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For a topological space X, it is a natural undertaking to compare its topology
with the weak topology generated by a family of real-valued continuous functions
on X. We present a necessary and sufficient condition for the coincidence of these
topologies for an arbitrary family A⊂C(X). As a corollary, we give a new proof
of the fact that families of functions which separate points on a compact space
induce topologies that coincide with the original topology.

1. Introduction

Given a topological space (X, τ ), let C(X) denote the collection of all continuous
functions from X to R, where R is equipped with its usual topology. The weak
topology induced by a family A⊂ C(X), which we denote by τA, is the topology
on X such that the collection of sets of the form

V ( f, y, ε)= {x ∈ X : | f (x)− f (y)|< ε},

where y ∈ X, f ∈A, and ε > 0, is a subbase. It is also characterized as the coarsest
topology making all the functions in A continuous, and thus τA ⊂ τ . This naturally
leads one to ask when equality holds.

Gillman and Jerison [1976, Theorem 3.7] demonstrated that if τ = τA, then the
space X is completely regular; however, the converse does not hold in general. For
example, if we take (X, τ ) to be the real line with the discrete topology and the
family A to consist of only the identity function, then τA is the usual topology on R

and so τA 6= τ .
Conditions for the coincidence of τ and τA are also given. A family A⊂ C(X)

is said to be completely regular if given a closed set F ⊂ X and a point x0 ∈ X \ F,
there exists an f ∈A with f (x0) 6∈ cl f [F]. It is known (see [Gillman and Jerison
1976, Problem 3H]) that if A is completely regular, then τ = τA. The converse also
fails to hold, as we will demonstrate with Example 1.
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At present, a condition that is both necessary and sufficient appears to be absent
from the literature. To remedy this lapse, we propose the following improvement to
the definition of completely regular family:

Definition. A family A⊂ C(X) is said to be finitely completely regular if given
a closed set F ⊂ X and a point x0 ∈ X \ F, there exist f1, . . . , fn ∈ A such that
0 /∈ cl g[F], where the map g : X→ R is defined by

g(x)= max
1≤k≤n

| fk(x)− fk(x0)|.

We will show that the condition of finite complete regularity is both necessary
and sufficient for τA and τ to coincide, discuss the implications of our result for
families A on compact spaces, and present examples.

2. Main theorem

Theorem. Let (X, τ ) be a topological space and let A⊂ C(X) be a family of real-
valued continuous functions on X. The weak topology generated by A coincides
with τ if and only if A is a finitely completely regular family.

Proof. Suppose τ = τA, let F be closed, and let x0 /∈ F. As the collection V ( f, y, ε)
forms a subbase for τA, there exist f1, . . . , fn ∈A and an ε > 0 such that

x0 ∈

n⋂
k=1

V ( fk, x0, ε)⊂ X \ F,

and taking the complement yields

F ⊆
n⋃

k=1

X \ V ( fk, x0, ε).

Each set X \V ( fk, x0, ε) consists of all points x ∈ X such that | fk(x)− fk(x0)| ≥ ε,
and so if g : X→ R is defined by g(x)=max{| fk(x)− fk(x0)| : 1≤ k ≤ n}, then
0 /∈ cl g(X \ V ( fk, x0, ε)) for each k. Therefore, as

cl g(F)⊆
n⋃

k=1

cl g(X \ V ( fk, x0, ε)),

we have 0 /∈ cl g(F) and thus the family A is finitely completely regular.
Now, let A be a finitely completely regular family. Given U ∈ τ and x0 ∈U , there

exist f1, . . . , fn ∈A such that 0 /∈ cl g(X \U ), where g(x)=max | fk(x)− fk(x0)|.
Consequently, there exists an ε > 0 such that g(x)≥ ε for all x ∈ X \U , and we have

X \U ⊆
n⋃

i=1

{
x ∈ X : | fi (x)− fi (x0)| ≥ ε

}
,
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which we complement to obtain

x0 ∈

n⋂
i=1

{
x ∈ X : | fi (x)− fi (x0)|< ε

}
⊆U.

