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McDuff and Schlenk recently determined exactly when a four-dimensional
symplectic ellipsoid symplectically embeds into a symplectic ball. Similarly,
Frenkel and Müller recently determined exactly when a symplectic ellipsoid
symplectically embeds into a symplectic cube. Symplectic embeddings of more
complicated sets, however, remain mostly unexplored. We study when a sym-
plectic ellipsoid E(a, b) symplectically embeds into a polydisc P(c, d). We
prove that there exists a constant C depending only on d/c (here, d is assumed
greater than c) such that if b/a is greater than C , then the only obstruction
to symplectically embedding E(a, b) into P(c, d) is the volume obstruction.
We also conjecture exactly when an ellipsoid embeds into a scaling of P(1, b)
for b ≥ 6, and conjecture about the set of (a, b) such that the only obstruction to
embedding E(1, a) into a scaling of P(1, b) is the volume. Finally, we verify our
conjecture for b = 13
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1. Introduction

Statement of results. Let (X0, ω0) and (X1, ω1) be symplectic manifolds. A sym-
plectic embedding of (X0, ω0) into (X1, ω1) is a smooth embedding ϕ such that
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ϕ∗(ω1) = ω0. It is interesting to ask when one symplectic manifold embeds into
another. For example, define the (open) four-dimensional symplectic ellipsoid

E(a, b)=
{
(z1, z2) ∈ C2

:
π |z1|

2

a
+
π |z2|

2

b
< 1

}
, (1-1)

and define the (open) symplectic ball B(a) := E(a, a). These inherit symplectic
forms by restricting the standard form ω=

∑2
k=1 dxkdyk on R4

= C2. McDuff and
Schlenk [2012] determined exactly when a four-dimensional symplectic ellipsoid
E(a, b) embeds symplectically into a symplectic ball, and found that if b/a is
small, then the answer involves an “infinite staircase” determined by the Fibonacci
numbers with odd index, while if b/a is large then all obstructions vanish except
for the volume obstruction.

To give another example, define the (open) four-dimensional polydisc

P(a, b)=
{
(z1, z2) ∈ C2

: π |z1|
2 < a, π |z2|

2 < b
}
, (1-2)

where a, b≥1 are real numbers and the symplectic form is again given by restricting
the standard symplectic form on R4. Frenkel and Müller [2012] determined exactly
when a four-dimensional symplectic ellipsoid symplectically embeds into a cube
C(a) := P(a, a) and found that part of the expression involves the Pell numbers.
Cristofaro-Gardiner and Kleinman [2013] studied embeddings of four-dimensional
ellipsoids into scalings of E

(
1, 3

2

)
and also found that part of the answer involves

an infinite staircase determined by a recursive sequence.
Here we study symplectic embeddings of an open four-dimensional symplectic

ellipsoid E(a, b) into an open four-dimensional symplectic polydisc P(c, d). By
scaling, we can encode this embedding question as the function

d(a, b) := inf
{
λ : E(1, a) s

↪→ P(λ, bλ)
}
, (1-3)

where a and b are real numbers that are both greater than or equal to 1.
The function d(a, b) always has a lower bound,

√
a/(2b), the volume obstruction.

Our first theorem states that for fixed b, if a is sufficiently large then this lower bound
is sharp, i.e., all embedding obstructions vanish aside from the volume obstruction:

Theorem 1.1. If a ≥ 9(b+ 1)2/(2b), then d(a, b)=
√

a/(2b).

This is an analogue of a result of Buse and Hind [2013] concerning symplectic
embeddings of one symplectic ellipsoid into another.

From the previously mentioned work of McDuff and Schlenk, Frenkel and
Müller, and Cristofaro-Gardiner and Kleinman, one expects that if a is small then
the function d(a, b) should be more rich. Our results suggest that this is indeed the
case. For example, we completely determine the graph of d

(
a, 13

2

)
(see Figure 1).
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Figure 1. The graph of d
(
a, 13

2

)
. The red line represents the vol-

ume obstruction.

Theorem 1.2. For b = 13
2 , we have d(a, b) ≥

√
a/13 and is equal to this lower

bound for all a except in the following cases:

(i) d
(
a, 13

2

)
= 1 for all a ∈

[
1, 25

2

]
.

(ii) For k ∈ Z, with 0≤ k ≤ 4,

d(a, b)=


2a

25+2k
if a ∈ [αk, 13+ 2k],

26+4k
25+2k

if a ∈ [13+ 2k, βk],

where

α0 =
25
2 , α1 =

351
25 , α2 =

841
52 , α3 =

961
52 , α4 =

1089
52 ,

β0 =
351
25 , β1 =

1300
81 , β2 =

15028
841 , β3 =

18772
961 , β4 =

2548
121 .

Interestingly, the graph of d
(
a, 13

2

)
has only finitely many nonsmooth points,

in contrast to the infinite staircases in [McDuff and Schlenk 2012; Frenkel and
Müller 2012; Cristofaro-Gardiner and Kleinman 2013]. This appears to be the case
for many values of b. For example, we conjecture what the function d(a, b) is for
all b ≥ 6; see Conjecture 6.3.

Our proofs rely on the following remarkable theorem of Frenkel and Müller
[2012]. Let N (a, b) be the sequence (indexed starting at 0) of all nonnegative
integer linear combinations of a and b, arranged with repetitions in nondecreasing
order, and let M(a, b) be the sequence whose k-th term is

min
{
ma+ nb : (m+ 1)(n+ 1)≥ k+ 1

}
,

where k,m, n ∈Z≥0. Write N (a, b)≤M(c, d) if each term in the sequence N (a, b)
is less than or equal to the corresponding term in M(c, d). Frenkel and Müller
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showed that embeddings of an ellipsoid into a polydisc are completely determined
by the sequences M and N :

Theorem 1.3 [Frenkel and Müller 2012]. There is a symplectic embedding

E(a, b) s
↪→ P(c, d)

if and only if N (a, b)≤ M(c, d).

To motivate the sequences M and N , note that N is the sequence of ECH capaci-
ties of the symplectic ellipsoid E(a, b), while M is the sequence of ECH capacities
of the symplectic polydisc P(c, d). The ECH capacities are a sequence of nonneg-
ative (possibly infinite) real numbers, defined for any symplectic four-manifold,
that obstruct symplectic embeddings. We will not discuss ECH capacities here; see
[Hutchings 2014] for a survey. Theorem 1.3 is equivalent to the statement that the
ECH capacities give sharp obstructions to embeddings of an ellipsoid into a polydisc.

