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In this paper we extend the Kauffman bracket to singular links. Specifically, we
define a polynomial invariant for singular links, and in doing this, we consider
three approaches to our extended Kauffman bracket polynomial: (1) using skein
relations involving singular link diagrams, (2) using representations of the singular
braid monoid, (3) via a Yang–Baxter state model. We also study some properties
of the extended Kauffman bracket.

1. Introduction and background

Knot theory is one of the most active research areas in mathematics. In the recent
years, there has been a great interest in the study of knot-like objects, including
singular links, knotted graphs, virtual knots and pseudoknots, not only because of
their connections to other areas in mathematics, but also because of their applications
to physics, chemistry, and molecular biology.

In this paper we focus on singular links and construct an invariant for such objects,
based on the skein relation defining the Kauffman bracket for classical knots and
links. We hope our work will prove useful for young researchers interested in knot
theory for its intrinsic beauty or for its possible applications.

Knot theory studies embeddings of circles in three-dimensional space. When
more than one circle is embedded in R3, the resulting embedding is called a link;
otherwise, it is called a knot. In particular, a link is a disjoint union of knots, and these
knots are called the components of the link. For simplicity, whenever possible, we
will refer to both knots and links as knots. A diagram of a knot is a projection of the
knot into a plane, and the crossings of a knot diagram are artifacts of the projection.
We consider only regular diagrams, in which all crossings are double points.

A singular link is an immersion of a disjoint union of circles in three-dimensional
space, which has finitely many singularities, called singular crossings, that are all
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R1
⇐⇒

R1
⇐⇒

R2
⇐⇒

R2
⇐⇒

R3
⇐⇒

Figure 1. The Reidemeister moves.

R4
⇐⇒

R4
⇐⇒

R5
⇐⇒

R5
⇐⇒

Figure 2. Additional moves for singular links.

transverse double points. A singular link can be regarded as an embedding in R3

of a four-valent graph with rigid vertices. We can think of such vertices as being
rigid disks with four strands connected to it which turn as a whole when we flip the
vertex by 180 degrees.

The goal of knot theory is to know whether or not two knots are isotopic. Two
knots are called ambient isotopic if there is a continuously varying family of
embeddings connecting one to the other. It is well known that two knot diagrams
D1 and D2 represent ambient isotopic knots if and only if D1 and D2 are connected
by a finite sequence of the Reidemeister moves, depicted in Figure 1. For more
information on these and basic knot theory we refer the reader to the books [Adams
2004; Kauffman 2001; Murasugi 1996; Rolfsen 1976].

On the other hand, two singular link diagrams represent ambient isotopic singular
links if their diagrams differ by a finite sequence of the Reidemeister moves together
with the extended Reidemeister moves R4 and R5 shown in Figure 2; see [Kauffman
1989].
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Any knot or link can be assigned an orientation, and there are two possible
orientations for a knot and link component. The crossings of an oriented knot will
have designated arrows due to the assigned orientation of the knot, and there are
two types of crossings, namely positive and negative.

negative crossing positive crossing

Singular links may also be oriented or unoriented. If a singular link is oriented,
then the singular crossings (or four-valent vertices) are crossing-type oriented,
which is imposed by the fact that a singular link is an immersion in R3 of oriented
circles with transversal double points.

In practice, it is tedious to work with Reidemeister moves to determine whether
two diagrams represent equivalent knots (or singular links). Instead, one can work
with an invariant for knots (or singular links), which is a quantity associated
to the knot (or singular link) and is independent of the diagram of the knot (or
singular link). Equivalently, if K1 and K2 are equivalent knots (or singular links),
then Inv(K1) = Inv(K2) for any invariant Inv. These invariants can be numbers,
polynomials, groups, or more complex objects, such as homology theories. In this
paper we are concerned with polynomial invariants.

The Kauffman bracket [1987] is a polynomial invariant for unoriented knots and
links and is defined via a skein relation. A skein relation (as in (1-1)) is an identity
involving knot diagrams (or singular link diagrams) that are the same except in a
small neighborhood where they differ in the way indicated. The Kauffman bracket
of a knot diagram K is denoted by 〈K 〉, and is determined by〈 〉

= A
〈 〉

+ A−1
〈 〉

, (1-1)

〈 〉
= 1,

〈
K ∪

〉
= (−A2

− A−2) 〈K 〉. (1-2)

It is an enjoyable exercise to show that if two knot diagrams D1 and D2 differ by
a Reidemeister move R2 or R3, then 〈D1〉 = 〈D2〉. In other words, the Kauffman
bracket is a regular isotopy invariant for knots. Note that if an invariant upholds
the three Reidemeister moves it is called an ambient isotopy invariant for knots.