Therefore τ ⊂ τA, and so τ = τA. �

A family A⊂C(X) is said to separate points if for all distinct x, y∈ X there exists
a function f ∈A such that f (x) 6= f (y). It is well known that if a family separates
points on a compact space, then τA = τ (see [Kaniuth 2009, Proposition 2.2.14],
among others). The main theorem yields a new proof of this fact:

Corollary. Let (X, τ ) be a compact space. If A ⊂ C(X) is a family of functions
that separates points then τ = τA.

Proof. We proceed by contraposition. Indeed, suppose τ 6= τA. Then A fails to
be finitely completely regular. Consequently, there exists a closed F and a point
x0 ∈ X \ F such that 0 ∈ cl g[F], where g(x)=max | fk(x)− fk(x0)| for any finite
collection f1, . . . , fn ∈ A. Since X is compact, g is a closed mapping and this
implies that cl g[F] = g[F], which yields 0 ∈ g[F] and so there exists an x ∈ F
with fk(x)= fk(x0) for each 1≤ k ≤ n.

Define the closed sets

F f = {x ∈ F : f (x)= f (x0)} and K =
⋂
f ∈A

F f .

As any finite collection of functions f1, . . . , fn ∈A satisfies
n⋂

k=1

F fk 6=∅,

the collection of closed sets {F f : f ∈A} has the finite intersection property and so
there exists a y ∈ K . By construction, f (y)= f (x0) for all f ∈A and since y ∈ F,
it must be that y 6= x0. Therefore, A does not separate points. �

3. Examples

We now give illustrative examples of families of continuous functions; one is finitely
completely regular and the other fails to satisfy the definition.

Example 1. Consider the two functions f, g ∈ C([0, 1]) shown in Figure 1. The
family A= { f, g} separates points, and thus the topology it induces on [0, 1] is the
usual topology. This implies that A is finitely completely regular; however, it is
worth noting that A fails to be completely regular. Indeed, let F =

[
0, 1

9

]
∪
[ 5

9 ,
2
3

]
and x0 =

1
3 ; then x0 6∈ F but f (x0) ∈ cl f [F] and g(x0) ∈ cl g[F].
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Figure 1. The family { f, g} is finitely completely regular, but not
completely regular.

It is interesting to note that the subfamily { f } of the family in Figure 1 is not
finitely completely regular because any interval of the form

(1
3 + ε,

2
3 − ε

)
for

0 < ε < 1
6 is open in the usual topology of the unit interval, but not in the weak

topology induced by { f }. The next example gives a family on [0,∞) that does not
induce a topology that coincides with that of the original space.

Example 2. Let A = { f (x) = αxe−x
: α ∈ R+} ⊂ C([0,∞)), F = [1,∞), and

x0 = 0. For any finite collection f1, . . . , fn ∈ A, where fk(x) = αk xe−x, we
have 0 ∈ cl g(F), as g(x) = max | fk(x)− fk(x0)| = αj xe−x for some 1 ≤ j ≤ n.
Consequently, A fails to be finitely completely regular and so τA is strictly coarser
than the usual topology on [0,∞). See Figure 2 for an example.
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Figure 2. The finite collection
{

fn(x)= 1
5 nxe−x

:n=1, . . . ,10
}
⊂A.

Note that fn(x)→ 0 as x→∞ for each 1≤ n ≤ 10, and this forces
0 ∈ cl g[[1,∞)], where g(x)=max1≤k≤10 | fk(x)− fk(0)|.
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4. Concluding remarks

In this work we have given necessary and sufficient conditions for the coincidence
of a topology and a weak topology induced by a family of continuous functions.
In particular, this characterization yields a new, more direct proof of the fact
that a family that separates points on a compact space will induce the original
topology. The definition we introduce additionally reveals that coincidence of the
two topologies is possible only when the functions in the family suitably interact
with the topology, and our second example illustrates that this can fail even with
uncountably many functions.
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