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In multiple-criteria evaluation schemes, rank disequilibrium occurs when an
evaluee is rated higher than other evaluees on some criteria and lower than other
evaluees on other criteria. In this article, we investigate rank disequilibrium
as it relates to the problem of aggregating scores on individual criteria into an
overall evaluation. We adopt an axiomatic approach, defining the notion of a
rank aggregation function and proposing a set of desirable properties — namely,
independence, monotonicity, inclusivity, consistency, and equity — that rank
aggregation functions may or may not satisfy. We prove that when there are
more than three possible scores on each criterion, it is impossible to define a rank
aggregation function that satisfies all of these properties. We then investigate
potential resolutions to the problems posed by rank disequilibrium.

1. Introduction

According to Pruitt and Kim [2004, p. 24], rank disequilibrium, or status incon-
sistency, “exists when there are multiple criteria for assessing people’s merit or
contributions, and some people are higher on one criterion and lower on another
criterion than others”. Status inconsistency has been studied at length within
the sociology and conflict resolution literature, particularly in regards to social
stratification, intergroup conflict, and aggression (for example, [Engel 1988; Evan
and Simmons 1969; Galtung 1964; Hernes 1969; Kriesberg 1998; Muller and
Jukam 1983; Segal et al. 1970]). This article focuses on the phenomenon of rank
disequilibrium within the specific context of multiple-criteria evaluation.
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To illustrate, consider the common practice of evaluating employees by first
assigning scores on a variety of criteria and then determining an overall performance
rating by aggregating these scores in some way. For example, it is common within
academia for faculty to be evaluated on teaching, research, and service. But what
happens when Professor Smith is rated satisfactory in teaching, outstanding in
research, and outstanding in service, while Professor Jones is rated outstanding in
teaching, satisfactory in research, and satisfactory in service? Who should receive
a higher overall rating? On the one hand, Professor Smith could argue that she is
entitled to the higher rating, since she received higher marks on two of the three
criteria. On the other hand, Professor Jones could argue that teaching is the most
important criterion, and so she should receive the higher rating. The inconsistency
between each professor’s scores on the various criteria presents challenges to the
evaluator who must aggregate the scores and determine an overall evaluation. Indeed,
it is conceivable that, regardless of the final evaluations, one of the two professors
will perceive that she has been treated inequitably.

Much of the prior research on rank disequilibrium has been empirical or philo-
sophical in nature. In the present work, we take an axiomatic approach. In Section 2,
we introduce the definitions that form the basis of our model. We define the notion
of a rank aggregation function, which is our primary mechanism for aggregating
marks on individual criteria into a single, overall evaluation. We then propose
several desirable properties of rank aggregation functions — including independence,
monotonicity, inclusivity, consistency, and equity — giving examples to illustrate
each. Rank aggregation functions that satisfy all of these properties are said to
be ideal.

In Sections 3 and 4, we consider conditions for the existence and uniqueness of
ideal rank aggregation functions. We demonstrate the existence of a unique ideal
rank aggregation function in the case where only three scores are possible for each
criterion. We then prove that when more than three scores are allowed, no such
function exists.

In Sections 5 and 6, we consider potential resolutions to the nonexistence (in most
cases) of ideal rank aggregation functions. We show that suitable alternatives can be
found if we are willing to sacrifice independence or accept a weaker form of equity.

In Section 7, we summarize our work and discuss questions for further research.

2. Definitions and examples

Our model assumes that a finite number of evaluees will receive one of a finite
number of ratings, or scores, on each of a finite number of criteria.

We let C denote the set of evaluation criteria, where |C | = n. We let Z =
{z1, z2, . . . , zm} denote the set of possible scores for each criterion, where m ≥ 2.
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We assume that Z is totally ordered, with the ordering relation denoted by �, where
zm � zm−1 � · · · � z2 � z1. (Intuitively, zm corresponds to the best score and z1

corresponds to the worst score.)
A score profile, or profile for short, is an n-tuple of elements of Z — that is, an

element of the Cartesian product

X = Z × Z × · · ·× Z = Zn.

This set X is called the profile space. For any profile x ∈ X , we let xc denote the
score from the c-th criterion (coordinate) of x . If, for some x, y ∈ X , we have
xc � yc for all c ∈ C , then x is said to dominate y, denoted x � y. For any x ∈ X ,
we define min x and max x in a natural way — namely,

min x =min
c∈C
{xc} and max x =max

c∈C
{xc},

where the notions of minimum and maximum are defined with respect to the total
order � on Z .