It is not hard to check that the Kauffman bracket has the following behavior with
respect to the Reidemeister move R1:〈 〉

= −A3
〈 〉

and
〈 〉

= −A−3
〈 〉

.
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By the skein relation defining the Kauffman bracket, every crossing in a knot
diagram L is locally replaced with one of the two possible smoothings,

or ,

which will result in a finite number of disjoint circles, called a state of K. Note
that if K contains n crossings, then there are 2n states associated with K. The
Kauffman bracket polynomial is thus a state model polynomial. In this state model,
the polynomial 〈K 〉 ∈ Z[A, A−1

] is given by

〈K 〉 =
∑
σ

Aα(σ)−β(σ)(−A2
− A−2)γ (σ )−1,

where the sum is taken over all states σ of the knot diagram K, and where

α(σ) is the number of crossings that have been replaced by ,

β(σ ) is the number of crossings that have been replaced by ,

and γ (σ ) is the number of disjoint loops in the state σ. Sometimes, α(σ) and
β(σ) are referred to as the numbers of the A-smoothings and A−1-smoothings,
respectively.

One can use the Kauffman bracket polynomial to obtain an ambient isotopy
invariant for oriented knots by counteracting the behavior of 〈 · 〉 with respect to
the move R1. This is done by defining the Kauffman X polynomial of an oriented
knot K given by

X (K ) := (−A3)−w(K )〈K 〉,

wherew(K ) denotes the writhe of the oriented knot diagram K, given by the number
of positive crossings minus the number of negative crossings, and where 〈K 〉 is the
Kauffman bracket of the unoriented knot diagram obtained from K. Since w(K )
and 〈K 〉 are invariant under the moves R2 and R3, it follows that X (K ) is invariant
under all three Reidemeister moves. Therefore, the polynomial X is an ambient
isotopy invariant for oriented knots.

It is well-known that any polynomial invariant for classical links extends (in
various ways) to an invariant of rigid-vertex isotopy for knotted four-valent graphs;
see, for example, [Jonish and Millett 1991; Kauffman 1989; 2005; Kauffman
and Magarshak 1995; Kauffman and Mishra 2013; Kauffman and Vogel 1992].
(Recall that a singular link can be regarded as a knotted four-valent graph with
rigid vertices.) In particular, Kauffman and Vogel [1992] showed that if I(K ) is a
regular isotopy polynomial invariant for unoriented knots and links, then imposing
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the skein relation

I
( )

= x I
( )

+ x I
( )

+ y I
( )

+ y I
( )

,

where x and y are commuting algebraic variables, yields a polynomial invariant,
I(G), of rigid-vertex regular isotopy for unoriented knotted graphs G (equivalently,
it yields a regular isotopy invariant for unoriented singular links). This method
certainly applies to the Kauffman bracket, and we start this paper by borrowing this
approach with x = 1 and y = 0.

We remind the reader that one can also consider a regular isotopy invariant for
oriented knots and links and extend it to oriented singular links by applying three
local replacements at each singular crossings (that is, at each oriented vertex) and
then taking a linear combination of the corresponding replacements. The three
replacements are the positive crossing, the negative crossing, and the oriented
smoothing at the vertex. For more details on this we refer the reader to [Kauffman
1989; Kauffman and Vogel 1992]. The work in [Kauffman and Magarshak 1995]
contains possible applications to molecular biology of invariants of knotted rigid-
vertex graphs. More recently, Kauffman and Mishra [2013] introduced a new
method for constructing invariants of rigid vertex graph embeddings by using
nonlocal combinatorial information that is available at each vertex. In particular,
this paper uses the notions of Gauss code and parity for rigid-vertex graphs, and
thus it is fundamentally different from the method mentioned earlier.

In this paper we work with a variant of the skein relation above to arrive at a
version of the Kauffman bracket for singular links. The main scope of this paper is
to show that the resulting polynomial for singular links can be defined in at least two
more ways. By providing three approaches to the same polynomial invariant for sin-
gular links, we hope that a young researcher reading our paper will find a great deal of
information which is educational and interesting, as it reveals beautiful connections
between knot theory, combinatorics, abstract algebra, and statistical mechanics.

In Section 2 we give a detailed proof that using x = 1 and y = 0 in the above
skein relation with I(K )= 〈K 〉 yields an invariant for unoriented singular links. We
refer to the resulting polynomial as the extended Kauffman bracket. In Section 3 we
provide some properties of the extended Kauffman bracket and its associated ambient
isotopy invariant for oriented singular links. In Section 4 we define a representation
of the singular braid monoid into the Temperley–Lieb algebra, and use it to define a
bracket polynomial for singular braids and ultimately recover the extended Kauffman
bracket for singular links. Finally, in Section 5 we provide another method for
constructing our extended Kauffman bracket; this method relies on a solution to the
Yang–Baxter equation. By interpreting singular link diagrams as abstract tensor dia-
grams, we arrive at a Yang–Baxter state model for the extended Kauffman bracket.
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2. An invariant for singular links

In this section, we extend the Kauffman bracket to singular links. For our purpose,
we need to associate a skein relation to a singular crossing, and then check that the
resulting polynomial is invariant under the extended Reidemeister moves R4 and R5.

