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We provide results for the exponential dominating numbers and total exponen-
tial dominating numbers of a family of triangular grid graphs. We then prove
inequalities for these numbers and compare them with inequalities that hold more
generally for exponential dominating numbers of graphs.

1. Introduction

A dominating set of a graph G is a set S⊆ V (G) such that every v ∈ V (G) is either
in S or is adjacent to a member of S. A total dominating set of a graph G is a set
S⊆ V (G) such that every v ∈ V (G) is adjacent to a member of S. The vertices in S
are called dominating vertices or dominators, and a vertex adjacent to a dominator
is said to be dominated by that dominator. In most kinds of domination a dominator
is considered to dominate itself, but this is not the case for total domination where
each dominator must be dominated by another dominator.

When considering domination at a distance, a k-dominating set of a graph G
is a set S ⊆ V (G) such that every v ∈ V (G) is either in S or is a distance of k or
less from any member of S. More examples of domination at a distance have been
investigated in [Erwin 2004; Slater 1976].

In [Dankelmann et al. 2009] the authors introduce exponential domination, a
variety of distance domination where the dominating power of a vertex decreases
exponentially with the distance from that vertex. In this paper, we consider expo-
nential domination and introduce a variation of exponential domination which we
call total exponential domination. In the rest of the paper we sometimes talk about
exponential domination or total exponential domination just in terms of domination
when the context is clear.

For a connected graph G and S ⊆ V (G) we denote by G[S] the subgraph of G
induced by S. For u ∈ S and v ∈ V (G)\ S we define dS(u, v) to be the distance
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between u and v in G[V (G)\(S \{u})]; i.e., minimum length paths do not include
other dominators.

For exponential domination we use the same weight function as in [Dankelmann
et al. 2009], given by

wS(v)=

{∑
u∈S 2−dS(u,v)+1, v /∈ S,

2, v ∈ S.

For total exponential domination we use a similar weight function given by

wt
S(v)=

{∑
u∈S 2−dS(u,v)+1, v /∈ S,∑
u∈S,u 6=v 2−dS(u,v)+1, v ∈ S.

Note that the only difference between these two weight functions is thatwS(u)=2
but wt

S(u) depends on the distribution of the other dominators for u ∈ S.
As in [Dankelmann et al. 2009], if for each v∈V (G) (or equivalently v∈V (G)\S)

we have that wS(v) ≥ 1, then S is an exponential dominating set of G. The
exponential dominating number of a graph G, denoted by γe(G), is the smallest
cardinality of an exponential dominating set of G. Similarly, if for each v ∈ V (G)
we have that wt

S(v)≥ 1, then S is a total exponential dominating set of G. The total
exponential dominating number of a graph G, denoted by γte(G), is the smallest
cardinality of a total exponential dominating set of G. For an arbitrary S and
arbitrary v ∈ V (G)\S, if wS(v)≥ 1 or wt

S(v)≥ 1 then v is exponentially dominated
or totally exponentially dominated by S.

We restrict ourselves to a particular family of triangular grid graphs. A triangular
grid graph is a graph G such that V (G) can be put in a correspondence with points
(x, y) =

( 1
2a − b,

√
3

2 a
)
, where a, b ∈ Z; additionally, we require that in this

correspondence two vertices can be adjacent only if their corresponding points are
separated by unit distance (this is the same definition that is found in [Gordon et al.
2008]). We denote by Gn the graph whose vertices correspond with the points in{( 1

2a− b,
√

3
2 a
) ∣∣ a, b ∈ Z, 0≤ b ≤ a ≤ n

}
and which has as many edges as possible; Gn is called the triangular matchstick
arrangement graph of side n. This is the family of graphs which we consider in this
paper. The corners of Gn are those vertices corresponding to a= b= 0, a= b= n,
and a= n, b= 0. The perimeter of Gn is the set of vertices and edges that lie on
the minimal length paths between the corners. Any one of these minimal length
paths is a perimeter edge; note that each perimeter edge of Gn contains n edges.

In Section 2 we determine the exponential dominating numbers for Gn up to n=7.
In Section 3 we provide upper bounds for exponential dominating numbers for
arbitrary Gn . In Section 4 we determine the total exponential dominating numbers
for Gn up to n = 5. In Section 5 we use arguments similar to those from Section 3
to provide upper bounds for total exponential dominating numbers for arbitrary Gn .
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Figure 1. Graphs for Lemma 5.

2. Base cases for exponential domination

We use the following lemmas in proving Theorem 8.