We use the notation Ez to denote the profile x for which xc = z for all c ∈C . Such
a profile is called a uniform profile. For every nonempty proper subset R of C , let
X R = Z |R| and X−R = Zn−|R|. For all x ∈ X R and y ∈ X−R, we denote by (x, y) the
profile that coincides with x for the criteria in R and coincides with y for the criteria
not in R. In other words, (x, y)c = xc for all c ∈ R and (x, y)c = yc for all c /∈ R.
To denote the restriction of a uniform profile Ez to the criteria in R, we write EzR.

An evaluee e is an ordered pair (xe,�e), where xe
∈ X and �e is a monotone

weak order on X — that is, a weak order in which x �e y whenever x � y. The
first coordinate, xe, represents the vector of scores assigned to e by the evaluation
process (one for each evaluation criterion). The second coordinate, �e, represents
e’s perceived ordering of the possible profiles according to their relative value
or desirability. (We will call such an ordering a profile ordering.) Monotonicity
imposes a minimal assumption of rationality on each evaluee’s profile ordering —
for example, by prohibiting an evaluee from viewing a rating that is unsatisfactory
in every category as more desirable than one that is satisfactory in every category.
However if x and y are two profiles with the property that x 6� y and y 6� x (in
which case xi � yi and yj � x j for some i 6= j), then the monotonicity condition
imposes no restrictions on an evaluee’s relative ordering of x and y. In this case,
one can posit the existence of evaluees e1 and e2 for which x �e1 y and y �e2 x .

The set of all possible evaluees is called the evaluee space and denoted E . The
set of all submultisets of E is denoted P(E).1

1Formally, our definitions must involve multisets to allow for the possibility of multiple evaluees
having the same profile and profile ordering. However, from this point forward, we will, for conve-
nience, use the simpler language of sets and subsets, keeping in mind that our results apply to (and
sometimes require) multisets as well.
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Definition 2.1. A rank aggregation function is a function that maps each pair (x, E),
where x is a profile and E is a subset of E , to an element of Z . In other words, a
rank aggregation function is a mapping f : X ×P(E)→ Z .

For any rank aggregation function f , we will use the notation fE(x) to denote
f (x, E). This notation captures the idea that, for a fixed set of evaluees, we can
view f as nothing more than a function on the profile space X . By definition, the
function f is anonymous: it assigns the same overall score to any two evaluees who
have the same profile. However, f may take into account information about the
set of evaluees as a whole — including evaluees’ profile orderings — so that if this
information changes in any way, the scores assigned by f may also change. A rank
aggregation function that assigns the same scores regardless of the set of evaluees is
said to be independent. The next definition formalizes this idea and defines several
additional desirable properties that a rank aggregation function might satisfy.

Definition 2.2. Let f : X ×P(E)→ Z be a rank aggregation function. Then:

(i) f is independent, provided that fE1(x)= fE2(x) for all E1, E2 ∈ P(E) and all
x ∈ X .

(ii) f is monotone, provided that x � y implies fE(x) � fE(y) for all x, y ∈ X
and all E ∈ P(E).

(iii) f is inclusive, provided that for each nonempty, proper subset R of C , there ex-
ists E ∈P(E) and profiles (x, u), (y, u), where x, y∈ X R and u∈ X−R, such that
fE(x, u) 6= fE(y, u). (In this case, C is said to be minimal with respect to f .)

(iv) f is consistent with respect to E ∈P(E), provided that fE(Ez)= z for all z ∈ Z .
If f is consistent with respect to all E ∈ P(E), then f is said to be universally
consistent, or simply consistent.

(v) f is equitable with respect to E ∈P(E), provided that x �e y implies fE(x)�

fE(y) for all e ∈ E and all x , y ∈ X . (If, for some evaluee e ∈ E , x �e y and
fE(y)� fE(x), then e is said to perceive inequity.) If f is equitable with respect
to all E ∈P(E), then f is said to be universally equitable, or simply equitable.

A rank aggregation function that is independent, monotone, inclusive, consistent,
and equitable is said to be ideal. If f is an independent rank aggregation function,
then we will denote by f (x) the common value of fE(x) for all E ∈ P(E).

Example 2.3. Let f be the rank aggregation function defined by f (x)= x1. (Note
that f assigns to each profile the score received on the first criterion.)

By definition, f is independent and consistent. Furthermore, f is monotone
since x � y implies x1 � y1.

