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We consider a generalization of Eulerian numbers which count the number of
placements of cn rooks on an n× n chessboard where there are exactly c rooks
in each row and each column, and exactly k rooks below the main diagonal. The
standard Eulerian numbers correspond to the case c = 1. We show that for any
c the resulting numbers are symmetric and give generating functions of these
numbers for small values of k.

1. Introduction

Rook placements on boards have a wonderful and rich history in combinatorics
(see, e.g., [Butler et al. 2011]). Traditionally the rooks are placed in a nonattacking
fashion (i.e., at most one rook in each row and column) and the combinatorial
aspects come from considering variations on the board shapes.

Instead of varying the board, we could also change the restrictions on how many
rooks are allowed in each row and each column. If we have a square board and the
number of rooks in each column and row is fixed, then this corresponds to counting
nonnegative matrices with fixed row and column sums; see A000681, A001500,
A257493, etc., in the On-Line Encyclopedia of Integer Sequences (OEIS).

In this paper, we will look at this latter case of placing multiple rooks in each row
and column more closely. We begin in Section 2 by exploring the connections be-
tween these rook placements and juggling patterns. In Section 3, we look at Eulerian
numbers (which correspond to the number of nonattacking rook placements on an
n×n board with a fixed number of rooks below the main diagonal) and in Section 4
generalize to the case in which c rooks are placed in each row and each column.
In Section 5, we provide generating functions for special cases of these generalized
Eulerian numbers. We end with concluding remarks and open problems in Section 6.
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2. Minimal juggling patterns and rook placements

Juggling patterns can be described by a siteswap sequence listing the throws that
the pattern requires, i.e., t1t2 · · · tn where at time s ≡ i (mod n) we throw the ball
so that it will land ti beats in the future. A sequence of throws can be juggled if
and only if there are no collisions, i.e., two balls landing at the same time, which is
equivalent to 1+ t1, 2+ t2, . . . , n+ tn being distinct modulo n. One well-known
property of siteswap sequences is that the average of the throws is the number of
balls needed to juggle the pattern (see [Buhler et al. 1994; Polster 2003]).

A minimal juggling pattern is a valid juggling pattern t1t2 · · · tn with 0 ≤ ti ≤
n− 1. These form the basic building blocks of juggling patterns since all juggling
patterns of period n arise by starting from some minimal juggling pattern and
adding multiples of n to the various throws (such additions do not affect modular
conditions). More about this approach was found by Buhler, Eisenbud, Graham
and Wright [1994].

This naturally leads to the problem of enumerating minimal juggling patterns.
This is done by relating such patterns to rook placements on a square board. In
particular we will consider the n× n board Bn , with labels on each cell (i, j) given
by the rule {

j − i if j ≥ i,
n+ j − i if j < i.

We can interpret the rows of Bn as the throwing times (modulo n) and the columns
of Bn as the landing times (modulo n). The label of the cell (i, j) is then the
smallest possible throw required to throw at time i and land at time j .

Given a minimal juggling pattern t1t2 · · · tn , we form a rook placement by placing
a rook in row i on the cell labeled ti for 1≤ i ≤ n (note that this forces the rook to be
placed in the column corresponding to the landing time modulo n). Since landing
times are unique modulo n, no two rooks will be in the same column, so this forms
a nonattacking rook placement with n rooks. Conversely, given a nonattacking
rook placement with n rooks we can form a minimal juggling pattern by reading
off the cell labels of the covered square starting at the first row and reading down.
This establishes the bijective relationship between minimal juggling patterns and
nonattacking rook patterns on Bn . An example of this is shown in Figure 1 for the
minimal juggling pattern 24234.

We can extract information about the minimal juggling pattern by properties of
the rook placements, including, for example, the number of balls.

Proposition 1. The number of rooks below the main diagonal in a nonattacking
rook placement on Bn is the same as the number of balls necessary to juggle the
corresponding minimal juggling pattern.
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Figure 1. A nonattacking rook placement on B5 corresponding to
the minimal juggling pattern 24234.