Lemma 1. γe(Gn)≤ γe(Gn+1).

Lemma 2. If there exists an arrangement of dominators that dominates Gn where
a dominator is placed at a corner vertex, then the graph is also dominated by the
arrangement of dominators produced by moving the corner dominator to a vertex
adjacent to it and leaving the rest of the dominators in their original positions.

Lemma 3. γe(G1)= 1.

Lemma 4. γe(G2)= 2.

Proof. To see that γe(G2) ≤ 2, note that picking any two vertices of G2 to be
dominators suffices to dominate the graph.

Suppose γe(G2)= 1. For every vertex in V (G2) there is a second vertex that is a
distance of 2 away. Thus no matter where the dominator is placed there always is one
vertex with only a weight of 1

2 , so G2 is not dominated, which is a contradiction. �

Lemma 5. γe(G4)= 3.

Proof. The graphs Gi
4 referred to in this proof are contained in Figure 1. To see that

γe(G4)≤ 3, consider G1
4 or G2

4 (from now on all vertices appearing as bullet points
are dominators). If γe(G4) < 3 then we can dominate G4 with two dominators. We
obviously must dominate the corners of G4, and by Lemma 2 we can assume that
no dominator is in a corner.

Supposing that the two dominators are at a distance of 1 from two corners (to
ensure that at the least those corners are dominated), we produce graph G3

4, where
one of the circled vertices is also a dominator. The graph is not dominated in any
of these cases.

Supposing that the two dominators are each at a distance of 2 from a single
corner (to ensure that one corner is dominated), we produce G4

4, where one of the
circled vertices is also a dominator. G4 is not dominated in either case. This suffices
to prove the lemma. �

Lemma 6. γe(G6)= 4.
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Figure 2. Graphs for Lemma 6.

Proof. The graphs Gi
6 referred to in this proof are contained in Figure 2. To see

that γe(G6)≤ 4, consider G1
6.

If γe(G6) < 4 then we can dominate G6 with three dominators. We first consider
the case where each dominator is a distance of 1 from each corner. Doing so we
produce G2

6, where one of a or b and one of c or d is a dominator. In each of these
cases the circled vertex is not dominated.

Considering next the case where one of the corners has two dominators at a
distance of 2, we must place the third dominator on G3

6, where one of the circled
vertices is a dominator. We cannot place a third dominator in either of these cases
so that all of the corners are dominated.

We now consider placing two dominators at a distance of 3 from a corner and
the third dominator at a distance of 2 from the same corner. Doing so, we generate
G4

6 or G5
6, where two of the circled vertices are dominators. In any such graph only

one of the corners is dominated. This suffices to prove the lemma. �

Lemma 7. γe(G7)= 5.

Proof. The graphs Gi
7 referred to in this proof are contained in Figure 3. To see that

γe(G7)≤ 5, consider G1
7. If γe(G7) < 5, then four dominators suffice to dominate

the graph. We first try to dominate G7 by placing three dominators so that each lies
at a distance of 1 from each corner. Doing so, we produce G2

7 or G3
7.

Notice that the vertices a, b and c in G2
7 have domination of 17

32 due to the first
three dominators. So the fourth dominator must be placed at either of the circled
vertices so that a and b will both have domination greater than 1. However, doing
so, the domination of c is either 21

32 or 25
32 , so we cannot dominate G7 with four

dominators by starting with G2
7.
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Figure 3. Graphs for Lemma 7 and Theorem 8.

Note that the vertices a and b in G3
7 have domination 13

32 due to the first three
dominators. So the fourth dominator must be placed at the circled vertex in order for
both a and b to have domination greater than 1. However, doing so, the domination
of c is 25

32 , so we cannot dominate G7 with four dominators by starting with G3
7.

We next try to dominate G7 by placing two dominators a distance of 1 from two
corners and two other dominators a distance of 2 from the third corner. Doing so,
we produce G4

7, where one of a and b, one of c and d, and two of e, f , and g are
dominators. In each of these graphs one of the circled vertices fails to be dominated.
This exhausts all of the ways that we can ensure that all of the corners are dominated,
which suffices to prove the lemma. �

Theorem 8. The exponential domination numbers for G1 through G7 are

n 1 2 3 4 5 6 7

γe(Gn) 1 2 2 3 3 4 5

Proof. Lemmas 3–7 provide values for γe(Gn) for n ∈ {1, 2, 4, 6, 7}. To see that
γe(G3)≤ 2, consider G3 in Figure 3; by Lemmas 1 and 4, γe(G3)= 2. To see that
γe(G5)≤ 3, consider G5 in Figure 3; by Lemmas 1 and 5 we see that γe(G5)= 3. �

Theorem 9. The exponential domination numbers for G10 through G15 are bounded
as follows:

n 8 9 10 11 12 13 14 15

γe(Gn)≤ 6 6 7 9 10 11 12 13

Proof. Consult Figure 4 for graphs that satisfy these bounds. �
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Figure 4. Graphs for Theorem 9.
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3. Inequalities for exponential domination

We will now determine the total exponential dominating numbers for Gn up to n= 5.

