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We prove that if M is a complete, noncompact hypersurface in Rn+1, which is
the graph of a real radial function, then the spectrum of the Laplace operator on
M is the interval [0,∞).

1. Introduction

Let M be a simply connected Riemannian manifold. The Laplace operator 1 :
C∞0 (M)→ C∞0 (M), defined as 1 = div ◦ grad and acting on C∞0 (M) (the space
of smooth functions with compact support), is a second-order elliptic operator and,
provided M is complete, it has a unique extension 1 to an unbounded self-adjoint
operator on L2(M) whose domain is Dom(1) = { f ∈ L2(M) : 1 f ∈ L2(M)};
see [Grigor’yan 2009, Theorem 11.5]. Since −1 is positive and symmetric, its
spectrum is the set of λ ≥ 0 such that 1+ λI does not have a bounded inverse.
Sometimes we say “spectrum of M” rather than “spectrum of −1”, and we denote
it by σ(M). One defines the essential spectrum, σess(M), to be those λ in the
spectrum which are either accumulation points of the spectrum or eigenvalues of
infinite multiplicity. The discrete spectrum is the set σd = σ(M) \ σess(M) of all
eigenvalues of finite multiplicity which are isolated points of the spectrum.

There is a vast literature on the spectrum of the Laplace operator on complete
noncompact manifolds. The first result we mention was published by Tayoshi
[1971]. He showed the absence of eigenvalues of −1 for a class of surfaces of
revolution, determined by nonnegative radial growth.

Donnelly [1981] showed

σess(M)=
[
(n− 1)2 1

4 c2,∞
)
,

provided M is a Hadamard manifold whose sectional curvature approaches −c2

at infinity. Karp [1984] gave sufficient conditions for a class of manifolds to have
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purely continuous spectrum (σd(M)=∅) under some curvature conditions. Eight
years later, Donnelly and Garofalo [1992] obtained results in a similar direction,
using the hypothesis of nonnegative radial sectional curvature, without restrictions
on the metric.

Cheng and Zhiqin Lu [1992] proved σess(M)=[0,∞) when M has nonnegative
radial sectional curvature and Li [1994] proved σess(M)= [0,∞), provided M has
nonnegative Ricci curvatures and a pole. Zhou [1994] proved σess(M) = [0,∞)
when M has nonnegative sectional curvatures, generalizing the work of Escobar
and Freire [1992].

Kumura [1997] found a result which generalized [Donnelly 1981]. He showed
σess(M)=

[ 1
4 c2,∞

)
whenever

lim
n→∞

sup
t>n
|1t − c| = 0,

where t denotes the distance function on M .
Wang [1997] showed that the spectrum of a complete, noncompact Riemannian

manifold with asymptotically nonnegative Ricci curvature is equal to [0,∞).
Zhiqin Lu and Detang Zhou [2011] proved that the L p essential spectrum of M

is equal to [0,∞) when
lim inf
x→∞

RicM(x)= 0

and M is noncompact and complete. We should mention here that almost all the
above works were strongly motivated by the decomposition principle [Donnelly
and Li 1979], which states that the essential spectrum of a Riemannian manifold
is invariant under compact perturbations of the metric, thus it is a function of
the geometry of the ends. In [Monte and Montenegro 2015], it was proved that
σess(M)⊃

[
(n− 1)2 1

4 c2,∞
)

for a class of Riemannian manifolds, not necessarily
complete, whose metric is given by

gM = dr2
+ψ2(rw)gSn−1,

using curvature conditions only in a neighborhood of a ray.
See also [Bessa et al. 2010; 2012; 2015; Donnelly and Li 1979; Kleine 1988;

1989; Tayoshi 1971] for geometric conditions implying the discreteness of the
spectrum, σess(M)=∅.

In this work we consider complete hypersurfaces which are graphs of radial
functions. Our main result is the following theorem.

Theorem 1. Let M be a complete hypersurface in Rn+1, which is the graph of a
real radial function. Then, the spectrum of the Laplace operator on M is [0,∞).