Proof. Suppose there are k rooks below the main diagonal in a placement of
n nonattacking rooks on Bn . Then when we sum the labels of all the cells covered
by a rook, i.e., we sum the throw heights for the juggling sequence, we have

n∑
`=1

t` = kn+
n∑

j=1

j −
n∑

i=1

i = kn.

Since the average of the throws is the number of balls needed for the sequence, the
claim follows. �

Note that in Figure 1 there are three rooks below the main diagonal and that the
juggling pattern 24234 requires three balls to juggle.

2.1. Multiplex juggling and c-rook placements. A natural variation in juggling is
to allow multiple balls to be caught and thrown at a time. This is known as multiplex
juggling, and we will see that many of the basic ideas generalize well to this setting.

We will let c denote a hand capacity; i.e., at each beat we make c throws (allowing
some of the throws to be 0, which happens when the number of actual balls thrown
is less than c). Siteswap sequences of period n now correspond to a sequence
of n sets, T1T2 · · · Tn , where each Ti is a (multi)set of the form {ti,1, ti,2, . . . , ti,c},
denoted in shorthand notation as [ti,1ti,2 · · · ti,c]. A multiplex juggling sequence
is valid if and only if the juggling modular condition is satisfied. Namely, every
1≤ `≤ n appears exactly c times in the multiset

{ti, j + i (mod n)}1≤i≤n
1≤ j≤c

.

In other words, no more than c balls land at each time.1 As in standard juggling
patterns, the number of balls b needed to juggle the pattern relates to an average.
In particular,

1
n

n∑
i=1

c∑
j=1

ti, j = b.

1A 0 throw indicates a ball is not landing.
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Figure 2. A 2-rook placement on B5 corresponding to the minimal
multiplex juggling pattern [24][02][14][22][03].

We say a multiplex juggling sequence is a minimal multiplex juggling sequence if
and only if 0≤ ti, j ≤ n− 1 for all throws ti, j .

There is a relationship between period n, hand capacity c, multiplex juggling
sequences and placements of “rooks” on Bn . This is done by generalizing from
nonattacking rook placements to c-rook placements, placements of cn rooks with
exactly c rooks in every row and column, where multiple rooks are allowed in cells.

There is a bijection between minimal multiplex juggling patterns of period n
with hand capacity c and c-rook placements on Bn . In particular, for each i we
place c rooks in the i-th row corresponding to ti,1, . . . , ti,c. Conversely, given a
c-rook placement we can form a minimal multiplex juggling sequence by letting Ti

denote the cells covered by the rooks in row i (with appropriate multiplicity). An
example of this is shown in Figure 2 for the minimal multiplex juggling pattern
[24][02][14][22][03].

By the same argument used for Proposition 1 we have the following.

Proposition 2. The number of rooks below the main diagonal in a c-rook placement
on Bn is the same as the number of balls necessary to juggle the corresponding
minimal multiplex juggling pattern.

For example, the multiplex juggling pattern in Figure 2 requires four balls to
juggle.

3. Eulerian numbers

The Eulerian numbers, denoted
〈 n

k

〉
, are usually defined as the number of permu-

tations of [n], π = π1π2 · · ·πn , with k ascents (πi < πi+1), or equivalently the
number of permutations with k descents (πi > πi+1). There is a bijection between
permutations of [n] with k descents and permutations with k drops (i > πi ), so that〈n

k

〉
also counts permutations of [n] with k drops (see [Buhler et al. 1994]). Given an

n×n board, with rows and columns labeled 1, 2, . . . , n, we can use our permutation
to form a nonattacking rook placement by placing rooks at positions (i, πi ). A drop
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n ↓ k→ 0 1 2 3 4 5 6

1 1
2 1 1
3 1 4 1
4 1 11 11 1
5 1 26 66 26 1
6 1 57 302 302 57 1
7 1 120 1191 2416 1191 120 1

Table 1. The Eulerian numbers
〈 n

k

〉
for 1≤ n ≤ 7.

in the permutation corresponds to a rook below the main diagonal, so we will call
any rook below the main diagonal a drop.