Theorem 10 [Dankelmann et al. 2009]. If G is a connected graph of size n then

γe(G)≤ 2
5(n+ 2).

Applying this inequality to triangular grid graphs, we have the bound

γe(Gn)≤
2
5

((n+2
2

)
+ 2

)
=

1
5(n

2
+ 3n+ 6).

The theorem in [Dankelmann et al. 2009] that bounds γe(G) is established by
considering an exponentially dominated spanning tree of G and not G itself. In
establishing our bounds, we make use of the fact that Gn+1 can be constructed
from Gn by a set of elementary operations that are dependent on n. Our strongest
bounds arise from considering how we can construct a distribution of dominators
that dominates Gn+r based on a distribution of dominators that dominates Gn .

Lemma 11. Suppose G4n can be dominated by a set of m dominators where each of
the corners are dominated by two dominators placed on the perimeter at a distance
of 2 from each corner:

(1) If dominators are placed along the rest of the perimeter edge between those
two corners with a distance of 4 between each dominator, then G4n+4 can be
dominated in a similar manner with m+ n+ 3 dominators.

(2) If dominators are placed along two of the perimeter edges with a distance of 4
between each dominator, then G4n+8 can be dominated in a similar manner
by m+ 2n+ 6 dominators.

(3) If dominators are placed along the rest of the perimeter with a distance of 4
between each dominator, then G4n+12 can be dominated in a similar manner
by m+ 3n+ 9 dominators.

Proof. (1) Consider the labeled G4n+4 implied by Figure 5. A labeled G4n can be
seen by removing the lower four rows of vertices from the G4n+4 with the lower
perimeter of G4n , including the row of vertices labeled {1, 2, . . . , n}. Both G4n

and G4n+4 have dominators placed as described in the hypotheses of the lemma.
It can be confirmed that all of the vertices in the additional four rows of G4n+4

are dominated by this arrangement of dominators. If the G4n is dominated by
m dominators, then we have dominated G4n+4 by adding n+ 1 dominators along
the lower perimeter and two dominators on the other perimeters; thus we have
dominated G4n+4 with m+ n+ 3 dominators.

(2) Similarly, consider the labeled G4n+8 implied by Figure 5. If G4n is dominated
by m dominators then we have dominated G4n+8 by adding n+2 dominators along
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Figure 5. Graphs for Lemma 11.

two perimeter edges and two dominators on the other perimeter edge; thus we have
dominated G4n+8 with m+ 2n+ 6 dominators.

(3) Similarly, consider the labeled G4n+12 implied by Figure 5. If G4n is dominated
by m dominators then we have dominated G4n+12 by adding n+3 dominators along
each perimeter edge; thus we have dominated G4n+12 with m+3n+9 dominators. �

Lemma 12. If G15n can be dominated by m dominators where

(1) dominators are placed at two corners, and

(2) along the perimeter edge between those corners dominators are placed with a
distance of 3 between them,

then G15n+15 can be dominated in a similar manner by m+ 13+ 15n dominators.
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Figure 6. Graph for Lemma 12.

Proof. Consider the labeled G15n+15 implied by Figure 6. The lower perimeter
edge of a G15n is emboldened, as is part of the perimeter of a G15 dominated by
14 dominators. If dominators are placed in the lower 15 rows of G15n+15, outside
of the bold G15, as suggested by the placement of the labeled dominators, then
both G15n and G15n+15 have dominator distributions as described in the hypotheses
of the lemma. It can be confirmed that G15n+15 is dominated provided that G15n

is dominated. If G15n is dominated by m dominators then we have dominated
G15n+15 by placing 15n dominators in a regular pattern in the lower 15 rows
and 13 dominators in the remaining space; thus we have dominated G15n+15 with
m+ 13+ 15n dominators. �

Note that this lemma makes use of a G15 that is dominated using 14 dominators;
however, from Theorem 9 we see that the exponential dominating number is at
most 13. We use more dominators than necessary here in order to produce a
consistent pattern of dominators along the lower perimeter edge of each subsequently
constructed graph.