2. Proof of Theorem 1.1

Weight sequences and the #-operation. We begin by describing the machinery
that will be used to prove Theorem 1.1.

Let a2 be a rational number. McDuff [2011] showed that there is a finite sequence

W (1, a2)= (a1, . . . , an),

called the (normalized) weight sequence for a2, such that E(1, a2) embeds into a
symplectic ellipsoid if and only if the disjoint union

⊔
B(W ) :=

⊔
B(ai ) embeds

into that ellipsoid.
To describe the weight sequence, let

W (a2, 1)= (X×`0
0 , X×`1

1 , . . . , X×`k
k ), (2-1)

where X0> X1> · · ·> Xk and `k ≥ 2. The `i are the multiplicities of the entries X i

and come from the continued fraction expansion

a2
= `0+

1

`1+
1

`2+···+
1
`k

:= [`0; `1, . . . , `k].

The entries of (2-1) are defined as

X−1 := a2, X0 = 1, X i+1 = X i−1− `i X i for i ≥ 0.

Important properties of the weight sequence include∑
i

a2
i = a2, (2-2)∑

i

ai = a2
+ 1− 1

q
, (2-3)

where for all i , we have ai ≤ 1 and a = p/q .
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We will also make use of a helpful operation, #, as in [McDuff 2011]. Suppose
s1 and s2 are sequences indexed with k ∈ Z, starting at 0. Then,

(s1 # s2)k = sup
i+ j=k

(s1)i + (s2) j .

A useful application of # is the following lemma:

Lemma 2.1 [McDuff 2011]. For all a, b > 0, we have

N (a, a) # N (a, b)= N (a, a+ b).

More generally, for all `≥ 1, we have

(#`N (a, a)) # N (a, b)= N (a, b+ `a).

This lemma together with the weight sequence and scaling implies that

N (1, a2)= N (a1, a1) # · · · # N (an, an). (2-4)

Similar to [McDuff 2011], this machinery allows us to reduce Theorem 1.1 to a
ball-packing problem.

Proof of Theorem 1.1. We begin by noting that the ECH capacities for B(a) are

N (a, a)= (0, a, a, 2a, 2a, 2a, 3a, 3a, 3a, 3a, . . . ),

where the terms Nk(a, a) of this sequence are of the form da and for each d there
are d + l entries occurring at

1
2(d

2
+ d)≤ k ≤ 1

2(d
2
+ 3d). (2-5)

Similarly, for the sequence (a/
√

2b)M(1, b), each term (a/
√

2b)Mk(1, b) is of
the form d(a/

√
2b), where

k ≤
d2

4b
+
(1+ b)d

2b
+

b2
− 2b+ 1

4b
. (2-6)

By continuity, it suffices to study d(a2, b) with a2 rational. So, we can prove
that the volume obstruction is the only obstruction when a ≥ 3(b+ 1)/

√
2b by

showing that

N (1, a2)≤
a
√

2b
M(1, b) (2-7)

for said a-values.
By (2-5) and (2-6), it is therefore sufficient to show that∑

i

di ai ≤
a
√

2b
d (2-8)
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whenever d1, . . . , dm, d are nonnegative integers such that∑
i

(d2
i + di )≤ 2

(
d2

4b
+
(1+ b)d

2b
+

b2
− 2b+ 1

4b

)
. (2-9)

We do so by considering the following cases:

Case 1:
∑

i d2
i ≤ d2/(2b). In this case, the Cauchy–Schwarz inequality along with

(2-2) implies (2-8).

Case 2:
∑

i d2
i > d2/(2b). This case, along with (2-9), implies∑

i

di ai ≤
∑

i

di ≤
(1+ b)d

b
+

b2
− 2b+ 1

2b
.

So, we need
(1+ b)d

b
+

b2
− 2b+ 1

2b
≤

a
√

2b
d.

It follows that

a ≥
b+ 1
√

2b

(
2+

b+ 1
d

)
. (2-10)

Now let d = b+ 1. We see that (2-6) is equivalent to

k ≤ b+ 1+ 1
4b
.

It is easy to see that Nk(1, a2) ≤ (a/
√

2b)Mk(1, b) for all such k values. As
such, we can apply d = b+ 1 to (2-10) to get

a ≥
3(b+ 1)
√

2b
, (2-11)

and hence the desired result. �

Remark 2.2. We allow d = b+ 1 in the statement of Theorem 1.1. However, if
we show Nk(1, a2)≤ (a/

√
2b)Mk(1, b) for all

k ≤
d2

4b
+
(1+ b)d

2b
+

b2
− 2b+ 1

4b
,

then we can use this d in (2-10) to achieve a sharper bound for a.

3. Proof of Theorem 1.2, Part I

We begin by computing d
(
a, 13

2

)
on the regions where it is linear.

Nondifferentiable points and Ehrhart polynomials. We first compute d at certain
values. These will eventually be the points a where d

(
a, 13

2

)
is not differentiable.
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Proposition 3.1. We have

d
(
1, 13

2

)
= 1, d

( 25
2 ,

13
2

)
= 1, d

(
13, 13

2

)
=

26
25 ,

d
( 351

25 ,
13
2

)
=

26
25 , d

(
15,13

2

)
=

10
9 , d

( 1300
81 ,

13
2

)
=

10
9 ,

d
( 841

52 ,
13
2

)
=

29
26 , d

(
17,13

2

)
=

34
29 , d

( 15028
841 ,

13
2

)
=

34
29 ,

d
( 961

52 ,
13
2

)
=

31
26 , d

(
19,13

2

)
=

38
31 , d

( 18772
961 ,

13
2

)
=

38
31 ,

d
( 1089

52 ,
13
2

)
=

33
26 , d

(
21,13

2

)
=

42
33 , d

( 2548
121 ,

13
2

)
=

42
33 .

To prove the proposition, the main difficulty comes from the fact that applying
Theorem 1.3 in principle requires checking infinitely many ECH capacities. Our
strategy for overcoming this difficulty is to study the growth rate of the terms in the
sequences M and N . We will find that in every case needed to prove Proposition 3.1,
one can bound these growth rates to conclude that only finitely many terms in the
sequences need to be checked. This is then easily done by computer. The details
are as follows:

Proof. Step 1: For the sequence N (a, b), let k(a, b, t) be the largest k such that
Nk(a, b)≤ t . Similarly, for the sequence M(c, d), let l(c, d, t) be the largest l such
that Ml(c, d)≤ t . To show that E(a, b) s

↪→ P(c, d), by Theorem 1.3, we just have
to show that for all t , we have k(a, b, t)≥ l(c, d, t).