Without loss of generality, we may assume the domain Dom f to be connected
and symmetric with respect to 0 ∈ Rn. From the completeness of M we further



SPECTRUM OF THE LAPLACIAN ON GRAPHS OF RADIAL FUNCTIONS 679

deduce Dom f is an open ball or annulus. The theorem above allows us to construct
a bounded hypersurface with the same spectrum of Rn+1 by taking M to be the
graph of the real function f (x)= cos

(
tan
( 1

2π |x |
))

defined on the unit open ball.
Throughout the following discussion, for simplicity, we deal with the case where

f : D → R is defined in an open ball. Let X : [0, R) × � → D be defined
by X (r, x1, . . . , xn−1) = rw(x1, . . . , xn−1), where 0 < R ≤ +∞ and w is a co-
ordinate system on Sn−1 defined on an open set � of Rn. Note that M has a
natural coordinate system Y : [0, R) × � → M , given by Y (r, x1, . . . , xn−1) =

(rw(x1, . . . , xn−1), f (r)), but we are interested in the spherical coordinate system
for M on p = (0, f (0)). Consider t : [0, R)→ [0,∞), given by

t (r)=
∫ r

0

(
1+ f ′(τ )2

)1/2 dτ.

We claim that t is a diffeomorphism. Observe that t is increasing and

lim
r→R

t (r)=+∞.

We denote by r : [0,∞) → [0, R) the inverse diffeomorphism. By the inverse
function theorem,

0< r ′(t)=
(
1+ f ′(r)2

)−1/2
≤ 1. (1)

Finally, the system of spherical coordinates on M , denoted Z : [0,∞)×�→ M ,
is defined by

Z(t, x1, . . . , xn−1)=
(
r(t)w(x1, . . . , xn−1), f ◦ r(t)

)
.

The metric of M on such a system is given by

gM = dt2
+ r(t)2gSn−1 .

Because of this observation, Theorem 1 is a simple consequence of the theorem
below.

Theorem 2. Let I ⊂ R be an unbounded interval and M = I ×Sn−1 with metric
given by gM = dt2

+ r2(t)gSn−1 , where 0< r ′(t) ≤ c for all t . Then, the spectrum
of the Laplace operator on M is [0,∞).

Remark. (1) If M has a pole at p∈M , then expp :Tp M→M is a diffeomorphism
so that M isometric to Tp M with the pullback metric. Therefore, Theorem 2
implies that if M has a pole p and gM = dt2

+ r2(t)gSn−1 with respect to p
and 0< r ′(t) < c, then M has spectrum equal to [0,∞).

(2) To the best of our knowledge, this natural result has only been verified in less
general settings. For instance, since r ′(t)> 0, then r(t) is increasing and there
are only two possibilities:
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(a) lim
t→∞

r(t)=∞, or
(b) lim

t→∞
r(t)= R.

In the first case, since r ′(t) is bounded, we have

lim
t→∞

1t = lim
t→∞

r ′(t)
r(t)
= 0.

By [Kumura 1997, Theorem 1.2], it follows that the spectrum of M is purely
continuous and equal to [0,∞). In the second case, if r ′→ 0 we still have
r ′(t)/r(t)→ 0. Therefore, the main contribution of this paper is the proof of
the case where r ′(t) does not converge to zero and limt→∞ r(t)= R <+∞.
This is the scenario for the graph of the function f (x) = cos

(
tan
( 1

2π |x |
))

presented above.

In the next section we prove Theorem 2. The Appendix is devoted to the Sturm–
Liouville theory used in this note.

2. Proof of Theorem 2

We concentrate our efforts for the case where limt→∞ r(t) = R. Our approach is
variational, based on the following lemma.

Lemma 3 [Davies 1995, Lemma 4.1.2]. A number λ ∈ R lies in the spectrum
of a self-adjoint operator H if and only if there exists a sequence of functions
fn ∈ Dom H with ‖ fn‖ = 1 such that

lim
n→∞
‖H fn − λ fn‖ = 0.

To deduce Theorem 2 from Lemma 3 we will construct, for each λ > 0, a
sequence of radial smooth functions f p : M→ R with compact support such that

‖1 f p + λ f p‖L2(M) ≤
c
p
‖ f p‖L2(M) (2)

for any natural p, where c is a constant which does not depend on p. It will follow
that gp = f p/‖ f p‖ has norm one and

lim
p→∞
‖1gp + λgp‖L2(M) = 0.