Theorem 13. The following inequalities hold for n ≥ 0:

(1) γe(G4n)≤
1
2(n(n+ 5)).

(2) γe(G4+8n)≤ 2n2
+ 6n+ 3.

(3) γe(G4+12n)≤
1
2(9n2

+ 15n+ 6).

(4) γe(G8+4n)≤
1
2(n

2
+ 9n+ 12).

(5) γe(G8n)≤ 2n(n+ 2).
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Figure 7. Graphs for Theorem 13.

(6) γe(G8+12n)≤
1
2(9n2

+ 21n+ 12).

(7) γe(G12+4n)≤
1
2(n

2
+ 11n+ 20).

(8) γe(G12+8n)≤ 2n2
+ 10n+ 10.

(9) γe(G12n)≤
1
2(9n2

+ 9n+ 2).

(10) γe(G15n)≤
1
2(15n2

+ 11n+ 2).

Proof. We will prove inequalities (1)–(3) and (10); inequalities (4)–(9) can be
proven by means similar to those used to prove (1)–(3) using the same lemmas.
The dominated G8 used for inequalities (4)–(6) and the dominated G12 used for
inequalities (7)–(9) can be found in Figure 4; the second G12 that appears in
Figure 4 is the one we use because it is the only one that satisfies the hypotheses of
Lemma 11.

From Figure 1 we see that G2
4 satisfies the hypotheses of Lemma 11. Lemma 5

also implies that γe(G4)≤ 3, so we see that inequality (1) holds for the case where
n = 1, and inequalities (2) and (3) hold for the case where n = 0.

Suppose that inequality (1) holds for all n up to some m; also suppose that G4m

can be dominated in agreement with the hypotheses of Lemma 11 by a number
of dominators less than or equal to the bound provided by inequality (1). Then
γe(G4m)≤

1
2(m

2
+5m), and by Lemma 11 we see that G4m+4 can be dominated by

1
2(m

2
+ 5m)+m+ 3= 1

2(m
2
+ 7m+ 6)= 1

2(m+ 1)(m+ 6)

dominators. Thus γe(G4(m+1))≤
1
2(m+1)((m+1)+5), which proves inequality (1).
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Suppose that inequality (2) holds for all n up to some m; also suppose that
G4+8m can be dominated in agreement with the hypotheses of Lemma 11 by a
number of dominators less than or equal to the bound provided by inequality (2).
Then γe(G4+8m)= γe(G4(1+2m))≤ 2m2

+ 6m+ 3, and by Lemma 11 we see that
G4(1+2m)+8 can be dominated by

(2m2
+ 6m+ 3)+ 2(1+ 2m)+ 6= 2m2

+ 10m+ 11= 2(m+ 1)2+ 6(m+ 1)+ 3

dominators. Thus

γe(G4(1+2m)+8)= γe(G4+8(m+1))≤ 2(m+ 1)2+ 6(m+ 1)+ 3,

which proves inequality (2).
Suppose that inequality (3) holds for all n up to some m; also suppose that

G4+12m can be dominated in agreement with the hypotheses of Lemma 11 by a
number of dominators less than or equal to the bound provided by inequality (3).
Then γe(G4+12m)= γe(G4(1+3m))≤

1
2(9m2

+ 15m+ 6), and by Lemma 11 we see
that G4(1+3m)+12 can be dominated by

1
2(9m2

+15m+6)+3(1+3m)+9= 1
2(9m2

+33m+30)= 1
2

(
9(m+1)2+15(m+1)+6

)
dominators. Thus

γe(G4(1+3m)+12)= γe(G4+12(m+1))≤
1
2

(
9(m+ 1)2+ 15(m+ 1)+ 6

)
,

which proves inequality (3).
From Figure 6 we see that G15 can be dominated by 14 dominators in a way that

satisfies the hypotheses of Lemma 12. This implies that γe(G15)≤ 14, so we see
inequality 10 holds for the case where n = 1. Suppose that inequality (10) holds for
all n up to some m; also suppose that G15m can be dominated in agreement with
the hypotheses of Lemma 12 by a number of dominators less than or equal to the
bound provided by inequality (10). Then γe(G15m)≤

1
2(15m2

+ 11m+ 2), and by
Lemma 12 we see that G15(m+1) can be dominated by

1
2(15m2

+11m+2)+13+15m= 1
2(15m2

+41m+28)= 1
2

(
15(m+1)2+11(m+1)+2

)
dominators. Thus,

γe(G15(m+1))≤
1
2

(
15(m+ 1)2+ 11(m+ 1)+ 2

)
,

which proves inequality (10). �

This provides us with the following corollary.