Since f assigns scores based solely on the first criterion of each profile, it is
intuitively obvious that f is not inclusive. To prove this formally, let R be any
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nonempty, proper subset of C that does not include the first criterion. Then

f (x, u)= (x, u)1 = u1 = (y, u)1 = f (y, u)

for all x , y ∈ X R and all u ∈ X−R. So C is not minimal, and f is not inclusive.
Finally, we will show that f is not universally equitable. Let E be any set of

evaluees containing an evaluee e for which

(z1, zm, . . . , zm)�e (zm, z1, . . . , z1).

Such an evaluee exists since

(z1, zm, . . . , zm) 6� (zm, z1, . . . , z1) and (zm, z1, . . . , z1) 6� (z1, zm, . . . , zm).

Note, however, that since

f (zm, z1, . . . , z1)= zm � z1 = f (z1, zm, . . . , zm),

it follows that e perceives inequity, and f is not equitable with respect to E .
In conclusion, we have shown that f is independent, monotone, and consistent,

but neither inclusive nor equitable. �

Example 2.4. Let f be the rank aggregation function defined by f (x)=max x .
By definition, f is independent and consistent. We will show that f is inclusive

and monotone, and f is equitable if and only if m = 2.
For inclusivity, let R be any proper, nonempty subset of C . Then

f (Ez1)= f ((Ez1)R, (Ez1)−R)= z1,

but
f ((Ezm)R, (Ez1)−R)= zm .

Since f assigns different scores to two profiles that differ only on R, and R was
chosen arbitrarily, it follows that C is minimal with respect to f . Thus, f is
inclusive.

For monotonicity, let x , y ∈ X such that x � y. Then xc � yc for all c ∈ C ,
which implies

f (x)=max x �max y = f (y).

Thus, f is monotone.
For equity, note that if m ≥ 3, any evaluee e for which

Ez2 = (z2, z2, . . . , z2)�e (z1, z1, . . . , z1, zm)

will perceive inequity, since

f (z1, z1, . . . , z1, zm)= zm � z2 = f (Ez2).

(Intuitively, such an evaluee views a profile that receives the second worst score
on each criterion as favorable to one that receives the worst score on all but one
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of the criteria and the best score on the remaining criterion.) This example clearly
breaks down if m = 2. Note that for an evaluee e to perceive inequity, it must be
that, for some profiles x and y, we have x �e y and f (y)� f (x). But when m = 2,
f (y) � f (x) only if f (y) = z2 and f (x) = z1. This, however, implies x = Ez1, a
contradiction to the monotonicity of �e in light of the assumption that x �e y.

To summarize, we have shown that f is independent, monotone, consistent, and
inclusive. In the case that m = 2 (and only in this case), f is also equitable, and
thus ideal. �

Example 2.5. For a more concrete example, consider an evaluation process with
three evaluation criteria (n = 3) and three possible scores (m = 3) for each criterion:

outstanding� satisfactory� unsatisfactory.

Define a rank aggregation function f as follows (abbreviating each score by its first
letter):

fE(x)=


O if x �e xe for all e ∈ E with xe

6= x,

U if xe
�e x for all e ∈ E with xe

6= x,

S otherwise.

Suppose Sally is being evaluated using f . Then the only way for Sally to be rated
as outstanding is for every other evaluee whose profile is different from hers to
view Sally’s profile as the more favorable one. In essence, every evaluee must envy
Sally’s profile. Likewise, for Sally to be rated as unsatisfactory, every evaluee with
a different profile than Sally’s must view their own profile as favorable to hers.

Now consider the set E consisting of three evaluees — a, b, and c — for whom
the following conditions hold:

• xa
= (S, S, O) and (S, S, O)�a (S, O, S)�a (O, S, S);

• xb
= (S, O, S) and (S, O, S)�b (O, S, S)�b (S, S, O);

• xc
= (O, S, S) and (O, S, S)�c (S, S, O)�c (S, O, S).

Note that, in this case, fE(S, S, O) = fE(S, O, S) = fE(O, S, S) = U , since
every evaluee favors their own profile over those of each of the other evaluees.
(This is not a terribly surprising outcome, since evaluees tend to exhibit self-serving
biases.)