Therefore, by Lemma 3, λ belongs to the spectrum. To construct the function f p,
we fix t0 > 0 and prove that there are t1(λ) > t0 and a radial function u = u(t)
solution of the problem 

1u+ λu = 0 in [t0, t1],
u(t0)= u(t1)= 0,
u > 0 in (t0, t1).

(3)



SPECTRUM OF THE LAPLACIAN ON GRAPHS OF RADIAL FUNCTIONS 681

Using Sturm–Liouville theory, we showed that u can be extended to the whole
interval [t0,∞) and it has infinite zeros t0 < t1 < · · · < tp < · · · . The next step is
to consider (for each p) a smooth bump function h p whose support is the interval
[t0, t3p]. We then define f p = uh p and show that each f p in this sequence satisfies
(2). The function t 7→ rn−1(t) has a geometric meaning and plays an important
role in the proof, thus deserving a special notation. In the sequence of the paper,
we let v(t)= rn−1(t).

We observe that the first equation in (3) is equivalent to

(v(t)u′(t))′+ λv(t)u(t)= 0 (4)

if u = u(t) is a radial function. By Theorem 9 in the Appendix, given positive t0
and λ, (4) has a solution defined on [t0,∞) and satisfying u(t0)= 0.

Moreover, Corollary 8 allows us to consider a sequence of zeros t0 < t1 < · · ·
of u.

For p ∈N, we choose a smooth bump function h = h p : R 7→ R with 0≤ h ≤ 1
satisfying {

h(t)= 0, t ∈ (−∞, t0] ∪ [t3p,∞),

h(t)= 1, t ∈ [tp, t2p].

Such a function can be defined in the following way: let ϕ∈C∞0 (R) be nonnegative
with suppϕ = [0, 1] and

∫
ϕ = 1. Let

h p(t)=
∫ t

−∞

ϕp(s) ds,

where

ϕp(t)=
1

tp − t0
ϕ

(
t − t0
tp − t0

)
−

1
t3p − t2p

ϕ

(
t − t2p

t3p − t2p

)
.

This construction is useful since it leads to the following estimates:

‖h′p‖∞ ≤max
{
‖ϕ‖∞

tp − t0
,
‖ϕ‖∞

t3p − t2p

}
≤

C
p
,

‖h′′p‖∞ ≤max
{
‖ϕ′‖∞

(tp − t0)2
,
‖ϕ′‖∞

(t3p − t2p)2

}
≤

C
p2 .

(5)

Here, we have made use of Corollary 11 in the Appendix.
Consider f = f p = uh p. We are going to prove that such a function satisfies

the inequality in (2). Computing 1 f + λ f, we obtain

1 f + λ f = 2u′h′+ uh′′+ (n− 1)r
′

r
h′u.
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Using the inequalities in (5), together with the fact that r is increasing and r ′ is
bounded, we have

|1 f + λ f | ≤ c
p
(|u′| + |u|)χ[t0,t3p].

Then,
|1 f + λ f |2 ≤

c
p2 (|u

′
|
2
+ |u|2)χ[t0,t3p],∫

M
|1 f + λ f |2 d M ≤

c
p2

(∫ t3p

t0
|u′|2v dt +

∫ t3p

t0
|u|2v dt

)
.

Multiplying (4) by u and using integration by parts we find∫ t3p

t0
|u′|2v(t) dt = λ

∫ t3p

t0
|u|2v(t) dt,

‖1 f p + λ f p‖L2(M) ≤
c
p
‖u ·χ[t0,t3p]‖L2(M) ≤

c
p
‖u ·χ[tp,t2p]‖L2(M) ≤

c
p
‖ f p‖L2(M),

where the second inequality comes from Lemma 4 below.

Lemma 4. There is a positive constant C independent on p such that∫ t3p

t0
u2v dt ≤ C

∫ t2p

tp

u2v dt,

where u is solution of (4) and t0 < t1 < · · · are zeros of u.