Corollary 14. The following inequalities hold for n ∈ Z+ as specified:

(1) γe(Gn)≤
1
32(n

2
+ 12n+ 32), where n mod 4= 0.

(2) γe(Gn)≤
1
30(n

2
+ 11n+ 30), where n mod 15= 0.
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The first inequality here is implied by inequalities (3), (6), and (9) in Theorem 13,
and the second inequality is implied by inequality (10). The other inequalities from
Theorem 13 do not provide bounds that are as good as these.

4. Base cases for total exponential domination

The following lemma is the analogue of Lemma 1 for total exponential domination.

Lemma 15. γte(Gn)≤ γte(Gn+1).

Lemma 16. γte(G1)= 2.

Proof. To see that γte(G1) ≤ 2, note that picking any two vertices as dominators
suffices to dominate G1. To see that γte(G1) 6= 1, note that a single dominator can
never dominate an entire graph. �

Lemma 17. γte(G3)= 3.

Proof. To see that γte(G3)≤ 3, consider the first graph in Figure 8. Suppose that
γte(G3) < 3. Then the graph is dominated with two dominators. In a graph with
only two dominators, the dominators must be adjacent since otherwise both of them
will not have weight greater than 1. Any G3 with two adjacent dominators will be
one of the graphs shown in Figure 8, none of which is dominated. �

Lemma 18. γte(G5)= 5.

Proof. The graphs referred to in this proof appear in Figure 9. To see that γte(G5)≤5,
consider the graph G5. Supposing that γte(G5) < 5, we can dominate the graph
with four dominators. Since each corner must have a weight greater than or equal
to 1, we organize this proof according to the ways that corners can be dominated
by the fewest number of dominators. Note that 1 can be written as a sum of four or
fewer powers of 1

2 (not necessarily unique) with numerators of 1 in the following
five ways: 1, 2

( 1
2

)
, 1

2+2
(1

4

)
, 1

2+
1
4+2

( 1
8

)
, 4
( 1

4

)
. We consider each of these possible

combinations of weights separately.

1: One way for all of the corners to have weight at least 1 is to place dominators at
a distance of 1 from each of the corners. Doing so, we produce either G1

5 or G2
5. In

these graphs each dominator has weight less than 1
2 , so in order for the dominators

to be dominated we must place another dominator no more than a distance of 1
away from each. It is not possible to do this with a single dominator, so there is

•

•

•

• • • • •

•

•

•

Figure 8. Graphs for Lemma 17.
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Figure 9. Graphs for Lemma 18.

not a configuration of dominators that dominates the graph where each corner is
adjacent to a dominator.

2
( 1

2
)
: Another method to dominate all of the corners is to place two dominators

a distance of 2 away from one corner and to place the other dominators adjacent
to the other corners. Doing this we produce G3

5, where two of a, b, and c are
dominators, one of d and e is a dominator, and one of f and g is a dominator. It
can be confirmed that in each of these cases the graph fails to be dominated.
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The next way to consider having corners dominated is to place two dominators
at a distance of 2 from one corner, and to do the same for a second corner. Doing
so we produce G4

5, where two of a, b, and c are dominators and two of d, e, and f
are dominators. It can be confirmed that in each of these cases the graph fails to be
dominated.
1
2 + 2

( 1
4
)
: The third case involves dominating a single corner by placing one

dominator at a distance of 2 and two dominators at a distance of 3 in such a way
that the dominators don’t interfere with one another. If we begin by doing this for
the top corner, we make one of the graphs from G5

5 to G11
5 . In those graphs with

vertices labeled a, each labeled vertex has domination less than 1
2 , so a dominator

must be placed adjacent to it. It is easy to confirm that doing so will never suffice to
dominate the graph by considering the lower corner vertex opposite to the labeled
vertex. In those graphs with vertices labeled b, the weight of each labeled vertex is
at least 1

2 but less than 3
4 , so a dominator must be placed at distance of 2 or closer.