Consider, however, another set E ′ of evaluees who, one might argue, are less
tainted by their individual biases:

• xu
= (S, S, O) and (O, S, S)�u (S, O, S)�u (S, S, O);

• xv
= (S, O, S) and (O, S, S)�v (S, O, S)�v (S, S, O);

• xw
= (O, S, S) and (O, S, S)�w (S, S, O)�w (S, O, S).
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It is easy to verify that fE ′(S, S, O)=U , fE ′(S, O, S)= S, and fE ′(O, S, S)=O .
In other words, changing the set of evaluees changes the overall scores assigned by f
to the profiles (S, O, S) and (O, S, S). Thus, f is not independent. This means that
an evaluator who wished to use f would need to have some mechanism for ascer-
taining the evaluees’ profile orderings. Moreover, as the example illustrates, misrep-
resentation of profile orderings — and even the influence of unintentional biases —
could have a significant impact on the outcome of the evaluation. This phenomenon
is analogous to the problem of insincere or strategic voting in social choice theory.

It is also worth noting that, while f may be equitable with respect to E (in this
example, the profile orderings of a, b, and c are not specified completely enough
to make a definitive conclusion), f is certainly not equitable with respect to E ′; in
particular, w perceives inequity since (S, S, O)�w (S, O, S) and

fE ′(S, O, S)= S �U = fE ′(S, S, O).

We leave it as an exercise to the reader to verify that f is monotone and inclusive,
but not consistent. �

In the above examples, we considered rank aggregation functions that were
monotone, but not necessarily equitable. In fact, because of the monotonicity
requirement for profile orderings, the properties of monotonicity and equity (for
rank aggregation functions) are closely related. This relationship can be made clear
by examining the contrapositive of each property:

• Monotonicity: For all x, y ∈ X and all E ∈P(E), fE(y)� fE(x) implies x 6� y.

• Equity: For all x, y ∈ X , all E ∈ P(E), and all e ∈ E , fE(y)� fE(x) implies
y �e x .

The difference between monotonicity and equity therefore amounts to the differ-
ence between the conditions of x 6� y and y �e x . If y� x , then it is certainly the
case that y �e x for all e. But, as we have seen, x 6� y does not necessarily imply
y� x . Likewise, it is also possible for x � y and y �e x , which happens if and
only if e is indifferent between x and y.

The arguments for monotonicity and equity are often similar, and so we will
sometimes invoke the following lemma to prove both properties simultaneously:

Lemma 2.6. Let f be a rank aggregation function, and suppose that for all x, y∈ X ,
fE(y)� fE(x) implies both (1) x 6� y, and (2) y �e x for every evaluee e. Then f
is both monotone and (universally) equitable.

Finally, it is important to recognize the difference between universality — partic-
ularly, as it applies to the properties of consistency and equity — and independence.
Independence requires the scores assigned to profiles to depend only on the profiles
themselves, and not on any properties of the underlying set of evaluees. However,
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a rank aggregation function need not be independent to be universally consistent or
equitable. The latter properties do not require the assigned scores to be invariant
with respect to changes in the set of evaluees. Rather, these properties require
only that the function be consistent/equitable with respect to each set of evaluees.
Likewise, an independent rank aggregation function may be equitable with respect
to some sets of evaluees, but not others. On the other hand, if an independent rank
aggregation function is consistent with respect to any individual set of evaluees,
then it will be universally consistent.

3. Existence of ideal rank aggregation functions

In the previous section, we saw an example of a rank aggregation function that was
independent, monotone, consistent, and inclusive, but equitable (and thus ideal)
only when m = 2 (Example 2.4). The rank aggregation function in Example 2.5
fared even worse: it was monotone and inclusive, but not independent, consistent, or
equitable. This, of course, begs the question: What would an ideal rank aggregation
function look like for m ≥ 3? Does such a function even exist? The next theorem
provides a partial answer to this question.

Theorem 3.1. Let m = 3, and define the rank aggregation function f as

f (x)=


z1 if x = Ez1,

z3 if x = Ez3,

z2 otherwise.

Then f is an ideal rank aggregation function.

Proof. By definition, f is independent and consistent. The argument for inclusivity
is similar to that in Example 2.4.

For monotonicity and equity, we will use Lemma 2.6. So suppose f (y)� f (x)

for some x , y ∈ X . Then either f (y)= z3 or f (x)= z1. If the former, then y = Ez3

and x 6= Ez3. If the latter, then x = Ez1 and y 6= Ez1. In either case, y � x , which
implies, by the monotonicity of profile orderings, that y �e x for each evaluee e.
Furthermore, x 6� y, and so f is both monotone and equitable. �

Unfortunately, the function from Theorem 3.1 cannot be extended to cases where
m ≥ 4. In fact, for m ≥ 4, the properties of consistency and equity are incompatible.