This result is a manifestation of the oscillatory behavior of u. Before justifying
its veracity, we state a useful way of estimating u between two zeros.

Lemma 5. Let u be a solution of (4), and choose tk , tk+1 to be consecutive zeros
for u. Define

αk(t)= ak sin
(
λ1/2 Rn−1

∫ t

tk
v−1(s) ds

)
and

βk(t)= bk sin
(
λ1/2v(tk)

∫ t

tk
v−1(s) ds

)
,

where ak = v(tk)bk/(Rn−1λ1/2) and bk = u′(tk)/λ1/2. Then |αk | ≤ |u| on (tk, t̃k)
and |u| ≤ |βk | on (tk, tk+1), where t̃k is the next zero of αk after tk .

To make the exposition more fluid, we postpone the proof until the Appendix.

Proof of Lemma 4. Observe that multiplying (4) by v(t)u′ we get

(v(t)u′)′v(t)u′+ λv2uu′ = 0,

and so, (
(v(t)u′)2

)′
+ λv2(u2)′ = 0.
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Integrating from t0 to tk , we have

v(tk)2u′(tk)2− v(t0)2u′(t0)2 =−λ
∫ tk

t0
v2(s)(u2(s))′ ds.

Integrating the right hand side by parts, we find

v(tk)2u′(tk)2− v(t0)2u′(t0)2 = 2λ
∫ tk

t0
vv′u2 ds. (6)

Since r, r ′ > 0, we have v, v′ > 0. Also, r(t) < R and as a consequence,

u′(tk)2 >
v(t0)2u′(t0)2

R2(n−1) (7)

for k ≥ 1.
To obtain an estimate in the other direction, we observe that the function β =

β0(t) in Lemma 5 satisfies β ′(t0)= u′(t0) > 0 and

(v(t)β ′(t))′+
λv(t0)2

v(t)
β(t)= 0. (8)

Multiplying by v(t)β ′ we get, as in the preceding computations,

(v(t)2(β ′)2)′+ λv(t0)2(β2)′ = 0. (9)

Now, if t1 is the next root of β after t0, integrating the last equation we find

v(t1)2β ′(t1)2 = v(t0)2β ′(t0)2

= v(t0)2u′(t0)2.
(10)

We take k = 1 and estimate the right side of (6) as follows:

λ

∫ t1

t0
(v2)′u2 dt ≤ λ

∫ t1

t0
(v2)′β2 dt

≤ λ

∫ t1

t0
(v2)′β2 dt

=−λ

∫ t1

t0
v2(β2)′ dt

=−
1

v(t0)2

∫ t1

t0
v2(λv(t0)2β2)′ dt.

(11)
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By (9) we infer

−
1

v(t0)2

∫ t1

t0
v2(λv(t0)2β2)′ dt =

1
v(t0)2

∫ t1

t0
v2(v2(β ′)2)′ dt

=
1

v(t0)2

∫ t1

t0
(v4(β ′)2)′− (v2)′v2(β ′)2 dt

<
v4(t1)(β ′)2(t1)− v4(t0)(β ′)2(t0)

v(t0)2
.

(12)

Now, using (10) and that β ′(t0)= u′(t0), we find

λ

∫ t1

t0
(v2)′u2

≤ (v(t1)2− v(t0)2)u′(t0)2 dt.

Then, by (6),

v(t1)2u′(t1)2− v(t0)2u′(t0)2 ≤
(
v(t1)2− v(t0)2

)
u′(t0)2.

Since v(t) is increasing, it follows that

v(t1)2u′(t1)2 ≤ v(t1)2u′(t0)2

≤ v(t2)2u′(t0)2.
(13)

Then,

u′(t1)2 ≤
v(t2)2

v(t0)2
u′(t0)2.

Using the same argument, one shows by induction that

u′(tk)2 ≤
v(tk+1)

2v(tk)2

v(t1)2v(t0)2
u′(t0)2.

Since r(t) < R, we find that

u′(tk)2 ≤
R4(n−1)

v(t0)2v(t1)2
u′(t0)2. (14)

Now, using Lemma 5, it’s easy to check that∫ t3p

t0
u2v dt =

3p−1∑
k=0

∫ tk+1

tk
u2v(t) dt

≤
1
λ

3p−1∑
k=0

u′(tk)2
∫ tk+1

tk
sin2

(
λ1/2v(tk)

∫ t

tk

ds
v(s)

)
v(t) dt.