Step 2: We can estimate k(a, b, t) by applying the following proposition:

Proposition 3.2. If a, b, r , and t are all positive integers, then

k
(

a
r
,

b
r
, t
)
=

1
2ab

(tr)2+
1
2
(tr)

(
1
a
+

1
b
+

1
ab

)
+

1
4

(
1+

1
a
+

1
b

)
+

1
12

(
a
b
+

b
a
+

1
ab

)

+
1
a

a−1∑
j=1

ξ
j (−tr)

a

(1−ξ jb
a )(1−ξ j

a )
+

1
b

b−1∑
l=1

ξ
l(−tr)
b

(1−ξ la
b )(1−ξ

l
b)
, (3-1)

where ξd = e2π i/d .

Proof. The number of terms in N (a/r, b/r) that are less than t is the same as the
number of lattice points (m, n) in the triangle bounded by the positive x- and y-axes
and the line x(a/r)+ y(b/r)≤ t . For integral t , this number can be computed by
applying the theory of “Ehrhart polynomials”. Proposition 3.2 follows by applying
[Beck and Robins 2007, Theorem 2.10]. �

We will be most interested in this proposition in the case where a = r . Note that
by the last two terms of the formula in Proposition 3.2, we have k(a/r, b/r, t) is a
periodic polynomial with period ab.

We also need an argument to account for the fact that Proposition 3.2 is only
for integral t , whereas the argument in Step 1 involves real t . To account for this,
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we use an asymptotic argument. Specifically, for E(1, a/r), with a, r ∈ Z≥1, we
bound the right-hand side of (3-1) from below by taking the floor function of t . It
is convenient for our argument to further bound this expression from below by

c1

r2 (r t − 1)2+
c2

r
(r t − 1)+ c3, (3-2)

where the ci are the coefficients of the right-hand side of (3-1) that do not involve t
or r .

This is the lower bound that we will use for k(1, a/r, t).

Step 3: To get an upper bound l(c, d, t) for M(c, d), recall that

Ml(c, d)=min{cm+ dn : (m+ 1)(n+ 1)≥ l + 1}.

For cm+ dn = t , we solve for m in terms of n and find(
t − dn

c
+ 1

)
(n+ 1)− 1≥ l.

Considering m, n ∈ R, we can take the derivative of the left side of the inequality
with respect to n and then set the expression equal to 0 to maximize it. We do the
same with m to obtain(

t
2d
+

c
2d
+

1
2

)(
t

2c
+

d
2c
+

1
2

)
− 1≥ l.

By simplifying, we get that an upper bound for l is

l(c, d, t)=
t2

4cd
+
(c+ d)t

2cd
+
(c− d)2

4cd
. (3-3)

Our strategy now is to check that for each point in Proposition 3.1, we have
k(a, b, t)≥ l(c, d, t) asymptotically in t for the corresponding (a, b, c, d). From
there, we can check that for a sufficient number of terms, N (1, a)≤ M(λ, λb).

Step 4: Since the rest of the proof amounts to computation, it is best summarized
by Table 1. In the table, kt2 and lt2 denote the coefficients of the quadratic terms
in the upper and lower bounds from Steps 2 and 3, while kt and lt denote the
corresponding coefficients of the linear terms.

The t-column gives a sufficient number to check up to before the asymptotic
bounds from the previous three steps are enough. Note that if kt2 and lt2 in any
row are equal, then linear coefficients, kt and lt , are used to make an asymptotic
argument; this explains the appearance of the “N/A”s in the table. It is simple
to check by computer that the relevant N and M sequences in each row satisfy
N ≤ M once one knows that the problem only has to be checked up to the t in the
t-column.

The rightmost column of Table 1 gives an ECH capacity that shows that one
cannot shrink λ further, i.e., the claimed embeddings are actually sharp. �
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E(1,a) s
↪→P(λ,λb) kt2 lt2 kt lt t ECH

obstruction

E
(
1, 25

2

) s
↪→P

(
1, 13

2

) 1
25

1
26 N/A N/A 51 1

E(1,13) s
↪→P

( 26
25 ,

169
25

) 1
26

625
17576 N/A N/A 33 13

E
(
1, 351

25

) s
↪→P

( 26
25 ,

169
25

) 25
702

625
17576 N/A N/A 522 13

E(1,15) s
↪→P

( 10
9 ,

65
9

) 1
30

81
2600 N/A N/A 29 15

E
(
1, 1300

81

) s
↪→P

( 10
9 ,

65
9

) 81
2600

81
2600

691
1300

27
52 272 15

E
(
1, 841

52

) s
↪→P

( 29
26 ,

29
4

) 26
841

26
841

447
841

15
29 122 17

E(1,17) s
↪→P

( 34
29 ,

221
29

) 1
34

841
30056 N/A N/A 27 17

E
(
1, 15028

841

) s
↪→P

( 34
29 ,

221
29

) 841
30056

841
30056

7935
15028

435
884 32 17

E
(
1, 961

52

) s
↪→P

( 31
26 ,

31
4

) 26
961

26
961

507
961

15
31 23 19

E(1,19) s
↪→P

( 38
31 ,

247
31

) 1
38

961
37544 N/A N/A 7 19

E
(
1, 18772

961

) s
↪→P

( 38
31 ,

247
31

) 961
37544

961
37544

759
1444

465
988 28 19

E
(
1, 1089

52

) s
↪→P

( 33
26 ,

33
4

) 26
1089

26
1089

571
1089

15
33 14 21

E(1,21) s
↪→P

( 42
33 ,

273
33

) 1
42

121
5096 N/A N/A 26 21

E
(
1, 2548

121

) s
↪→P

( 42
33 ,

273
33

) 121
5096

121
5096

1335
2548

165
364 41 21

Table 1. The computations from Step 4 of the proof of Proposition 3.1.

The linear steps. Given the computations from the previous section, the computa-
tion of d

(
a, 13

2

)
for all the “linear steps”, i.e., those portions of the graph of d for

which d is linear, is straightforward. Indeed, we have the following two lemmas:

Lemma 3.3. For fixed b, the function d(a, b) is monotonically nondecreasing.