By Proposition 1, the number of drops in a nonattacking rook placement equals
the number of balls necessary for the corresponding juggling pattern. Therefore,〈 n

k

〉
also counts the number minimal juggling patterns of period n using k balls.

The Eulerian numbers have many nice properties, some of which can be seen in
Table 1. For example, they are symmetric, i.e.,

〈 n
k

〉
=
〈 n

n−k−1

〉
. This can be shown

by noting if we start with a permutation with k ascents and reverse the permutation,
we now have n − 1− k ascents (i.e., ascents go to descents and vice-versa; and
there are n− 1 consecutive pairs). We will give a different proof of this symmetry
in the next section using rook placements.

Another well-known property of the Eulerian numbers is a recurrence relation.

Proposition 3. The Eulerian numbers satisfy
〈n

k

〉
= (n− k)

〈 n−1
k−1

〉
+ (k+ 1)

〈n−1
k

〉
.

This recurrence is again proven using permutations and ascents. Here, we provide
an alternate proof using rook placements and drops.

Proof. Start by considering a nonattacking rook placement on an (n− 1)× (n− 1)
board with k − 1 drops. Add an n-th row and n-th column, and place a rook in
position (n, n). The newly added rook is not below the diagonal and so we have
not created any new drops. We can now create one additional drop by taking any
rook (other than the one just added) which is on or above the main diagonal, say in
position (i, j), move that rook to position (n, j) and move the rook in position (n, n)
to position (i, n). This moves the rook in the j-th column below the main diagonal
creating a new drop. Since no other rook moves, we now have precisely k drops and
a nonattacking rook placement. Note that there are (n− 1)− (k− 1)= n− k ways
we could have chosen which rook to move, so that in total this gives (n− k)

〈n−1
k−1

〉
boards of size n× n with k drops.

Now, consider a nonattacking rook placement on an (n − 1)× (n − 1) board
with k drops. Add an n-th row and n-th column, and place a rook in position (n, n).
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As before we switch, but now only switch with a rook which is below the main
diagonal (i.e., a drop). This will not change the number of drops, so the result
is a nonattacking rook placement on an n × n board with k drops. There are
k rooks we can choose to switch with, or alternatively, we can leave the n-th rook
in position (n, n); thus, there are k+ 1 ways to build the desired rook placement,
so that in total this gives (k+ 1)

〈n−1
k

〉
boards of size n× n with k drops.

Finally, we note that each n×n board with k drops is formed uniquely from one
of these operations. This can be seen by taking such a board and then noting the
location of the rook(s) in the last row and in the last column. Suppose these are in
positions (i, n) and (n, j), respectively. We then move these rooks to positions (i, j)
and (n, n). This can at most decrease the number of drops by one (i.e., moving the
rook in the last column does not affect the number of drops). Now removing the
last row and column gives an (n− 1)× (n− 1) board having a nonattacking rook
placement with either k or k− 1 drops. �

4. Generalized Eulerian numbers

The generalized Eulerian numbers, denoted
〈 n

k

〉
c, are the number of c-rook place-

ments on the n × n board with k drops. Just as the Eulerian numbers count the
number of minimal juggling patterns of period n with k balls, the generalized
Eulerian numbers count the number of minimal multiplex juggling patterns of
period n with k balls and hand capacity c. Notice that the generalized Eulerian
numbers reduce to the Eulerian numbers when c = 1. In Table 2 we give some of
the generalized Eulerian numbers for c = 2 and 3.

n ↓ k→ 0 1 2 3 4 5 6 7 8

1 1
2 1 1 1
3 1 4 11 4 1
4 1 11 72 114 72 11 1
5 1 26 367 1492 2438 1492 367 26 1

n ↓ k→ 0 1 2 3 4 5 6 7 8 9

1 1
2 1 1 1 1
3 1 4 11 23 11 4 1
4 1 11 72 325 595 595 325 72 11 1

Table 2. Small values of the generalized Eulerian
〈 n

k

〉
c numbers

for c = 2 (top) and 3 (bottom).
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These numbers appear to satisfy a symmetry property similar to Eulerian numbers.
We will give two proofs of this symmetry, one in terms of rook placements and the
other using minimal multiplex juggling patterns.