Given a singular link diagram L , we resolve each singular crossing in L using
the skein relation 〈 〉

=

〈 〉
+

〈 〉
. (2-1)

This process results in writing 〈L〉 as a Z[A, A−1
]-linear combination of bracket

evaluations of knots and links, which are then evaluated using the rules in (1-1)
and (1-2). This yields a Laurent polynomial 〈L〉 ∈ Z[A, A−1

].
Note that 〈L〉 is already invariant under the Reidemeister moves R2 and R3,

since 〈 · 〉 is a regular isotopy invariant for knots. Thus, we only need to check that
〈L〉 is invariant under the moves R4 and R5. We show this below, where along the
way, we use the fact that 〈 · 〉 is invariant under the move R2 and the behavior of
〈 · 〉 with respect to the move R1:〈 〉

=

〈 〉
+

〈 〉
=

〈 〉
+

〈 〉
=

〈 〉
.

In addition,〈 〉
=

〈 〉
+

〈 〉

=

〈 〉
+ (−A3)(−A−3)

〈 〉
=

〈 〉
.

It follows that 〈L〉 is a regular isotopy polynomial invariant for singular links, which
we call the extended Kauffman bracket. We have proved the statement below.

Theorem 1. Let L be a singular link diagram and 〈L〉 ∈ Z[A, A−1
] be the polyno-

mial given by the following rules:〈 〉
=

〈 〉
+

〈 〉
,

〈 〉
= A

〈 〉
+ A−1

〈 〉
,〈 〉

= 1,
〈
K ∪

〉
= (−A2

− A−2) 〈K 〉.
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Then 〈L〉 is a regular isotopy invariant for L and satisfies〈 〉
=−A3

〈 〉
and

〈 〉
=−A−3

〈 〉
.

We can define the writhe of an oriented singular link diagram in a similar manner
as for the case of oriented knot diagrams. That is, the writhe w(L) of an oriented
singular link diagram L is given by the number of positive crossings minus the
number of negative crossings. Note that w(L) is independent of the number of
singular crossings in L .

Theorem 2. Let L be an oriented singular link diagram, and let X (L) be the
Laurent polynomial defined by

X (L) := (−A3)−w(L)〈L〉

where 〈L〉 is the extended Kauffman bracket of the unoriented singular link diagram
represented by L. Then X (L) is an ambient isotopy invariant for L.

3. Some properties of the extended Kauffman bracket

The goal of this section is to study the behavior of the extended Kauffman bracket
polynomial and the polynomial X for singular links with respect to disjoint unions,
connected sums, and mirror images of singular links.

For this purpose, we observe first that the extended Kauffman bracket of a
singular link can also be defined using a state-sum formula. Let L be a singular
link diagram with n classical crossings and m singular crossings. By resolving the
classical and singular crossings in L using the first two skein relations in Theorem 1,
we write 〈L〉 as a Z[A, A−1

]-linear combination of bracket evaluations of the states
associated with L . Note that L has 2n+m states and that each state is a disjoint
union of closed loops. Then

〈L〉 =
∑
σ

Aα(σ)−β(σ)(−A2
− A−2)γ (σ )−1,

where the sum is taken over all states σ associated with the singular link diagram L ,
where γ (σ ) is the number of disjoint loops in a state σ , and where α(σ) and β(σ)
are, respectively, the numbers of A-smoothings and A−1-smoothings in the state σ .
(Observe that these smoothings correspond to classical crossings in L .)

Proposition 3. Let L1 ∪ L2 be the disjoint union of singular link diagrams L1

and L2. Then

〈L1 ∪ L2〉 = (−A2
− A−2)〈L1〉〈L2〉.
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L1 L2 L1 # L2

Figure 3. A pair of disjoint links (left) and their connected sum (right).

Proof. Let L = L1 ∪ L2 and let S be the set of all of the states corresponding to L .
We have

〈L〉 = 〈L1 ∪ L2〉 =
∑
σ∈S

Aα(σ)−β(σ)(−A2
− A−2)γ (σ )−1.

Let S1 and S2 represent the set of all of the states associated with L1 and L2,
respectively. Observe that the disjoint union of two singular links does not introduce
any new crossings and that there is a canonical one-to-one correspondence between
S1×S2 and S. For σ1∈ S1, σ2∈ S2, denote by σ ∈ S the state of L which corresponds
to (σ1, σ2). Then

α(σ)= α(σ1)+α(σ2), β(σ )= β(σ1)+β(σ2), γ (σ )= γ (σ1)+ γ (σ2).

Therefore,

〈L〉 =
∑
σ∈S

Aα(σ)−β(σ)(−A2
− A−2)γ (σ )−1

=

∑
(σ1,σ2)∈S1×S2

Aα(σ1)+α(σ2)−β(σ1)−β(σ2)(−A2
− A−2)γ (σ1)+γ (σ2)−1

=

∑
(σ1,σ2)∈S1×S2

Aα(σ1)−β(σ1)(−A2
− A−2)γ (σ1)−1 Aα(σ2)−β(σ2)(−A2

− A−2)γ (σ2)−1+1

= 〈L1〉〈L2〉(−A2
− A−2). �

Corollary 4. Let L1 ∪ L2 be the disjoint union of oriented singular link diagrams
L1 and L2. Then,

X (L1 ∪ L2)= (−A2
− A−2)X (L1)X (L2).