Proof. This follows from the fact that E(1, a) s
↪→ E(1, a′) if a ≤ a′. �

Lemma 3.4 (subscaling). d(λa, b)≤ λd(a, b).

Proof. This follows from the fact that E(1, λa) s
↪→ E(λ, λa) for λ≥ 1. �

By monotonicity, we know that d
(
a, 13

2

)
is constant on the intervals[

1, 25
2

]
,

[
13, 351

25

]
,

[
15, 1300

81

]
,

[
17, 15028

841

]
,

[
19, 18772

961

]
,

[
21, 2548

121

]
.

We now explain why for k ∈ Z, with 0≤ k ≤ 4, we have

d
(
a, 13

2

)
=

2a
25+ 2k

for a ∈ [αk, 13+ 2k],

where α0 =
25
2 , α1 =

351
25 , α2 =

841
52 , α3 =

961
52 , and α4 =

1089
52 .
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Given the critical points we have determined, along with the subscaling lemma,
we have 2a/(25+ 2k) as an upper bound for d

(
a, 13

2

)
on the above intervals.

Intervals on which d
(
a, 13

2
)

is linear. We also know that

d
(
a, 13

2

)
= sup

{
Nx(1, a)

Mx
(
1, 13

2

) : x ∈ N

}
≥

Nl(1, a)

Ml
(
1, 13

2

) for any l.

Here is a representative example of our method:

Example 3.5. To illustrate how this can give us a suitable lower bound, consider
the case where x = 13:

sup

{
Nx(1, a)

Mx
(
1, 13

2

) : x ∈ N

}
≥

N13(1, a)

M13
(
1, 13

2

) = 2a
25

for a ∈
[ 25

2 , 13
]
.

This lower bound equals the upper bound given by Lemma 3.4, so we have
proven Theorem 1.2 for a ∈

[ 25
2 , 13

]
.

The general method is similar: given a ∈ [αk, 13+2k], we can find an l such that

Nl(1, a)

Ml
(
1, 13

2

) = 2a
25+ 2k

.

Such obstructing values of l are given in the following table:

k
2

25+2k l

0 2
25 13

1 2
27 15

2 2
29 17

3 2
31 19

4 2
33 21

Given a ∈ [αk, 13+ 2k] for each integer k ∈ [0, 4], we have found that the upper
and lower bounds of d

(
a, 13

2

)
equal 2a/(25+ 2k). Thus, we have proven our claim

for these intervals.

4. Proof of Theorem 1.2, Part II

To complete the proof of Theorem 1.2, we need to show that aside from the linear
steps described in the previous section, the graph of d

(
a, 13

2

)
is equal to the graph

of the volume obstruction. To do this, we adapt some of the ideas from [McDuff
and Schlenk 2012] in a purely combinatorial way. This will be needed to complete
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the proof of Theorem 1.2. Our combinatorial perspective on the techniques from
[McDuff and Schlenk 2012] borrows many ideas from [McDuff 2011].

Preliminaries. This section collects the main combinatorial machinery that will
be used to complete the proof. The basic idea behind our proof will be to reduce to
a ball-packing problem, as in the proof of Theorem 1.1. The machinery we develop
here will be useful for approaching this ball-packing problem.

We begin with two definitions:

Definition 4.1. Let Cr(d, di )= (d ′, d ′i ), where d ′=2d−d1−d2−d3, d ′i =d−d j−dk

for i, j, k = 1, 2, 3 and d ′i = di for all i ≥ 4. We call Cr the Cremona transform.

Definition 4.2. We say (d, di ) ∈ R1+n is

(i) positive if d, di ≥ 0 for all i ,

(ii) ordered if di , di+1 6= 0 implies di ≥ di+1 and di 6= 0, d j = 0 implies i < j ,

(iii) reduced if positive, ordered, and d ≥ d1+ d2+ d3.

Remark 4.3. It will be important to note that Cr(Cr(d, di ))= (d, di ).

We now define a product analogous to the intersection product in [McDuff and
Schlenk 2012]:

Definition 4.4. (x, xi ) · (y, yi )= xy−
∑

i

xi yi .

We also define a vector−K ∈R1+n that is motivated by the standard anticanonical
divisor in the M-fold blow up of CP2.

Definition 4.5. −K = (3, 1, 1, . . . , 1).

The following is a combinatorial analogue of “positivity of intersections” that
will be useful:

Lemma 4.6. If (x, xi ) is reduced, (d, di ) is positive, −K · (d, di ) ≥ 0, and d ≥
max(di ), then (x, xi ) · (d, di )≥ 0.

Proof. Let (d ′, d ′i ) be the vector obtained from ordering di . As

(x, xi ) · (d, di )≥ (x, xi ) · (d ′, d ′i ),

we can assume without loss of generality that (d, di ) is ordered. If x3 = 0 then
xi = 0 for i ≥ 3 and

(x, xi ) · (d, di )= xd − x1d1− x2d2.

As d ≥max(di ), we know that this expression is greater than or equal to

(x − x1− x2)d.

As (x, xi ) is reduced, this is greater than or equal to 0.
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We now assume without loss of generality that x3 = 1. Hence, xi ≤ 1 for i ≥ 3.
Let e1 = x1− 1 and e2 = x2− 1. Then

xd ≥ (3+ e1+ e2)d

as (x, xi ) is reduced. This expression is equal to

3d + de1+ de2.

As d ≥ d1, d2, we now have the following chain of inequalities:

3d + de1+ de2 ≥ 3d + d1e1+ d2e2 ≥
∑

i

di + d1e1+ d2e2

= d1x + d2x +
∑
i≥3

di ≥ d1x1+ d2x2+
∑
i≥3

xi di =
∑

i

di xi . �

In [McDuff and Schlenk 2012], Cremona transformations preserve the intersec-
tion product. Here we prove an analogous result.

Lemma 4.7. Cr(x, xi ) ·Cr(y, yi )= (x, xi ) · (y, yi ).

Proof.

Cr(x, xi )·Cr(y, yi )= x ′y′−
∑

i

x ′i y′i

= (2x−x1−x2−x3)(2y−y1−y2−y3)−(x−x2−x3)(y−y2−y3)

−(x−x1−x3)(y−y1−y3)−(x−x2−x3)(y−y2−y3)−
∑
i>3

xi yi

= xy−x1 y1−x2 y2−x3 y3−
∑
i>3

xi yi

= xy−
∑

i

xi yi

= (x, xi )·(y, yi ). �

The following sets will also be useful:

Definition 4.8. F =
{
(d, di ) : (d, di ) · (−K + (d, di ))≥ 0, d, di ∈ Z

}
.