Theorem 4. Let n, k and c be nonnegative integers. Then
〈n

k

〉
c =

〈 n
c(n−1)−k

〉
c.

Proof. We construct a bijection between the rook placements with k rooks below
the main diagonal and those with c(n− 1)− k rooks below the diagonal. Consider
a rook placement with c rooks in every row and column, and k rooks below the
diagonal. Now, shift every rook one space to the right cyclically. Let us consider
the number of rooks which are strictly above the main diagonal.

• All c rooks in the last column were shifted to the first column. So, none of
these rooks are above the main diagonal.

• All of the k rooks that were initially below the main diagonal are now either
on or still below the main diagonal.

• All other rooks will be above the diagonal.

Since there are cn rooks on the board total, there are cn − c− k = c(n − 1)− k
rooks above the diagonal after this shift. Finally, we switch the rows and columns
of the board. This flips the rook placement across the main diagonal. After this
transformation, there are now c(n− 1)− k rooks below the main diagonal. This
composition of transformations is invertible by switching rows and columns then
shifting every rook left one space. Thus, the transformation gives a bijection,
completing the proof. �

Before we can give the second proof, we must first establish some basic properties
of (multiplex) juggling sequences.

Lemma 5. If the sequence T1T2 · · · Tn satisfies the juggling modular conditions with
hand capacity c, and α∈Zn with gcd(α, n)=1, then (αT1α−1)(αT2α−1) · · · (αTnα−1),
where

αTi := {αti,1, . . . , αti,c},

and the subscripts are taken modulo n, also satisfies the juggling modular condi-
tions.

Proof. We have

A = {αtiα−1, j + i}1≤i≤n
1≤ j≤c

= {α(tiα−1, j + iα−1)}1≤i≤n
1≤ j≤c

= {α(ti ′, j + i ′)}1≤i ′≤n
1≤ j≤c

,

where we use that gcd(α, n)= 1 so that α is invertible modulo n and as i ranges
between 1 and n, then so does i ′ := iα−1. Since {ti, j + i}1≤i≤n,1≤ j≤c has c occur-
rences each of 1 through n, then scaling by α and taking terms modulo n we also
have that A will have c occurrences each of 1 through n. �
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Lemma 6. If the sequence T1T2 · · · Tn satisfies the juggling modular conditions of
hand capacity c, and β ∈ Z, then (T1+β)(T2+β) · · · (Tn +β), where

Ti +β := [ti,1+β, ti,2+β, . . . , ti,c+β],

still satisfies the juggling modular conditions.

Proof. The multiset
A = {(ti, j +β)+ i} 1≤i≤n

1≤ j≤c

is found by taking {ti, j + i}1≤i≤n,1≤ j≤c and shifting each element by β. Since
T1T2 · · · Tn satisfy the juggling modular conditions then so also must A. �

Juggling proof of Theorem 4. We show there is a bijection between the minimal
multiplex juggling sequences using k balls and those using c(n− 1)− k balls for a
fixed length n and hand capacity c. So let T1T2 · · · Tn be a valid minimal multiplex
juggling sequence with k balls and hand capacity c. By Lemma 5 and Lemma 6, if
we scale each Ti by −1 (reversing the indexing) and add n− 1 then the resulting
sets still satisfy the modular juggling conditions. In particular we have that the
following satisfies the modular juggling condition:

(n− 1− Tn)(n− 1− Tn−1) · · · (n− 1− T1).

We also note the resulting throws all lie between 0 and n−1 so that this is indeed a
minimal juggling pattern.

The number of balls in the new juggling sequence is

1
n

n∑
i=1

c∑
j=1

((n− 1)− ti, j )=
1
n

(
cn(n− 1)−

n∑
i=1

c∑
j=1

ti, j

)
= c(n− 1)− k.

Finally, we note that this operation is its own inverse, and thus gives the desired
bijection. �

5. Generalized Eulerian numbers for small k

We now look at determining the values of the generalized Eulerian numbers
〈 n

k

〉
c

for small k. This depends of course on both n and c. However, for a fixed k there
are only finitely many c that need to be considered. This is a consequence of the
following lemma.