Proof. Note that w(L1 ∪ L2)= w(L1)+w(L2). Combining this and making use
of Proposition 3,

X (L1 ∪ L2)= (−A3)−w(L1∪L2)〈L1 ∪ L2〉

= (−A3)−w(L1)〈L1〉 · (−A3)w(L2)〈L2〉 · (−A2
− A−2)

= (−A2
− A−2)X (L1)X (L2). �

A singular link diagram L is a connected sum, denoted by L = L1 # L2, if it is dis-
played as two disjoint singular link diagrams L1 and L2 connected by parallel embed-
ded arcs, up to planar isotopy. Figure 3 shows a connected sum of oriented diagrams.
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Proposition 5. Let L be a singular link diagram with the property that L = L1 # L2

for some singular link diagrams L1 and L2. Then the polynomial 〈L〉 can be
computed as

〈L〉 = 〈L1〉〈L2〉.

Proof. For every state σ of L , there is a pair of states σ1 and σ2 of L1 and L2,
respectively, such that σ = σ1 # σ2. Therefore, γ (σ )= γ (σ1)+ γ (σ2)− 1, while

α(σ)= α(σ1)+α(σ2) and β(σ)= β(σ1)+β(σ2).

Using a similar approach to that in the proof of Proposition 3, we have

〈L1#L2〉 =
∑
σ

Aα(σ)−β(σ)(−A2
−A−2)γ (σ )−1

=

∑
σ1

Aα(σ1)−β(σ1)(−A2
−A−2)γ (σ1)−1

∑
σ2

Aα(σ2)−β(σ2)(−A2
−A−2)γ (σ2)−1

= 〈L1〉〈L2〉. �

Corollary 6. Let L be an oriented singular link diagram such that L = L1 # L2 for
some oriented singular link diagrams L1 and L2. Then,

X (L)= X (L1)X (L2).

Proof. The proof is similar to that of Corollary 4, and thus it is omitted. �

The mirror image of a singular link with diagram L is the singular link whose
diagram L∗ is obtained from L by changing the crossing type for all classical
crossings in L . A singular link is achiral if it is ambient isotopic to its mirror image
and chiral otherwise.

Proposition 7. Let L∗ denote the mirror image of a singular link diagram L. Then
the extended Kauffman bracket of L∗ is obtained from the extended Kauffman
bracket of L by interchanging A and A−1. That is,

〈L∗〉(A)= 〈L〉(A−1).

Proof. According to the state-sum formula defining the extended Kauffman bracket
polynomial, it is easy to see that reversing the classical crossings in L replaces an
A-smoothing with an A−1-smoothing and vice versa. Hence, the statement follows
at once. �

Corollary 8. If 〈L〉(A) 6= 〈L〉(A−1), then L is a chiral singular link.

4. A representation of the singular braid monoid

In this section we provide a different approach to the extended Kauffman bracket
for singular links, via a representation of the singular braid monoid.
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4.1. The singular braid monoid. Let n be a positive integer, n ≥ 2. Recall that
the singular braid monoid on n strands, denoted SBn , is the monoid generated by
elements σi , σ

−1
i , and τi , for 1≤ i ≤ n− 1, where

σi =

i i+1

· · · · · · , σ−1
i =

i i+1

· · · · · · , τi =

i i+1

· · · · · · ,

and satisfying the following relations, under the operation given by vertical con-
catenation of diagrams:

(1) gi hj = hj gi for all gi , hi ∈ {σi , σ
−1
i , τi } and 1≤ i, j ≤ n−1 with |i− j |> 1,

(2) σiσ
−1
i = 1n = σ

−1
i σi for all 1≤ i ≤ n− 1,

(3) σiσjσi = σjσiσj for all 1≤ i, j ≤ n− 1 with |i − j | = 1

(4) τiσjσi = σjσiτj for all 1≤ i, j ≤ n− 1 with |i − j | = 1,

(5) σiτi = τiσi for all 1≤ i ≤ n− 1.

Note that the identity element, denoted 1n , is represented by n vertical strands
with no crossings. The geometric representations of the first three relations is given
below (observe that relations (2) and (3) mimic the Reidemeister moves R2 and R3,
respectively):

(1)
⇐⇒ ,

(2)
⇐⇒ ,

(3)
⇐⇒ .

These three relations (where in (1) we exclude the relations involving the genera-
tors τi ) are exactly the relations in the well-known Artin braid group.

In addition, note that relations (4) and (5) defining the singular braid monoid
SBn mimic, respectively, the moves R4 and R5 for singular link diagrams:

(4)
⇐⇒ ,

(5)
⇐⇒ .
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Due to Joan Birman [1993], we know that every singular link can be expressed as
the closure of a singular braid, via ambient isotopy. Figure 4 displays the closure β
of a braid β.