Definition 4.9. F+ =
{
(d, di ) : (d, di ) ∈ F, d, di ≥ 0

}
.

Definition 4.10. E =
{
(d, di ) : (d, di ) · (d, di )≥−1,−K · (d, di )= 1, d, di ∈ Z

}
.

Remark 4.11. Observe Cr(F)⊂ F and Cr(E)⊂ E . Additionally, F, F+, and E
are invariant under permutations of di .

Remark 4.12. Note that (0,−1, 0, . . . , 0) ∈ E .

Definition 4.13. Let C be the set of (x, xi ) such that x, xi ∈ Z and

(a) (x, xi ) · (x, xi )≥ 0,

(b) (x, xi ) · (d, di )≥ 0 for all (d, di ) ∈ E .
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Both Li and Li [2002] and McDuff and Schlenk [2012] have found that compo-
sitions of Cremona transformations and permutations can reduce certain classes.
Here we prove a combinatorial version of those lemmas.

Lemma 4.14. If (x, xi ) ∈ C then by a sequence of Cremona transforms and per-
mutations of xi , we can transform (x, xi ) to (x ′, x ′i ), where (x ′, x ′i ) is reduced.

Proof. We begin with some helpful results:

Sublemma 4.15. Cr(C)⊂ C.

Proof. The fact that Cr preserves (a) follows from the fact that Cr preserves the
intersection product. To complete the sublemma, note that if (d, di ) ∈ E , then

Cr(x, xi ) ·(d, di )=Cr2(x, xi ) ·(d ′, d ′i )= (x, xi ) ·(d ′, d ′i )≥ 0 as (d ′, d ′i )∈ E . �

Sublemma 4.16. If P is some permutation, P(C)⊂ C.

Proof. If (d, di ) ∈ E , then

P(x, xi ) · (d, di )= (x, xi ) · P−1(d, di ) as P−1(E)⊂ E . �

Sublemma 4.17. If (x, xi ) ∈ C , then x, xi ≥ 0.

Proof. If di = (−δi j ) and (0, di ) ∈ E then we have j ≤ length(di ) for all j . So,
(x, xi ) · (0, di )= x j ≥ 0. We also have (x, xi )·(1, 1, 1, 0, 0, . . . , 0)= x−x1−x2≥0.
As x1, x2 ≥ 0, this implies that x ≥ 0. �

Let oCr denote the transformation Cr followed by ordering the di . Fix (x, xi )∈C .
Let (xk, xk

i )=oCrk(x, xi ). Let α(k)= xk
−xk

1−xk
2−xk

3 . It suffices to show α(k)≥0
for some k. Assume not. Then α(k)≤−1 for all k. By Sublemmas 4.15 and 4.16,
oCr(C)⊂ C . For k ≥ 1,

xk
= xk−1

+α(k− 1)≤ xk−1
− 1.

Thus, there exists k such that xk < 0. This contradicts Sublemma 4.17, completing
the proof that we may reduce (x, xi ). �

We now prove Lemma 4.18, a result analogous to [McDuff and Schlenk 2012,
Proposition 1.2.12(i)].

Lemma 4.18. If (x, xi ) ∈ C then (x, xi ) · (d, di )≥ 0 for all (d, di ) ∈ F.

Proof. By Lemma 4.14 there exists A, a composition of Cr and permutations,
such that A(x, xi )= (x ′, x ′i ) with (x ′, x ′i ) reduced. For (d, di ) ∈ F, let A(d, di )=

(d ′, d ′i ) ∈ F . So,

(x, xi ) · (d, di )= A(x, xi ) · A(d, di )= (x ′, x ′i ) · (d
′, d ′i ).

Let e = d, ei = di if di > 0 and ei = 0 if di ≤ 0. We note (e, ei ) ∈ F and

(x ′, x ′i ) · (d
′, d ′i )≥ (x

′, x ′i ) · (e, ei ).
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If (e, ei ) ·(e, ei )≥ 0 then the Cauchy–Schwarz inequality shows (x ′, x ′i ) ·(e, ei )≥ 0.
Otherwise, (e, ei ) · (−K )≥ 0. Then∑

i

e2
i + ei ≤ e2

+ 3e

implies e ≥ ei , so Lemma 4.6 shows (x ′, x ′i ) · (e, ei )≥ 0. �

Remark 4.19. By scaling, Lemma 4.18 extends to (x, xi ) that satisfy (a) and (b)
of Definition 4.13 with x, xi ∈Q.

A key lemma. We now use the combinatorial machinery from the previous section,
together with a reduction to the ball-packing problem, to prove the key lemma
needed to complete the proof of Theorem 1.2; see part (iii) of Lemma 4.24 below.

To reduce to a ball-packing problem, note that [Frenkel and Müller 2012, Propo-
sition 1.4] states that for rational a, we have that

E(1, a) s
↪→ P(λ, cλ)

if and only if
E(1, a)t B(λ)t B(cλ) s

↪→ B((1+ c)λ), (4-1)

where t denotes disjoint union. Since, as explained in [Hutchings 2014], one can
compute the ECH capacities of the disjoint union in terms of the #-operation, we
know that the embedding in (4-1) exists if and only if

N (1, a) # N (λ, λ) # N (cλ, cλ)≤ N
(
(1+ c)λ, (1+ c)λ

)
. (4-2)

For the rest of the proof of Theorem 1.2, we are looking at intervals for a on
which the graph of d is equal to the volume obstruction; we therefore want to show
that (4-2) holds with λ=

√
a/(2c) (of course, for our proof one can specify c= 13

2 ,
but we state things here in slightly greater generality). By an argument analogous
to the argument used in the proof of Theorem 1.1, it is sufficient to show(∑

i

d2
i + di

)
+ e2

1+ e1+ e2
2+ e2 ≤ d2

+ 3d

implies (∑
i

ai di

)
+ cλe1+ λe2 ≤ (1+ c)λd

for all nonnegative integers d, di , e1, e2. Let m1 = e1,m2 = e2 and mi = di−2 for
i ≥ 3 and let w1(a) = cλ,w2(a) = λ and wi (a) = ai−2 for i ≥ 3. Hence, it is
enough to show ∑

i

m2
i +mi ≤ d2

+ 3d

implies
m ·w(a)≤ (1+ c)λd. (4-3)
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Let µ(d;m)(a)= (m ·w(a))/d. Then (4-3) is equivalent to µ(d;m)(a)≤ (1+c)λ.
By Lemma 4.18, it is sufficient to check the case∑

i

m2
i = d2

+ 1, (4-4)∑
i

mi = 3d − 1. (4-5)

Let E be the set of (d;m) satisfying (4-4) and (4-5) with d,mi nonnegative integers.
Define ε by

m =
d

(1+ c)λ
w(a)+ ε.