Lemma 7. For c ≥ k we have
〈n

k

〉
c =

〈n
k

〉
k .

Proof. It will suffice to establish the following claim.

Claim. Every c-rook placement with k drops has at least c−k rooks in every entry
on the main diagonal.
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We proceed to establish this by using induction on k+ c. For k+ c= 1, the only
possible case is k = 0 and c= 1 for which there is only one placement, namely one
rook in each cell on the main diagonal.

Now assume that we have established the claim for all k, c with k+ c < `, and
let k + c = `. Let S be a c-rook placement with k drops. We can interpret the
rook placement as an incidence relationship of a regular bipartite graph. By Hall’s
marriage theorem, we know we can find a perfect matching in this bipartite graph
which corresponds to T, a 1-rook placement contained in S. Suppose there are
i drops in T. Then, S − T is a (c−1)-rook placement with k − i drops. Since
(c − 1) + (k − i) < c + k = `, by our induction hypothesis, there are at least
c− k + i − 1 rooks on each entry on the main diagonal in S− T, and hence also
in S. If i ≥ 1, we are done. If i = 0, then T is again the unique 1-rook placement
where every rook is on the main diagonal, so S still has at least c− k rooks on each
entry on the main diagonal. �

This can also be established in terms of minimal multiplex juggling patterns.

Juggling proof of Lemma 7. If there are k balls, then at each step we can throw
at most k balls, i.e., each Ti has at least c− k entries of 0. It follows that in the
corresponding c-rook placement each row has at least c−k rooks on the diagonal. �

We will be looking at the generalized Eulerian numbers
〈n

k

〉
c for k = 1, 2, 3. By

Lemma 7 this reduces down to only six cases to consider, namely,
〈n

1

〉
1,
〈n

2

〉
1,
〈n

2

〉
2,〈 n

3

〉
1,
〈n

3

〉
2 and

〈n
3

〉
3. Since

〈n
k

〉
1=

〈 n
k

〉
, the cases

〈n
1

〉
1,
〈 n

2

〉
1 and

〈n
3

〉
1 have been previously

determined (see A000295, A000460 and A000498, respectively, in the OEIS). So
that leaves

〈n
2

〉
2,
〈 n

3

〉
2 and

〈n
3

〉
3 and in Table 3 we give the generating function for these

three sequences. In the remainder of this section we will demonstrate the techniques
used to determine the generating functions by working through the case for

〈 n
2

〉
2.

5.1. Placing rooks in a generic rook placement. We break the problem of count-
ing c-rook placements into several subproblems according to the way the rooks
below the main diagonal are placed relative to one another (i.e., relative placements
instead of absolute placements). Given some generic placement of the k rooks below
the main diagonal we can determine the number of ways to place the remaining
rooks on or above the main diagonal. We then combine the results over all possible
generic placements.

We will carefully work through the rook placement shown in Figure 3, which
consists of two rooks below the main diagonal and where both rooks are in the same
column and different rows. Here a, b, c and d are the number of rows between the
various transition points (a transition point to passing a rook, or rooks, in a row or
a column as we move along the main diagonal).

We place the remaining rooks one row at a time starting from the bottom and
going to the top. For each new row, the way we place rooks will depend on all of
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∑
n≥0

〈
n
2

〉
2
xn
= x2
+ 11x3

+ 72x4
+ 367x5

+ 1630x6
+ 6680x7

+ 26082x8
+ · · ·

=
x2
− x3
− x4
− 3x5

+ 5x6

(1− x)3(1− 2x)2(1− 5x + 5x2)∑
n≥0

〈
n
3

〉
2
xn
= 4x3

+ 114x4
+ 1492x5

+ 13992x6
+ 109538x7

+ 769632x8
+ · · ·

=

4x3
+ 2x4

− 300x5
+ 1748x6

− 4676x7
+ 7058x8

− 6648x9
+ 4397x10

− 2206x11
+ 625x12

(1− x)4(1− 2x)3(1− 5x + 5x2)2(1− 8x + 13x2)

∑
n≥0

〈
n
3

〉
3
xn
= x2
+ 23x3

+ 325x4
+ 3368x5

+ 28819x6
+ 218788x7

+ · · ·

=

x2
− 7x3

+ 39x4
− 336x5

+ 1844x6
− 5545x7

+ 9697x8

− 10404x9
+ 7532x10

− 4558x11
+ 2435x12

− 700x13

(1− x)4(1− 2x)3(1− 5x + 5x2)2(1− 10x + 27x2− 20x3)

Table 3. Generating functions for some of the generalized Eulerian numbers.