There are many different ways to represent a singular link as a closed singular
braid. Bernd Gemein [1997] showed that two singular braids have isotopic closures
if and only if there exists a finite sequence of singular braid relations and/or extended
Markov moves (detailed below) transforming one singular braid into the other.

Let w ∈ SBn be a braid on n strands and let w∗ be the natural inclusion of w
into SBn+1 obtained by adding an (n+1)-st strand to w. Then the following are
called the extended Markov moves:

(M1) (a) τiw ∼ wτi for all 1≤ i ≤ n− 1,
(b) σiw ∼ wσi for all 1≤ i ≤ n− 1,

(M2) w∗σn ∼ w ∼ w
∗σ−1

n .

Figure 5 shows isotopic closed braids that differ by an extended Markov move.
Therefore, the works [Birman 1993; Gemein 1997] allow us to relate the theory

of singular links with the theory of the singular braid monoid. In particular, we can
study the extended Kauffman bracket via the singular braid monoid.

β =

Figure 4. The closure of a braid.

w

M1(a)
⇐⇒ w , w

M1(b)
⇐⇒ w ,

w
M2
⇐⇒ w .

Figure 5. Equivalent singular links under extended Markov moves.
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4.2. The Temperley–Lieb algebra. The Temperley–Lieb algebra played a central
role in the discovery of the Jones polynomial [1985], and in the subsequent de-
velopments relating knot theory, topological quantum field theory, and statistical
mechanics [Kauffman 2001]. Originally presented in terms of abstract generators
and relations, it was combinatorially described by Kauffman as a planar diagram
algebra in terms of his bracket polynomial for unoriented knots.

For each integer n≥ 2, the n-strand Temperley–Lieb algebra, denoted TLn , is the
unital, associative algebra over the ring Z[A, A−1

] generated by ui , for 1≤ i ≤ n−1,
where

ui =

i i+1

· · · · · · ,

along with the identity diagram, denoted 1n , and subject to the following relations
(where multiplication is given by vertical concatenation of diagrams):

• u2
i = (−A2

− A−2)ui for all 1≤ i ≤ n− 1:

i i+1

· · · · · · = (−A2
− A−2)

i i+1

· · · · · · ,

• ui uj ui = ui for all 1≤ i, j ≤ n− 1 with |i − j | = 1:

· · · · · · = · · · · · · ,

• ui uj = uj ui for all 1≤ i, j ≤ n− 1 with |i − j |> 1.

Observe that a generic element in TLn is a formal Z[A, A−1
]-linear combination of

n-strand diagrams formed by multiplications of the generators ui and the identity 1n .
Define a trace function tr :TLn→Z[A, A−1

] given by tr(D)= (−A2
− A−2)c−1,

where c is the number of disjoint loops in the diagram D obtained by closing the
diagram D ∈ TLn in the same way that we close a braid or a singular braid. Then
extend tr by linearity to all elements of TLn .

It is easy to see that the function tr satisfies

tr(xy)= tr(x) tr(y) for all x, y ∈ TLn . (4-1)
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4.3. A representation of SBn. We observe that for any given homomorphism
ρ : SBn → TLn , we can compose it with the trace function tr to obtain, for any
singular braid element w ∈ SBn , a polynomial (tr ◦ρ)(w) ∈ Z[A, A−1

].
Inspired by the skein relations defining the extended Kauffman bracket for

singular links, we define a homomorphism ρ : SBn→ TLn as follows:

τi
ρ
7−→ ui + 1n,

σi
ρ
7−→ A−1ui + A1n,

σ−1
i

ρ
7−→ Aui + A−11n.

We can think of ρ as a function that resolves the crossings of the singular braid,
since each σi , σ

−1
i , and τi represents a crossing of the strands in the singular braid.

Theorem 9. The map ρ is a representation of the singular braid monoid SBn into
the Temperley–Lieb algebra TLn . That is, ρ preserves the singular braid monoid
relations.

Proof. First, observe that ρ preserves the commuting relations in SBn , since the
generators for the algebra TLn satisfy similar commuting relations. Note also that
it must be the case that ρ preserves the relations (2)–(5) in SBn , since the extended
Kauffman bracket is invariant under the Reidemeister moves R2 and R3, as well
as under the moves R4 and R5. However, we will check two of the singular braid
monoid relations and leave the other relations as an exercise.

We start off by verifying that ρ(τiσjσi )= ρ(σjσiτj ). First, observe that

ρ(τiσjσi )= ρ(τi )ρ(σj )ρ(σi )

= (ui + 1n)(A−1uj + A1n)(A−1ui + A1n),

ρ(σjσiτj )= ρ(σj )ρ(σi )ρ(τj )

= (A−1uj + A1n)(A−1ui + A1n)(uj + 1n).