We now have a series of lemmas, culminating in the key lemma, Lemma 4.24.

Lemma 4.20. For (d;m) ∈ E , we have:

(i) µ(d;m)(a)≤ (1+ c)λ
√

1+ 1
d2 .

(ii) µ(d;m)(a) > (1+ c)λ if and only if ε ·w > 0.

(iii) µ(d;m)(a) > (1+ c)λ implies
∑

i ε
2
i < 1.

(iv) Let y(a)= a+ 1− 2(1+ c)λ. Then

−

∑
i

εi = 1+
d

(1+ c)λ

(
y(a)−

1
q

)
,

where a = p/q.

Proof. Part (i) follows from
∑

i w
2
i = c2λ2

+ λ2
+
∑

i a2
i = (1+ c)2λ2 and the

Cauchy–Schwarz inequality. To prove (ii), note

ε ·w = m ·w−
d

(1+ c)λ
w ·w

= d
(

m ·w
d
− (1+ c)λ

)
= d

(
µ(d;m)(a)− (1+ c)λ

)
.

To prove (iii), note∑
i

ε2
i = ε · ε = m ·m+

d2

(1+ c)2λ2w ·w−
2d

(1+ c)λ
m ·w

= 1+ d2
(

2−
2

(1+ c)λ
m ·w

d

)
< 1 if µ(d;m)(a) > (1+ c)λ.
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To prove (iv), note

−

∑
i

εi =
d

(1+ c)λ

∑
i

wi −
∑

i

mi

=
d

(1+ c)λ

(
a+ 1−

1
q
+ cλ+ λ

)
− 3d − 1

= 1+
d

(1+ c)λ

(
a+ 1−

1
q
− 2(1+ c)λ

)
. �

Lemma 4.21. Let (d;m) ∈ E and suppose that I is the maximal nonempty open
interval such that µ(d;m)(a) > (1+ c)λ for all a ∈ I . Then there exists a unique
a0 ∈ I such that l(a0) = l(m), where l(a0) is the length of wi (a) and l(m) is the
number of nonzero terms in m. Furthermore, l(a)≥ l(m) for all a ∈ I .

Proof. We adapt the proof of Lemma 2.1.3 in [McDuff and Schlenk 2012]. For i ≥ 3,
wi (a) is piecewise linear and is linear on open intervals that do not contain an
element a′ with length l(a′)≤ i . Therefore, if l(a) > l(m) for all a ∈ I ,

µ(d;m)(a)−
cλm1+ λm2

d

is linear on I . This is impossible as cλ(1 − m1/d) + λ(1 − m2/d) is concave
and I is bounded. Thus there exists a0 ∈ I with l(a0)≤ l(m). If l(a) < l(m) then∑

i≤l(a) m2
i < d2

+ 1, which implies

m ·w ≤ ‖w‖
√∑

i≤l(a)

m2
i ≤ d‖w‖ = (1+ c)λd,

which is impossible for a ∈ I . The proof of uniqueness is the same as in [McDuff
and Schlenk 2012, Lemma. 2.1.3]. �

Lemma 4.22. Let (d;m) be in E with µ(d;m)(a) > (1+ c)λ for some a. Let
J = k, . . . , k+ s− 1 be a block of s ≥ 2 consecutive integers such that wi (a) is
constant for i ∈ J . Then:

(i) One of the following holds:
• mk = · · · = mk+s−1.
• mk = · · · = mk+s−2 = mk+s−1+ 1.
• mk − 1= mk+1 = · · · = mk+s−1.

(ii) There is at most one block of length s ≥ 2 on which the mi are not all equal.

(iii) If there is a block J of length s ≥ 2 on which the mi are not all equal then∑
i∈J

ε2
i ≥

s− 1
s
.
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Proof. See the proof of [McDuff and Schlenk 2012, Lemma. 2.1.7]. McDuff and
Schlenk consider the case of embedding an ellipsoid into a ball, but their proof
generalizes without change to our situation. �

Lemma 4.23. Let (d;m) ∈ E be such that µ(d;m) > (1+ c)λ for some a with
l(a) = l(m) = M. Let wk+1, . . . , wk+s be a block, but not the first block, of w(a)
(the first two terms of w(a) are not considered to be part of any block).

(i) If this block is not the last block, then∣∣mk − (mk+1+ · · ·+mk+s +mk+s+1)
∣∣<√s+ 2.

If this block is the last block, then∣∣mk − (mk+1+ · · ·+mk+s)
∣∣<√s+ 1.

(ii) It is always true that

mk −

M∑
i=k+1

mi <
√

M − k+ 1.

Proof. This is similar to the proof of Lemma 4.22; see the proof of [McDuff and
Schlenk 2012, Lemma 2.1.8], which generalizes without change to our situation. �

Lemma 4.24. Assume that (d;m) ∈ E and µ(d;m)(a) > (1+ c)λ for some a with
l(a)= l(m). Assume further that y(a) > 1/q. Let

vM =
d

q(1+ c)
λ

and let L = l(m). Then:

(i)
∣∣∑

i εi
∣∣≤√L.

(ii) vM > 1
3 .

(iii) Let δ = y(a)− 1/q > 0. Then

d ≤
(1+ c)λ

δ

(√
L − 1

)
≤
(1+ c)λ

δ

(√
q +bac+ 2− 1

)
and

√
q +bac+ 2≥ 1+ δvMq.

Proof. Part (i) follows from
∑

i ε
2
i < 1. Part (ii) follows from the same argument

as [McDuff and Schlenk 2012, Lemma 5.1.2]. From [McDuff and Schlenk 2012,
Sublemma 5.1.1], we have q +bac+ 2≥ L , so Lemma 4.20 implies√

q +bac+ 2≥
√

L ≥ 1+
d

(1+ c)λ

(
y(a)−

1
q

)
= 1+

d
(1+ c)λ

δ = 1+ qvMδ.