Theorem 3.2. For m ≥ 4, there does not exist a rank aggregation function that is
consistent and equitable.

Proof. Let m≥4, and assume to the contrary that f is a consistent and equitable rank
aggregation function. Let u = (z1, zm, zm, . . . , zm), and let E contain evaluees e1

and e2 for which
Ez2 �e1 u �e2 Ez3.
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Since f is equitable and consistent,

z2 = fE(Ez2)� fE(u)� fE(Ez3)= z3.

This, however, is a contradiction to the fact that z3 � z2 by definition. �

Theorem 3.2 shows that, for m ≥ 4, it is impossible for a consistent rank ag-
gregation function to be equitable with respect to every possible set of evaluees.
However, it does not rule out the possibility of finding a consistent rank aggrega-
tion function that is equitable with respect to some sets of evaluees. If one also
desires independence, then this distinction is moot. (If f is independent, then since
fE(Ez2)� fE(Ez3) for some set E of evaluees, the same ordering would hold for every
set of evaluees, leading again to a contradiction.) If we are willing to sacrifice
independence, then we may have more options. We will explore this possibility
further in Section 5.

4. Cycles and uniqueness of ideal rank aggregation functions

In the proof of Theorem 3.2, two evaluees’ profile orderings were combined in
a way that forced a contradiction under the assumptions of both consistency and
equity. This idea can be generalized as follows.

Definition 4.1. Let E ∈P(E). Suppose there exist e1, . . . ,ek ∈E and x1, . . . , xk
∈X

such that
x1
�e1 x2

�e2 · · · �ek−1 xk
�ek x1.

Then the sequence x1, . . . , xk, x1 is said to be a strong k-cycle with respect to E .

The following theorem is immediate:

Theorem 4.2. Let E ∈ P(E), and let

TE = {x ∈ X : x belongs to some strong cycle with respect to E}.

Let the relation ∼E on TE be defined by x ∼E y if and only x and y belong to a
common strong cycle. Then ∼E is an equivalence relation on TE .

The next theorem can be viewed as a generalization of Theorem 3.2.

Theorem 4.3. Let E ∈ P(E), and let f be a rank aggregation function that is
equitable with respect to E. If x ∼E y for some x, y ∈ X , then fE(x)= fE(y).

Proof. Suppose f is equitable, and let x ∼E y for some x , y ∈ X . Then x and y
belong to a common strong k-cycle with respect to E — that is,

x �e1 · · · �e j−1 y �e j · · · �ek x

for some e1, . . . , ek ∈ E . But then equity requires that fE(x) � fE(y) � fE(x),
which implies fE(x)= fE(y). �
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Two important corollaries follow.

Corollary 4.4. Let E ∈ P(E). If Ezi ∼E Ez j for some zi , z j ∈ Z with i 6= j , then there
does not exist a rank aggregation function that is both consistent and equitable with
respect to E.

Proof. Suppose f is equitable with respect to E , and suppose also that Ezi ∼E Ez j for
some zi , z j ∈ Z with i 6= j . By Theorem 4.3, fE(Ezi ) = fE(Ez j ). Since i 6= j , it is
therefore impossible for f to be consistent with respect to E . �

Corollary 4.5. The function defined in Theorem 3.1 is the unique ideal rank aggre-
gation function for m = 3.

Proof. Let m = 3, and let f be an ideal rank aggregation function. Since f
is consistent, f (Ez1)= z1, f (Ez2)= z2, and f (Ez3)= z3. Choose x ∈ X such that
x 6= Ez1, Ez2, Ez3. We will show that there exists E ∈ P(E) such that x ∼E Ez2, which
will imply (by Theorem 4.3) that f (x)= f (Ez2)= z2. Consider three cases.

Case 1: x 6� Ez2 and Ez2 6� x . In this case, there exist evaluees e1 and e2 for which
Ez2 �e1 x �e2 Ez2. Let E contain both e1 and e2. Then x ∼E Ez2, as desired.

Case 2: x � Ez2. In this case, x = ((Ez3)R, (Ez2)−R) for some nonempty R ⊂ C . Let
y = ((Ez1)R, (Ez3)−R). Note that (1) Ez2 6� y and y 6� Ez2, and (2) x 6� y and y 6� x .
By assumption, x � Ez2. Thus, there exist evaluees e1, e2, and e3 such that

Ez2 �e1 y �e2 x �e3 Ez2.