Employing the relations in TLn , we have

(ui + 1n)(A−1uj + A1n)(A−1ui + A1n)

= A2ui + u2
i + A−2ui uj ui + ui uj + A−2uj ui + A21n + ui + uj

= A2ui + (−A2
− A−2)ui + A−2ui + ui uj + A−2uj ui + A21n + ui + uj

= ui uj + A−2uj ui + A21n + ui + uj

= A2uj + (−A2
− A−2)uj + A−2uj + ui uj + A−2uj ui + A21n + ui + uj

= A2uj + u2
j + A−2uj ui uj + ui uj + A−2uj ui + A21n + ui + uj

= (A−1uj + A1n)(A−1ui + A1n)(uj + 1n).
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It follows that the fourth relation defining SBn is preserved by the map ρ. Next we
show that ρ(τiσi )= ρ(σiτi ). Using basic computations, we obtain

ρ(τiσi )= ρ(τi )ρ(σi )= (ui + 1n)(A−1ui + A1n)

= A−1u2
i + A−1ui + Aui + A1n

= (A−1ui + A1n)(−A−3)(ui + 1n)

= ρ(σi )ρ(τi )= ρ(σiτi ).

This shows that ρ also preserves the fifth relation defining SBn . �

Remark 10. For any a, b∈Z[A, A−1
], the homomorphism f :SBn→TLn given by

τi
f
7→ aui + b1n and σ±1

i
f
7→ A∓1ui + A±11n

also defines a representation of the singular braid monoid SBn into the Temperley–
Lieb algebra TLn . The proof that f preserves the singular braid monoid relations
follows verbatim as that for the map ρ.

4.4. The bracket polynomial of a singular braid. In this section, we show how
to recover the extended Kauffman bracket of singular links by making use of the
map ρ and the trace function tr.

Let β ∈ SBn be a singular braid on n strands and denote by wr(β) the writhe
of β, defined as the sum of the number of generators of type σi minus the sum of
the generators of type σ−1

j in the expression of β.
Define the function 〈 · 〉 : SBn→ Z[A, A−1

], given by the formula

〈β〉 = (−A3)−wr(β)(tr ◦ρ)(β).

We call 〈β〉 the bracket polynomial of the singular braid β.

Proposition 11. The bracket polynomial of a singular braid is well-defined on
singular braids, and is invariant under the extended Markov moves. Moreover, if L
is a singular link diagram in braid form such that L = β for some β ∈ SBn , then

〈β〉 = (−A3)−wr(β)
〈β〉 = (−A3)−wr(β)

〈L〉.

Proof. Since ρ is a representation of SBn and the writhe of the singular braid is
invariant under the relations in SBn , it follows that the bracket polynomial of a
singular braid is well-defined on singular braids. The trace function tr satisfies
(4-1), and thus

(tr ◦ρ)(τiw)= tr(ρ(τi )ρ(w))= tr(ρ(w)ρ(τi ))= (tr ◦ρ)(wτi ),

and similarly,
(tr ◦ρ)(σiw)= (tr ◦ρ)(wσi )
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for all τi , σi , w ∈ SBn . Thus 〈 · 〉 is invariant under the extended Markov moves of
type (M1). Moreover, the coefficient (−A3)−wr(β) in the expression of 〈 · 〉 cancels
the effect of a Markov move of type (M2):

〈w∗σn〉 = (−A3)−wr(β)−1(tr ◦ρ)(w∗σn)= (−A3)−wr(β)(tr ◦ρ)(w)= 〈w〉.

Finally, due to [Birman 1993; Gemein 1997] and the definitions for the maps ρ and
tr, the second part of the statement follows immediately. �

5. The Yang–Baxter equation and the extended Kauffman bracket

We will show now how to arrive at the extended Kauffman bracket by interpreting
singular link diagrams as abstract tensor diagrams and employing a solution to the
Yang–Baxter equation.

5.1. A Yang–Baxter model for the extended Kauffman bracket. Our approach
here is an extension from classical knots to singular links of the Yang–Baxter state
model for the Kauffman bracket, as introduced in [Kauffman 2001].

A singular link diagram D can be decomposed with respect to a height function
into minima (creations), maxima (annihilations) and crossings (interactions), as
illustrated in Figure 6. That is, the diagram D is constructed from interconnected
maxima, minima, and crossings (there might be some curves with no critical points
vis-a-vis the height function), and we want to associate to them square matrices
with entries in the ring Z[A, A−1

]. We start by labeling the edges of the diagram
D with spins from the index set I = {1, 2}.

We will denote the following portions of the link diagram as follows:

Ma,b ←→ a b
, Ma,b

←→
a b

,

Ra,b
c,d ←→

a b

c d
, Ra,b

c,d ←→
a b

c d
,

Qa,b
c,d ←→

a b

c d
, δa

b ←→

a

b
,

where a, b, c, d ∈ I and

δa
b =

{
1, if a = b,
0, if a 6= b.

Using these conventions, we wish to associate to any singular link diagram D
a polynomial τ(D) ∈ Z[A, A−1

] so that τ(D) recovers the extended Kauffman
bracket 〈D〉. The expression τ(D) is obtained by taking the sum over all internal
labels (spins on the arcs of the diagram D) of the products of symbols representing
maxima, minima, and crossings (classical and singular).