(15)

Letting

τ = λ1/2v(tk)
∫ t

tk

ds
v(s)

,
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the change of variables formula shows that

1
λ

3p−1∑
k=0

u′(tk)2
∫ tk+1

tk
sin2

(
λ1/2v(tk)

∫ t

tk

ds
v(s)

)
v(t) dt

=
1
λ3/2

3p−1∑
k=0

u′(tk)2

v(tk)

∫ π

0
sin2(τ )v2(τ (t)) dτ

≤
πR2(n−1)

2λ3/2rn−1(t0)

3p−1∑
k=0

u′(tk)2

= C
3p−1∑
k=0

u′(tk)2.

(16)

By (7) and (14), the following inequalities hold:

3p−1∑
k=0

u′(tk)2 ≤ 3Cpu′(t0)2

≤ C
2p−1∑
k=p

u′(tk)2.

(17)

We have ∫ t3p

t0
u2v dt ≤ C

2p−1∑
k=p

u′(tk)2. (18)

Here, the last inequality comes from (7), for some suitable constant C > 0. Again
by the change of variables formula (this time applied to each αk) and by Lemma 5,
one sees that if t̃k is the next zero of αk after tk we have∫ t2p

tp

u2v(t) dt =
2p−1∑
k=p

∫ tk+1

tk
u2v(t) dt

≥

2p−1∑
k=p

∫ t̃k+1

tk
α2

kv(t) dt

≥ C
2p−1∑
k=p

u′(tk)2.

(19)

From (18) we conclude that∫ t3p

t0
u2rn−1 dt ≤ C

∫ t2p

tp

u2rn−1 dt
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for every p ∈ N and for a constant C = C(λ, R), independent of p.

Appendix: Elements of Sturm–Liouville theory

For the convenience of the reader, we present some facts about Sturm–Liouville
problems used in the previous section. Our motivation relies on the study of

(v(t)u′)′+ λv(t)u = 0 t ≥ t0 > 0, (20)

where v(t)= rn−1(t) for fixed n ∈N. In the following we assume the function r(t)
to be positive; moreover:

(I) 0< r ′(t)≤ c.

(II) lim
t→∞

r(t)= R <+∞.

We start with a classical terminology.

Definition 6. Equation (20) is said to be oscillatory if any of its solutions has
arbitrarily large zeros.

The following theorem is a practical criterion for oscillation.

Theorem 7. Let v(t) be a positive continuous function on [t0,∞) and λ> 0. Then,
the equation

(v(t)u′)′+ λv(t)u = 0

for t ≥ t0 is oscillatory, provided
∫
∞

t0
v(t) dt =+∞ and

∫ t
t0
v(t) dt ≤Cta, for some

positive constants C and a.

The proof is discussed in [do Carmo and Zhou 1999, Theorem 2.1]. Since
limt→∞ r(t)= R, we easily have the following.

Corollary 8. Equation (20) is oscillatory.

Theorem 9. For positive v, any solution u of (20) on a interval [t0, t0 + δ] with
initial values u(t0)= x0 and u′(t0)= x1 can be extended to [t0,∞).

Again, the proof is presented in [do Carmo and Zhou 1999, Theorem 2.2].
The next propositions appear in the literature as Sturm comparison theorems;

see [Hartman 1982, Theorem 3.1]. These are standard results, but for the sake of
self-containment we decided to present their proofs. They emerge as useful ways
to compare solutions for ordinary differential equations, as we did in Section 2.

Proposition 10. Let x, y be nontrivial solutions for{
(p(t)x ′)′+ q(t)x = 0,
(p1(t)y′)′+ q1(t)y = 0,
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where p(t)≥ p1(t) > 0 and q1(t)≥ q(t) for every t ∈ I . If t1 < t2 are consecutive
zeros of x , then either y has a zero on J = (t1, t2) or there is a d ∈ R for which
y = dx on J .