It follows that x ∼E Ez2 for any E ∈ P(E) containing e1, e2, and e3.

Case 3: Ez2� x . In this case, x = ((Ez1)R, (Ez2)−R) for some nonempty R ⊂ C . Let
y = ((Ez3)R, (Ez1)−R). By a similar argument as in Case 2, there exist evaluees e1, e2,
and e3 such that

Ez2 �e1 x �e2 y �e3 Ez2.

Thus, x ∼E Ez2 for any E ∈ P(E) containing e1, e2, and e3.
In each case, there exists E ∈P(E) such that x ∼E Ez2; hence fE(x)= fE(Ez2)= z2.

Since f is independent, it follows that f (x)= z2 for all x 6= Ez1, Ez2, Ez3. Thus, we
have shown that f is identical to the function from Theorem 3.1. �

5. Forfeiting independence

As we saw in Section 3, it is impossible to define a consistent rank aggregation
function for m ≥ 4 that is equitable with respect to all possible sets of evaluees. In
fact, Corollary 4.4 tells us that consistency and equity are compatible only when the
set E of evaluees is such that no two distinct uniform profiles belong to a common
strong cycle. This necessary condition turns out to be sufficient as well, provided
that we are willing to sacrifice independence.
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In order to proceed, we first need the following definition:

Definition 5.1. Let E ∈P(E), and let x , y ∈ X . Suppose there exist e1, . . . , ek ∈ E
and x1, . . . , xk−1

∈ X such that

x �e1 x1
�e2 · · · �ek−1 xk−1

�ek y.

Then x is said to chain-dominate y with respect to E , denoted x→E y.

Note that, for any x, y ∈ X , we have x ∼E y if and only if x→E y and y→E x .

Theorem 5.2. Let f be the rank aggregation function defined as follows:

fE(x)=



z1 if x = Ez1,

...

zi
if fE(x) is not defined above and either max x = zi

or there exists w ∈ X such that max w = zi and w→E x,
...

zm otherwise.

Then f is monotone, inclusive, and equitable. Moreover, f is consistent with
respect to any E ∈ P(E) for which Ezi ∼E Ez j only if i = j .

Proof. For monotonicity, suppose x � y for some x , y ∈ X . We must show that
fE(x) � fE(y) for all E ∈ P(E). Suppose fE(x) = zi . If i = 1, then x = y = Ez1,
and so fE(x)= fE(y)= z1. If i = m, then fE(x)= zm � fE(y), as desired.

Now suppose 1 < i < m. Then either (1) max x = zi , or (2) there exists w ∈ X
with max w = zi such that w →E x . If max x = zi , then max y � zi , and so
fE(y)� zi = fE(x), as desired. Suppose, on the other hand, that there exists w ∈ X

with max w = zi such that w→E x . Since w→E x , there exist e1, . . . , ek ∈ E and
x1, . . . , xk−1

∈ X such that

w �e1 x1
�e2 · · · �ek−1 xk−1

�ek x .

But x � y, and so x �ek y, which implies xk−1
�ek y. Thus w →E y, and so

fE(y)� zi = fE(x). In each case, fE(x)� fE(y). It follows that f is monotone.
For inclusivity, let R be any proper, nonempty subset of C . Then

fE(Ez1)= fE((Ez1)R, (Ez1)−R)= z1,

but
fE((Ezm)R, (Ez1)−R) 6= z1.

Since f assigns different scores to two profiles that differ only on R, and R was
chosen arbitrarily, it follows that C is minimal with respect to f . Thus, f is inclusive.

For equity, let E ∈P(E), and suppose x �e y for some x , y ∈ X and some e ∈ E .
We must show that fE(x)� fE(y). Let fE(x)= zi . If i = 1, then x = Ez1, a contra-
diction to the fact that x �e y. Therefore, i > 1. If i =m, then fE(x)= zm � fE(y),
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as desired. Now suppose 1 < i < m. By the definition of f , either max x = zi or
there exists w ∈ X with max w = zi such that w→E x . If max x = zi , then the fact
that x→E y (since x �e y) implies, by the definition of f , that fE(y)� zi . If, on the
other hand, there exists w ∈ X with max w = zi such that w→E x , then it must be
that w→E y as well (since x �e y), and so fE(y)� zi . In either case, fE(x)� fE(y).
It follows that e cannot perceive inequity. Thus, f is equitable with respect to E .