212 CARMEN CAPRAU, ALEX CHICHESTER AND PATRICK CHU

a b c d

e f g h

i j k l
m n

Figure 6. An abstract tensor singular link diagram.

For example, for the diagram D in Figure 6, τ(D) is given by the following sum
of products of abstract tensor symbols:

τ(D)=
∑

a,b,...,n∈I

Ma,d Mb,c Ra,b
e, f Re, f

i, j M i,m Q j,k
m,n Mn,l Rg,h

k,l Qc,d
g,h,

where the sum is over all possible choices of indices (spins from I ) in the expression.
Note that the order of the factors in a product of abstract tensors does not matter,
since the abstract tensors are elements of the commutative ring Z[A, A−1

].
We will use the following notational conventions:

X = (X)a,bc,d =


X1,1

1,1 X1,1
1,2 X1,1

2,1 X1,1
2,2

X1,2
1,1 X1,2

1,2 X1,2
2,1 X1,2

2,2

X2,1
1,1 X2,1

1,2 X2,1
2,1 X2,1

2,2

X2,2
1,1 X2,2

1,2 X2,2
2,1 X2,2

2,2


and

(B)a,b = (B)a,b = (B)ab =
[

B1,1 B1,2

B2,1 B2,2

]
.

Observe that ∑
c,d∈I

Xa,b
c,d Y c,d

e, f = (XY )a,be, f for all a, b, e, f ∈ I.

This can be easily seen by rewriting Xa,b
c,d as X i

j , where i = b + 2(a − 1) and
j = d + 2(c− 1), since

4∑
j=1

X i
j Y j

k = (XY )ik .

To arrive at the bracket polynomial, the matrices corresponding to maxima and
minima need to satisfy∑

a,b∈I

Ma,b Ma,b
←→ ←→−A2

− A−2.
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By imposing Ma,b = Ma,b for a, b ∈ I, the above equality becomes∑
a,b∈I

(Ma,b)
2
=−A2

− A−2
=

∑
a,b∈I

(Ma,b)2. (5-1)

Since we want τ(D) to be a topological invariant, pairs of maxima and minima
should cancel as shown:

a

i

b

∼

a

b

∼

a

i

b

Therefore, we need that∑
i∈I

Ma,i Mi,b = δ
a
b =

∑
i∈I

Mb,i M i,a

or, equivalently, ∑
i∈I

Ma,i Mi,b = δ
a
b =

∑
i∈I

Mb,i Mi,a. (5-2)

It follows that the matrix M = (Ma,b) should be its own inverse. The following
matrix satisfies (5-1) and (5-2):

M =
[

0 i A
−i A−1 0

]
, where i2

=−1.

We wish τ(D) to satisfy the Kauffman bracket skein relation

τ

( )
= Aτ

( )
+ A−1τ

( )
and thus the R-matrix should satisfy

Ra,b
c,d ←→

a b

c d
= A

a b

c d
+ A−1

a b

c d
.

Therefore,

Ra,b
c,d = Aδa

c δ
b
d + A−1 Ma,b Mc,d for all a, b, c, d ∈ I.

Note that the matrix U = (U a,b
c,d ) := (M

a,b Mc,d), where

U a,b
c,d =

a b

c d
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has the following expression:

U =


M1,1 M1,1 M1,1 M1,2 M1,1 M2,1 M1,1 M2,2

M1,2 M1,1 M1,2 M1,2 M1,2 M2,1 M1,2 M2,2

M2,1 M1,1 M2,1 M1,2 M2,1 M2,1 M2,1 M2,2

M2,2 M1,1 M2,2 M1,2 M2,2 M2,1 M2,2 M2,2

=


0 0 0 0
0 −A2 1 0
0 1 −A−2 0
0 0 0 0

.
Moreover, observe that

(δa
c δ

b
d)=


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

= [1 0
0 1

]
⊗

[
1 0
0 1

]
= (δa

c )⊗ (δ
b
d),

where ⊗ represents the Kronecker product of matrices.
Furthermore, the R-matrix should satisfy

Ra,b
c,d ←→

a b

c d
= A

a b

c d
+ A−1

a b

c d
and thus

Ra,b
c,d = AMa,b Mc,d + A−1δa

c δ
b
d for all a, b, c, d ∈ I.

We arrive at the following matrices associated with classical crossings:

R =


A 0 0 0
0 0 A−1 0
0 A−1 A−A−3 0
0 0 0 A

 and R =


A−1 0 0 0

0 A−1
−A3 A 0

0 A 0 0
0 0 0 A−1

 .
Finally, we wish τ(D) to also satisfy

τ

( )
= τ

( )
+ τ

( )
which forces the matrix Q associated with a singular crossing to be given by

Qa,b
c,d = δ

a
c δ

b
d +Ma,b Mc,d for all a, b, c, d ∈ I.

