x(s)= V (s). This
implies V (s)=u(s), meaning V has captured the real-valued point u(0) at time s. �
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