For consistency, let E ∈ P(E) such that Ezi ∼E Ez j only if i = j . It suffices to
show that, for each 1 < i ≤ m, there does not exist w ∈ X such that w→E Ezi and
max w = z j for some j < i . Suppose, to the contrary, that such a w exists. Since
w→E Ezi , there exist e1, . . . , ek ∈ E and x1, . . . , xk−1

∈ X such that

w �e1 x1
�e2 · · · �ek−1 xk−1

�ek Ezi .

Moreover, since max w = z j and j < i , it follows that Ezi � Ez j � w. By the
monotonicity of �e1 , we have Ezi �e1 Ez j �e1 w. Since w �e1 x1, this implies that
Ezi �e1 x1 and Ez j �e1 x1. By the monotonicity of �ek , we have Ezi �ek Ez j , and so
xk−1
�ek Ez j . It follows that

Ezi �e1 x1
�e2 · · · �ek−1 xk−1

�ek Ez j �e1 x1
�e2 · · · �ek−1 xk−1

�ek Ezi .

But then Ezi ∼E Ez j with i 6= j , a contradiction. Therefore, it must be the case that
fE(Ezi )= zi for all i , and f is consistent. �

6. Manifest inequity

In our investigations up to this point, we have not made a distinction between the
potential for inequity and the actual manifestation of inequity in the scores assigned
by a given rank aggregation function. The former involves a systemic or structural
concern — namely, that a rank aggregation function may lead to ratings that are
perceived by some to be inequitable, regardless of whether any specific evaluee
receives one of the profiles involved in these potential inequities. However, perceived
inequity involving profiles that are actually assigned to evaluees — what we will
call manifest inequity — is especially problematic. In this section, we will consider
the more modest goal of avoiding manifest inequity, defined formally below.

Definition 6.1. Let f be a rank aggregation function, and let E ∈ P(E). Suppose
there exist e1, e2 ∈ E such that xe1 �e1 xe2 and fE(xe2)� fE(xe1). Then

• xe1 and xe2 are called manifest profiles with respect to E ; and

• e1 is said to perceive manifest inequity.

A rank aggregation function for which no e ∈ E perceives manifest inequity is said
to be weakly equitable with respect to E .
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Clearly, one way to avoid manifest inequity is to limit the profiles that are actually
assigned to evaluees. In situations in which a single evaluator both assigns profiles
to evaluees and chooses the rank aggregation function, this solution is both simple
and practical. In fact, we will show that it is possible to define a rank aggregation
function that is independent, monotone, consistent, inclusive, and weakly equitable
with respect to any set of evaluees that satisfies the pairwise dominance condition
defined below.

Definition 6.2. A set E of evaluees is said to be pairwise dominant if for all
e1, e2 ∈ E , either xe1 � xe2 or xe2 � xe1. Likewise, a set S of profiles is said to be
pairwise dominant if for all x , y ∈ S, either x � y or y� x .

Theorem 6.3. Let f be the rank aggregation function defined by f (x) = max x.
Then f is independent, consistent, inclusive, monotone, and weakly equitable with
respect to any pairwise dominant set E of evaluees.

Proof. By definition, f is independent and consistent. The proof of inclusivity and
monotonicity is given in Example 2.4.

Now let E be any pairwise dominant set of evaluees. We must show that f is
weakly equitable with respect to E . Suppose xe1�e1 xe2 for some e1, e2∈ E . Since E
is assumed to be pairwise dominant, either xe1� xe2 or xe2� xe1. If xe2� xe1, then
the monotonicity of �e1 implies xe2 �e1 xe1, a contradiction. Therefore, xe1 � xe2,
and so

f (xe1)=max xe1 �max xe2 = f (xe2),

as desired. �

Theorem 6.3 raises two interesting combinatorial questions. First, what is the
cardinality of a maximal pairwise dominant set of profiles? Second, how many
such sets exist? The next theorem provides answers to these questions.

Theorem 6.4. Let S be a maximal pairwise dominant set of profiles — i.e., a set of
profiles S that is pairwise dominant and is not a proper subset of any other pairwise
dominant set. Then

|S| = n(m− 1)+ 1.

Moreover, the number of distinct pairwise dominant sets of profiles is equal to

(n(m− 1))!

(m− 1)!n
.