Equivalently,

Q = (Qa,b
c,d )=


1 0 0 0
0 1−A2 1 0
0 1 1−A−2 0
0 0 0 1

.
Now that we have defined τ(D) for a given singular link diagram D, we need

to make sure that it is a regular isotopy invariant for D. That is, we need to verify
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that if D1 and D2 are singular link diagrams that differ by a Reidemeister move R2
or R3, or by an extended Reidemeister move R4 or R5, then τ(D1)= τ(D2).

An easy check shows that matrices R and R are inverses of each other, since
R R = I4×4 = R R. Equivalently,

∑
i,i∈I

Ra,b
i, j Ri, j

c,d ←→ ∼ ←→ δa
c δ

b
d ,

∑
i,i∈I

Ra,b
i, j Ri, j

c,d ←→ ∼ ←→ δa
c δ

b
d .

Hence, τ(D) is invariant under the Reidemeister move R2. Moreover, we have that

∑
i, j,k∈I

Ra,b
i, j R j,c

k, f Ri,k
d,e ←→ ∼ ←→

∑
i, j,k∈I

Rb,c
i, j Ra,i

d,k Rk, j
e, f .

The latter relation is the Yang–Baxter equation (YBE):∑
i, j,k∈I

Ra,b
i, j R j,c

k, f Ri,k
d,e =

∑
i, j,k∈I

Rb,c
i, j Ra,i

d,k Rk, j
e, f ,

which can be rewritten as

(R⊗ I )(I ⊗ R)(R⊗ I )= (I ⊗ R)(R⊗ I )(I ⊗ R).

That is, the R-matrix as defined above is a solution of the YBE. Similarly, one can
easily verify that the matrix R is a solution of the YBE. It follows that τ(D) is
invariant under the Reidemeister move R3.

Furthermore, it is not hard to check that the following holds:

∑
i, j,k∈I

Qa,b
i, j R j,c

k, f Ri,k
d,e ←→

•

∼

•

←→

∑
i, j,k∈I

Rb,c
i, j Ra,i

d,k Qk, j
e, f ,

or, equivalently,

(Q⊗ I )(I ⊗ R)(R⊗ I )= (I ⊗ R)(R⊗ I )(I ⊗ Q).

A similar relation holds for R being replaced by R. Hence, τ(D) is invariant under
the extended Reidemeister move R4.

Finally, observe that RQ = Q R and RQ = Q R, or equivalently,

RQ R = Q and RQ R = Q.

Therefore, τ(D) is invariant under the extended Reidemeister move R5.
According to the above discussion, we have proved the following statement.
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Theorem 12. The polynomial τ(D) ∈ Z[A, a−1
] is an invariant of regular isotopy

for singular links.

Remark 13. We note that τ(D) is the unnormalized extended Kauffman bracket.
That is,

τ(D)= (−A2
− A−2)〈D〉,

where 〈D〉 is the extended Kauffman bracket introduced in Section 2.

5.2. Yet another representation of SBn. We can use the matrices R, R, and Q to
define a representation of the singular braid monoid SBn into a matrix algebra over
the ring Z[A, A−1

]. Observe first that we can regard a generator for SBn as an
abstract tensor diagram. For example,

σi = · · · · · · ←→ δ
a1
b1
· · · Rai ,ai+1

bi ,bi+1
· · · δ

an
bn
∈ M2n×2n (Z[A, A−1

]).

Inspired by this, we define a homomorphism 1 : SBn→ M2n×2n (Z[A, A−1
]) given

by
σi 7→ I⊗(i−1)

⊗ R⊗ I⊗(n−i−1),

σ−1
i 7→ I⊗(i−1)

⊗ R⊗ I⊗(n−i−1),

τi 7→ I⊗(i−1)
⊗ Q⊗ I⊗(n−i−1).

Since the polynomial τ(D) is a regular isotopy invariant for singular links, it
follows that the map 1 preserves the singular braid monoid relations. Therefore,
the following statement holds.

Proposition 14. The mapping 1 is a representation of the singular braid monoid
SBn into the matrix algebra M2n×2n (Z[A, A−1

]).

The mapping 1 provides yet another method for obtaining the extended bracket
polynomial of a singular link. Let L be a singular link diagram in braid form and
let β ∈ SBn be the singular braid whose closure is L . That is, L = β:

L = β .

When closing a braid, each braid strand contributes a diagram and an associated
matrix of the form

ηa
b =

a

b
←→

∑
c∈I

Ma,c Mb,c, where a, b ∈ I.



THREE APPROACHES TO A BRACKET POLYNOMIAL FOR SINGULAR LINKS 217

The matrix η = (ηa
b) is

η =

[
M1,1 M1,1

+M1,2 M1,2 M1,1 M2,1
+M1,2 M2,2

M2,1 M1,1
+M2,2 M1,2 M2,1 M2,1

+M2,2 M2,2

]
=

[
−A2 0

0 −A−2

]
.

Observe that Trace(η), the trace of the matrix η, is −A2
− A−2. Moreover,

τ(L)= Trace(η⊗n1(β)),

whenever β ∈ SBn and β = L .
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