This also shows

d ≤
(1+ c)λ

δ

(√
q +bac+ 2− 1

)
. �



236 MADELEINE BURKHART, PRIERA PANESCU AND MAX TIMMONS

5. Proof of Theorem 1.2, Part III

With the Lemma 4.24 now shown, we can complete the proof of Theorem 1.2. We
explain the computation on various intervals separately.[ 1300

81 , 841
52

]
. We now wish to prove that d

(
a, 13

2

)
=
√

a/13 for a ∈
[ 1300

81 ,
841
52

]
.

Previously, we proved( 1300
81 ,

13
2

)
=

10
9 and d

( 841
52 ,

13
2

)
=

29
26 .

If d
(
a, 13

2

)
is not equal to

√
a/13 on the interval

[ 1300
81 ,

841
52

]
, there exists (d;m)∈ E

such that
µ(d;m)(a) > 7.5λ for some a ∈

[1300
81 ,

841
52

]
.

So, Lemma 4.24 shows that there exists a0 in
[ 1300

81 ,
841
52

]
with µ(d;m)(a0) > 7.5λ

and l(a0)= l(m). Let a0 = p/q = 16+ p′/q . As 16< a0 < 16+ 1
5 , we know q ≥ 5.

For a0 ∈
[ 1300

81 ,
841
52

]
and q ≥ 5, we know

δ ≥
1300
81
+ 1− 15

√
1300
81·13

−
1
q
≥

31
81
−

1
q
.

Thus, Lemma 4.24 shows√
q + 18≥ 1+

(
31
81
−

1
q

)
q
3
.

Hence, q ≤ 67.
We also note that for 1300

81 < a0 <
841
52 and q ≥ 5, we have

λ≤

√
841

52·13
=

29
26

and δ ≥
31
81
−

1
q
≥

74
405

.

Thus, Lemma 4.24 shows

d ≤
7.5 · 29

26
74

405

(
√

85− 1) < 377.

Using Mathematica we can reduce the possibilities for (d;m) to 38 candidates. We
can then use Lemma 4.23 to reduce these 38 cases to 11 possible candidates, which
can easily verified to not be obstructive by simple calculations.[ 15028

841 , 961
52

]
. We now will show d

(
a, 13

2

)
=
√

a/13 for a ∈
[ 15028

841 ,
961
52

]
. Previously,

we proved
d
( 15028

841 ,
13
2

)
=

34
29 and d

( 961
52 ,

13
2

)
=

31
26 .

If d
(
a, 13

2

)
is not equal to

√
a/13 on the interval

[ 15028
841 ,

961
52

]
, then there exists

(d;m) ∈ E such that

µ(d;m)(a) > 7.5λ for some a ∈
[ 15028

841 ,
961
52

]
.
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Then Lemma 4.24 shows that there exists a0 ∈
[15028

841 ,
961
52

]
with µ(d,m)(a0)> 7.5λ

and l(a0)= l(m). Let a0= p/q with gcd(p, q)= 1. For a0 ∈
[ 15028

841 ,
961
52

]
, we know

δ ≥
15028

841
+ 1− 15

√
15028
841·13

−
1
q
=

1079
841
−

1
q
.

Thus, Lemma 4.24 shows√
q + 19≥ 1+

(
1079
841
−

1
q

)
q
3
.

Hence, q ≤ 11. We can then verify these cases directly using Mathematica, which
by simple calculations can be verified not to be obstructive.[ 18772

961 , 1089
52

]
. We will now show d

(
a, 13

2

)
=
√

a/13 for a ∈
[ 18772

961 ,
1089

52

]
. Previ-

ously, we proved

d
( 18772

961 ,
13
2

)
=

38
31 and d

( 1089
52 ,

13
2

)
=

33
26 .

If d
(
a, 13

2

)
is not equal to

√
a/13 on the interval

[ 18772
961 ,

1089
52

]
, then there exists

(d;m) ∈ E such that

µ(d;m)(a) > 7.5λ for some a ∈
[ 18772

961 ,
1089

52

]
.

Then Lemma 4.24 shows that there exists a0∈
[18772

961 ,
1089
52

]
withµ(d,m)(a0)>7.5λ

and l(a0)= l(m). Let a0= p/q with gcd(p, q)= 1. For a0 ∈
[ 18772

961 ,
1089
52

]
, we know

δ ≥
18772

961
+ 1− 15

√
18772
961·13

−
1
q
=

2063
961
−

1
q
.

Thus, Lemma 4.24 shows√
q + 21≥ 1+

(
2063
961
−

1
q

)
q
3
.

Hence, q ≤ 6. We can then verify these cases directly using Mathematica to check
these cases and we find no obstructions.[ 2548

121 , 27
]
. For a ∈

[ 2548
121 , 27

]
, we have√

q + 29≥
√

q +bac+ 2 and δ ≥ 21− 15
√

21
13 .

Hence, Lemma 4.24 implies√
q + 29≥ 1+

(
21− 15

√
21
13

)
q
3
,

which implies q < 8. We can then verify these cases directly using Mathematica to
check these cases and we find no obstructions.
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[27, ∞). We will apply Remark 2.2. As
√

27≥
7.5
√

13

(
2+

7.5
d

)
for d ≥ 18,

Remark 2.2 implies we only need to verify Nk(1, a2)≤ (a/13)Mk(1, 6.5) for all

k ≤
182

26
+

7.5 · 18
13

+
6.52
− 13+ 1
26

< 25.

For a2
≥ 27 and k ≤ 25, we have

Nk(1, a2)= k ≤

√
27
13

Mk(1, 6.5)≤
a
√

13
Mk(1, 6.5).

This completes the proof that d(a, b)=
√

a/13 for a ∈ [27,∞).

6. Conjectures

We now present some conjectures concerning exactly when an ellipsoid embeds
into a polydisc.

Extensions of Theorem 1.1. To consider an interesting refinement of Theorem 1.1,
define

V (b)= inf
{

A : d(a, b)=
√

a
2b

for a ≥ A
}
.

Theorem 1.1 implies V (b)≤ 9
2(b+ 2+ 1/b).

Proposition 6.1. For b ≥ 1,

V (b)≥ 2b
(

2bbc+ 2
⌈√

2b+{b}
⌉
− 1

b+bbc+
⌈√

2b+{b}
⌉
− 1

)2

.