Proof. First, note that (X,�) is a poset, and x covers y in (X,�) if and only if
there exists c ∈ C such that (1) xi = yi for all i 6= c, and (2) xc = zk and yc = zk−1

for some 1 < k ≤ m. The cardinality of any maximal pairwise dominant set is the
same as the length of a chain of maximum length in (X,�). Such a chain must
have maximum element Ezm , with each subsequent element formed by changing the
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n m mn n(m−1)+1 (n(m−1))!

(m−1)!n

3 3 27 7 90
3 4 64 10 1680
3 5 125 13 34650
4 3 81 9 2520
4 4 256 13 369600
4 5 625 17 63063000

Table 1. Combinatorial results for small m, n.

preceding element’s score from zk to zk−1 on exactly one criterion. Since there
are n criteria, and the score on each criterion may be decreased (from zk to zk−1)
exactly m− 1 times before reaching z1, it follows that a chain in (X,�) can have
length at most n(m− 1)+ 1.

Each maximal chain (and, hence, each maximal pairwise dominant set) is
uniquely determined by the order in which the criteria are decreased. Thus, each
maximal pairwise dominant set corresponds to a sequence of n(m− 1) elements
of C , where each of the n elements of C appears m−1 times. The standard formula
for counting permutations with repetition thus implies that there are

(n(m− 1))!

(m− 1)!n

such sequences, as desired. �

Table 1 illustrates the results of Theorem 6.4 for some small values of m and n.
While it is clear that pairwise dominant sets of profiles are small in comparison to
the total number of profiles (mn), it is also the case that there are many such sets to
choose from. Therefore, an evaluator who wishes to take advantage of Theorem 6.3
must accept some fairly severe restrictions, but can satisfy these restrictions in a
number of different ways.

7. Summary and conclusions

Rank disequilibrium can be a significant factor in social and intergroup conflict. In
this article, we investigated rank disequilibrium in the context of multiple-criteria
evaluation, using an axiomatic approach to show that, in general, it is impossible
to define a function that aggregates scores on individual criteria while satisfying a
relatively small set of desirable properties. In particular, we showed the notions of
consistency and equity are generally incompatible. It seems perfectly reasonable to
expect evaluees who receive the same score on every criterion to also receive that
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score as an overall rating. However, this apparently innocuous requirement opens
the door for evaluees to perceive inequity.

The problems illuminated by our analysis are not insoluble. When evaluators
are limited to only three possible scores (say, outstanding, satisfactory, and unsatis-
factory), an ideal rank aggregation function can be found. However, the only such
function assigns a overall rating of satisfactory to almost all profiles, rating evaluees
as outstanding or unsatisfactory only when they receive these respective scores on
every criterion.

Another potential solution is to allow the evaluator to use information about
evaluees’ individual profile orderings in order to assign scores that minimize the
potential for perceived inequity. An evaluator who implements such a system is
likely to be motivated more by political considerations than an actual concern
for equity. Indeed, doing so requires a great deal of effort (to ascertain reliable
information about evaluees’ relative orderings of the various profiles) without an
absolute guarantee that the ideals of consistency and equity will be achieved.

A more practical solution involves simply limiting the profiles assigned to eval-
uees to ensure that, for any pair of profiles assigned, one profile is viewed as more
desirable by all rational evaluees (that is, all evaluees whose profile orderings meet
the modest condition of monotonicity.) An evaluator need not have foreknowledge
of the evaluees’ views in order to adopt this strategy, but must be willing to possibly
rate evaluees insincerely in order to avoid assigning profiles that fall outside the
allowed set. She must also settle for the weaker goal of avoiding manifest inequity,
rather than all perceived inequity. Broader systemic or structural concerns may still
persist, but the most glaring perceptions of inequity will be eliminated.

Our investigations rest on several assumptions that could be relaxed in future work.
For example, we have required the same rating scale (i.e., the same set of scores)
to be used for each criterion, as well as for the overall evaluation. We have also
assumed the set of scores to be discrete. In other multiple-criteria decision contexts
(such as voting on referenda; see [Bradley et al. 2005], for example), the distinction
between discrete and continuous alternative sets has been shown to be significant.

Our model does not incorporate any assumptions about the relative importance of
the evaluation criteria, nor does it address potential interdependencies among criteria.
(In early critiques of research on rank disequilibrium, Doreian and Stockman [1969]
and Hartman [1974] raise related concerns.) Given the importance of separability
in economics and social choice theory [Bradley et al. 2005; Gorman 1968; Hodge
and Schwallier 2006], these areas would seem to warrant further investigation.
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