×

× a

b

c

d

Figure 3. A 2-rook placement with two rooks below the main diag-
onal where both rooks are in the same column and different rows.

the choices we have made previously. However, it suffices to know only what is
happening locally. In particular, we only need to know how many columns can have
rooks placed into them, as well as the respective numbers that can go into those
columns. We can represent these by a partition of what we will call the excess (the
total number of rooks that can still be placed in the columns after the row has had
its rooks placed). As we move one row up the board we will gain a new column
(from the diagonal) and the excess will change in one of several ways.

• There are no rooks below or to the left of the new diagonal cell. Initially we
now have a new column that can take up to c rooks, and we place c rooks in
the row. The excess remains unchanged.

• There are τ rooks below the new diagonal cell. Initially we have the new
column, but that can only take up to c− τ rooks (i.e., τ rooks have already
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gone into the column), and we still have to place c rooks in the row. The
excess decreases by τ .

• There are σ rooks to the left of the new diagonal cell. Initially we have the
new column that can take up to c rooks, and we place c− σ rooks in the row
(i.e., σ rooks have already gone into the row). The excess increases by σ .

We note that it is possible for the last two situations to occur simultaneously.
In going from row to row we will transition from partitions of the old excess to

partitions of the new excess. We illustrate this with an example in which case the
excesses are both 2. We indicate a column which can still have r rooks placed into
it by r , then underneath look at all possible ways we can place 2 rooks into those
columns, and finally note the resulting set of columns contributing to the new excess:

2 2

2 0 → 2

0 2 → 2

1 1 → 1 1

2 1 1

2 0 0 → 1 1

1 1 0 → 1 1

1 0 1 → 1 1

0 1 1 → 2

This can be modeled by a transition matrix where the columns of the transition
matrix correspond to the excess of the original row and the rows of the transition
matrix correspond to the partitions of the excess of the new row:

( 2 1 1

2 2 1
1 1 1 3

)
.

Repeating this for all possible situations that might arise for transitioning between
excesses 0, 1, or 2, we get the transition matrices in the following table:

transition from

tr
an

si
tio

n
to ∅ 1 2 1 1

∅ (1) (1) (1 1)
1 (1) (2) (2 3)
2

1 1

(
1
0

) (
1
1

) (
2
1

1
3

)
We now start below the bottom row (in one possible way) and we move up from

row to row and multiply on the left by the transition that we perform between the
two rows. At any point we stop, the resulting vector will denote the number of
ways to fill up the board to that row with a particular excess. In particular, if we
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carry this procedure all the way to the top we will get a 1×1 matrix whose entry is
the number of ways to fill in the rooks on and above the main diagonal.

For Figure 3, where we have of runs of a, b, c and d rows as well as three other
transitions to make, the resulting product that gives our count is

(1)d(1 1)
(

2 1
1 3

)c (
1
1

)
(2)b(1)(1)a.

Finally, for this generic rook placement we sum over all possible choices of a, b, c
and d that gives an n× n board, i.e.,∑

a+b+c+d=n−3

(1)d(1 1)
(

2 1
1 3

)c (
1
1

)
(2)b(1)(1)a.

In order to help evaluate this sum, we will add in an extra parameter x that keeps
track of how many of each transition we made, or viewed another way, the power
of x corresponds to the number of rows we have. Therefore when counting the
number of placements on an n× n board, we are interested in the coefficient of xn

of the expression ∑
a,b,c,d≥0

(x)d x(1 1)
(

2x x
x 3x

)c

x
(

1
1

)
(2x)bx(x)a.