Proof. As a starting point, note that if y(ti )=0, then by uniqueness we have y=dx
for d = y′(ti )/x ′(ti ). Uniqueness also implies that the set of zeroes of x does not
have a cluster point, so the interval J is well-defined. Therefore, it is enough to
consider the case where x and y are linearly independent. Observe that if y does
not have a zero on J , then(

x
(p(t)x ′y− p1(t)xy′)

y

)′
= (q1− q)x2

+ (p− p1)(x ′)2+
p1(x ′y− xy′)2

y2 .

Integrating from t1 to t2, we have∫ t2

t1
(q1− q)x2 dt +

∫ t2

t1
(p− p1)(x ′)2 dt +

∫ t2

t1
p1
(x ′y− xy′)2

y2 dt = 0.

Then, if y is not multiple of x , the Wronskian (xy′− x ′y) is nonzero on J and we
get a contradiction with the last equation. �

As a consequence, we obtain a universal estimate from below to the distance
between two consecutive zeros of a solution of (20).

Corollary 11. Let {tp}
∞

p=1 be an increasing sequence of zeros of u. There is a
universal constant C > 0 such that tp+1− tp > C for any p ∈ N.

Proof. Given p ∈N, define ϕ(t)= sin(2(n−1)/2λ1/2(t − tp)). Then, ϕ has a zero at
t = tp and ( 1

2 R
)n−1

ϕ′′+ λRn−1ϕ = 0.

Now,
( 1

2 R
)n−1

< v(t) < Rn−1 for t sufficiently large, lets say for t > c0. As a
consequence, if p is sufficiently large, we can apply Proposition 10 for u and ϕ to
conclude that the next zero of ϕ is on (tp, tp+1).

Since the next zero of ϕ after tp is on t = tp +π/(2(n−1)/2λ), we have

tp+1− tp >
π

2(n−1)/2λ

for tp > c0, from which the corollary follows. �

Proposition 12. Let x, y be nontrivial solutions for{
(p(t)x ′)′+ q(t)x = 0,
(p1(t)y′)′+ q1(t)y = 0,

on an interval [a, b], where p ≥ p1 > 0, q1 > q and x(a) = 0. Suppose that
c ∈ (a, b] is such that x(c) 6= 0, y(c) 6= 0 and x has the same number of zeros as y
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on (a, c). Then
p(c)x ′(c)

x(c)
≥

p1(c)y′(c)
y(c)

.

Proof. We only deal with the case where y is different from dx , otherwise there is
nothing to prove. Let a = a0, . . . , an be the zeros of x on [a, c) and b0, . . . , bn−1

be the zeros of y on (a, c). By Proposition 10, we have

ai < bi < ai+1

for i = 0, . . . , n−1. Consequently, y has no zero on (an, c). Now, we can use the
same idea from the proof of Proposition 10 to conclude that(

(px ′y− p1xy′) x
y

)′
≥ 0

on (an, c). Integrating both sides from an to c and using that x(an)= 0, we get

(px ′y− p1xy′)(c) x(c)
y(c)
≥ 0,

and since we can always assume that x(c)y(c) > 0, we find

p(c)x ′(c)
x(c)

≥
p1 y′(c)

y(c)
. �

Proof of Lemma 5. Observe that αk(tk)= 0, α′k(tk)= u′k(tk) and

(v(t)α′k)
′
+ λ

R2(n−1)

v(t)
αk = 0.

Since
R2(n−1)

v(t)
≥ Rn−1

≥ v(t)

for all t ≥ tk , we can apply Proposition 12 to u and αk and establish that

u′(t)
u(t)
≥
α′k(t)
αk(t)

, t ∈ (tk, t̃k).

So, taking ε > 0 and integrating the inequality above from tk + ε to t , we get

log
(
|u(t)|
|u(tk + ε)|

)
≥ log

(
|αk(t)|
|αk(tk + ε)|

)
,

|u(t)|
|αk(t)|

≥
|u(tk + ε)|
|αk(tk + ε)|

.

Sending ε→ 0 and using that u′(tk)= α′k(tk) 6= 0, we find |αk | ≤ |u|.
The proof of the other inequality follows the same ideas and is omitted.
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