Proof.

d
(
2bbc+2

⌈√
2b+{b}

⌉
−1, b

)
≥

N2bbc+2d
√

2b+{b}e−1

(
1, 2bbc+2

⌈√
2b+{b}

⌉
−1
)

M2bbc+2d
√

2b+{b}e−1(1, b)

=
2bbc+2

⌈√
2b+{b}

⌉
−1

b+bbc+
⌈√

2b+{b}
⌉
−1

>

√
2bbc+2

⌈√
2b+{b}

⌉
−1

2b
.

This implies

V (b)≥ 2b
(

2bbc+ 2
⌈√

2b+{b}
⌉
− 1

b+bbc+
⌈√

2b+{b}
⌉
− 1

)2

. �
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Experimental evidence seems to suggest that for b > 1 this bound is sharp.

Conjecture 6.2. For b > 1,

V (b)= 2b
(

2bbc+ 2
⌈√

2b+{b}
⌉
− 1

b+bbc+
⌈√

2b+{b}
⌉
− 1

)2

.

Generalizations of Theorem 1.2. The methods used to compute the graph of
d(a, 6.5) should extend for the most part to any b. In light of those techniques,
experimental evidence, and a conjecture regarding d(a, b) for b ∈ Z by David
Frenkel and Felix Schlenk relayed to us by Daniel Cristofaro-Gardiner, we offer a
conjecture regarding the graph of d(a, b) for b ≥ 6; see Figure 2.

Conjecture 6.3. For b ≥ 6, we have d(a, b)=
√

a/(2b) with the exception that

d(a, b)= 1 for a ∈
[
1, b+bbc

]
.

For k ∈ Z, with 0≤ k <
√

2b+{b}, we have

d(a, b)=
a

b+bbc+ k
for a ∈

[
αk, 2(bbc+ k)+ 1

]
,

d(a, b)=
2(bbc+ k)+ 1

b+bbc+ k
for a ∈

[
2(bbc+ k)+ 1, βk

]
,

where

α0= b+bbc, α1=β0=
(b+bbc+1)(2bbc+1)

b+bbc
,

αk =
(b+bbc+k)2

2b
for k ≥ 2, βk = 2b

(
2(bbc+k)+1

b+bbc+k

)2

for k ≥ 1.

For integers m, if

b ∈
[
m− m

(m+1)2
,m+ 1

2+m

]
,

let b = m+ ε. Then

d(a, b)=
ma+ 1

2m2+ (2+ ε)m+ ε
for a ∈ [α∗, 2m+ 4],

d(a, b)=
m(2m+ 4)+ 1

2m2+ (2+ ε)m+ ε
for a ∈ [2m+ 4, β∗],

where

α∗=
1

2(2m3+2m2ε)

(
8m3
+4m2

+8m2ε+4m3ε+ε2
+2mε2

+b2ε2
−(1+m)(2m+ε)

×

√
−4m2+8m3+4m4−4mε+8m2ε+4m3ε+ε2+2mε2+m2ε2

)
,

β∗=
2(ε+m+8mε+8m2

+20m2ε+16m3ε+16m4
+4m4ε+4m5)

(1+m)2(2m+ε)2
.
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d(
a,

b)

a
b

Figure 2. Approximate plot of the graph of d(a, b).

We note that Conjecture 6.3 implies Conjecture 6.2 for b ≥ 6. Furthermore, we
prove that the conjecture is a lower bound for d(a, b).

Proposition 6.4. For b ≥ 6, we have d(a, b)≥
√

a/(2b) and

d(a, b)≥ 1 for a ∈
[
1, b+bbc

]
.

For k ∈ Z, with 0≤ k <
√

2b+{b}, we have

d(a, b)≥
a

b+bbc+ k
for a ∈

[
αk, 2(bbc+ k)+ 1

]
,

d(a, b)≥
2(bbc+ k)+ 1

b+bbc+ k
for a ∈

[
2(bbc+ k)+ 1, βk

]
,

where αk, βk, α
∗, β∗ are as in Conjecture 6.3. For integers m, if

b ∈
[
m− m

(m+1)2
,m+ 1

2+m

]
,

let b = m+ ε. Then

d(a, b)≥
ma+ 1

2m2+ (2+ ε)m+ ε
for a ∈ [α∗, 2m+ 4],

d(a, b)≥
m(2m+ 4)+ 1

2m2+ (2+ ε)m+ ε
for a ∈ [2m+ 4, β∗].

Proof. We know that d(a, b)≥
√

a/(2b) because symplectic embeddings are volume
preserving. We also have

d(a, b)≥
N1(1, a)
M1(a, b)

=
1
1
= 1.
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Additionally, for k ∈Z, with ≤ k <
√

2b+{b}, and a ∈
[
2(bbc+k), 2(bbc+k)+1

]
,

we have

d(a, b)≥
N2(bbc+k)+1(1, a)
M2(bbc+k)+1(1, b)

=
a

b+bbc+ k
.

Thus,

d(a, b)≥ 1 for a ∈
[
b+bbc, 2bbc+ 1

]
, k = 0,

d(a, b)≥
2bbc+ 1
b+bbc

for a ∈
[
(b+bbc+ 1)(2bbc+ 1)

b+bbc
, 2bbc+ 3

]
, k = 1,

d(a, b)≥
√

a
2b

for a ∈
[
αk, 2(bbc+ k)+ 1

]
, k ≥ 2.

We also have, for a ∈
[
2(bbc+ k)+ 1,∞

)
,

d(a, b)≥
N2(bbc+k)+1(1, a)
M2(bbc+k)+1(1, b)

=
2(bbc+ k)+ 1

b+bbc+ k
.

Thus,

d(a, b)≥
√

a
2b

for a ∈
[
2(bbc+ k)+ 1, βk

]
.

Furthermore, if

b ∈
[
m− m

(m+1)2
,m+ 1

2+m

]
for some m ∈ Z and a ∈

[
2m+ 4− 1/m, 2m+ 4

]
, then

d(a, b)≥
N(m+1)3(1, a)
M(m+1)3(1, b)

=
ma+ 1

2m2+ (2+ ε)m+ ε
,

so

d(a, b)≥
√

a
2b

for a ∈ [α∗, 2m+ 4].

We also have, for a ∈ [2m+ 4mβ∗],

d(a, b)≥
N(m+1)3(1, a)
M(m+1)3(1, b)

=
m(2m+ 4)+ 1

2m2+ (2+ ε)m+ ε
.

Thus,

d(a, b)≥
√

a
2b

for a ∈ [2m+ 4, β∗]. �
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