This sum can be decomposed as a combination of geometric sums giving∑
a,b,c,d≥0

(x)d x (1 1)
(

2x x
x 3x

)c

x
(

1
1

)
(2x)bx(x)a

= x3
(∑

d≥0

xd
)
(1 1)

(∑
c≥0

(
2x x
x 3x

)c )(
1
1

)(∑
b≥0

(2x)b
)(∑

a≥0

xa
)

= x3
·

1
1− x

· (1 1)
(

I −
(

2x x
x 3x

))−1 (1
1

)
·

1
1− 2x

·
1

1− x

=
x3

(1− x)2(1− 2x)
· (1 1)

(
1

1− 5x + 5x2

(
1− 3x x

x 1− 2x

))(
1
1

)
=

x3(2− 3x)
(1− x)2(1− 2x)(1− 5x + 5x2)

.

This is the generating function for one of the generic ways to place rooks. We
can now repeat this procedure for every way in which we can place rooks below
the main diagonal and add the individual generating functions together. All the
seven generic cases, with their corresponding generating functions, are shown in
Figure 4. Adding the individual generating functions together then gives us the
overall generating function that was given in Table 3.
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×

×

××

×

×

x4

(1− x)3(1− 2x)2
x2(1− 2x)

(1− x)2(1− 5x + 5x2)

2x3

(1− x)2(1− 2x)2

×

×

×

×

x4(5− 7x)
(1− x)2(1− 2x)2(1− 5x + 5x2)

x4(5− 7x)
(1− x)2(1− 2x)2(1− 5x + 5x2)

×

×

××

x3(2− 3x)
(1− x)2(1− 2x)(1− 5x + 5x2)

x3(2− 3x)
(1− x)2(1− 2x)(1− 5x + 5x2)

Figure 4. All generic 2-rook placements and corresponding gen-
erating functions.

This same process works for determining the generating function of
〈 n

k

〉
c for any

fixed k and c. The main challenge lies in that the number of generic cases that have
to be considered grows drastically as we increase c and k. This is demonstrated in
Table 4. It is possible to automate this process, which was used for determining the
generating functions for k = 3 given in Table 3.
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k ↓ c→ 1 2 3 4 5 6 7

1 1
2 4 7
3 26 68 75
4 236 940 1090 1105
5 2752 16645 20360 20790 20821
6 39208 360081 464111 477242 478376 478439
7 660032 9202170 12492277 12933423 12974826 12977688 12977815

Table 4. The number of generic c-rook placements with k rooks
below the main diagonal.

6. Conclusion

The generalized Eulerian numbers are a natural extension of the Eulerian numbers,
at least in regards to the interpretation coming from rook placements. We have also
seen that these numbers exhibit a symmetry similar to that of the Eulerian numbers.
It would be interesting to know which other properties and relationships involving
Eulerian numbers generalize. Some natural candidates to try and generalize include
the following:

• Is there a generalization of the recurrence in Proposition 3 for Eulerian numbers
to generalized Eulerian numbers? Related to this, is there a simple generating
function for the generalized Eulerian numbers?

• Is there a generalization of Worpitzky’s identity, xn
=
∑

k

〈n
k

〉(x+k
n

)
, to general-

ized Eulerian numbers? Worpitzky’s identity is used in counting the number
of juggling patterns (see [Buhler et al. 1994]), so a generalization might be
useful in counting multiplex juggling patterns.

• Is there a generalization of the identity of Chung, Graham and Knuth [2010],∑
k

(a+b
k

)〈 k
a− 1

〉
=

∑
k

(a+b
k

)〈 k
b− 1

〉
?

Note that this uses the convention
〈 0

0

〉
= 0.

More about the Eulerian numbers and various identities and relationships that could
be considered are given by Graham, Knuth and Patashnik [1994, §6.2].

We also note the original motivation for investigating these numbers was looking
into the mathematics of multiplex juggling. There is a close connection between
the mathematics of juggling and the mathematics of rook placements. We hope to
see this relationship strengthened in future work.
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