Since the labeled vertices are a distance of 5 apart this is not possible.
1
2 +

1
4 + 2

( 1
8
)
: The only other cases that need to be considered are those in which all

four dominators are used to dominate a single corner. This can be achieved by plac-
ing dominators in a configuration with one dominator at a distance of 2, one domina-
tor at a distance of 3, and two dominators at a distance of 4 (using dS(u, v)). Doing
so, we produce one graph from G12

5 to G16
5 , where two of the vertices labeled by

letters are dominators. It can be confirmed that in each case the graph fails to be dom-
inated (this can be easily done by considering domination of the other two corners).

4
( 1

4
)
: If we try to dominate G5 using four dominators all at a distance of 3 from

one of the corners then we produce G17
5 , which is not dominated. �

Theorem 19. The total exponential domination numbers for G1 through G5 are

n 1 2 3 4 5

γte(Gn) 2 2 3 3 5

Proof. Lemmas 16–18 provide γte(Gn) for n ∈ {1, 3, 5}. To see that γte(G2)≤ 2,
consider the graph in Figure 10; by Lemmas 15 and 16 we see that γte(G2) = 2.
To see that γte(G4)≤ 3, consider the graph in Figure 10; by Lemmas 15 and 17 we
see that γte(G4)= 3. �

•

•

G2
•

• •

G4

Figure 10. Graphs for Theorem 19.
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Theorem 20. The total exponential domination numbers for G6 through G9 are
bounded as follows:

n 6 7 8 9

γte(Gn)≤ 6 6 6 8

Proof. Consult Figure 7 for graphs that satisfy these bounds. �

5. Inequalities for total exponential domination

Lemma 21. If G2n+1 can be dominated by a set of m dominators so that there
exists a subgraph of G2n+1 isomorphic to G2n that contains all of the dominators
and such that

(1) two of the corners of the G2n subgraph are adjacent to two dominators, and

(2) dominators are placed along the rest of perimeter edge between those two
corners with a distance of 2 between each dominator,

then G2n+7 can be dominated in a similar way by m+ n+ 5 dominators.

Proof. Consider the labeled G2n+7 implied by Figure 11. The lower perimeter
edge of a G2n+1 has been emboldened. The lower perimeter edge of a G2n+6

subgraph corresponds with the second-lowest set of edges and vertices, including
the vertices labeled by {1, 2, . . . , n+ 2, n+ 3}; this graph has dominators placed
as described above. A labeled G2n can be produced by removing the lower seven
rows of vertices from the G2n+7; this G2n has dominators placed as described
above and is a subgraph of the G2n+1 whose lower perimeter edge is bold. It
can be confirmed that all of the vertices in the lower six rows are dominated by
an arrangement of dominators like the one depicted in Figure 11. If G2n+1 is
dominated by m dominators then we have dominated G2n+7 by adding a total of
n+ 5 dominators, thereby dominating G2n+7 with m+ n+ 5 dominators. �

•
1

•
2

•
n−1

•
n

•
n+1

•
n+2

•
n+3

• •

•
1

•
2

•
n−1

•
n

• •

•
1

•
2

•
n−1

•
n

•
n+1

•
n+2

•
n+3

• •

•
1

•
2

•
n−1

•
n

• •

Figure 11. Graph for Lemma 21.
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• •
0

• •
1

• •
n−1

• •
n

• •
n+1

• •
0

• •
1

• •
n−1

• •
n

• •
0

• •
1

• •
n−1

• •
n

• •
n+1

• •
0

• •
1

• •
n−1

• •
n

Figure 12. Graph for Lemma 22.

Lemma 22. If G5n+2 can be dominated by a set of m dominators so that there
exists a subgraph of G5n+2 isomorphic to G5n+1 that contains all of the dominators
and such that

(1) two of the corners of the subgraph are dominators,

(2) along the perimeter edge of the subgraph between those dominators there are
two dominators adjacent to each of the above-mentioned dominators, and

(3) along the rest of the perimeter there occur pairs of adjacent dominators with a
distance of 4 between each pair,

then G5n+7 can be dominated in a similar way by m+ 4+ 2n dominators.

Proof. Consider the labeled G5n+7 implied by Figure 12. The lower perimeter edge
of a G5n+2 subgraph has been emboldened. The lower perimeter edge of a G5n+6

subgraph corresponds with the second-lowest set of edges and vertices, including
the vertices labeled by {1, 2, . . . , n, n + 1}; this graph has dominators placed as
described above. A labeled G5n+1 can be produced by removing the lower six rows
of vertices from the G5n+7; this graph has dominators placed as described above
and is a subgraph of the G5n+2 whose lower perimeter edge has been emboldened.
It can be confirmed that all of the vertices in the lower five rows are dominated by
an arrangement of dominators like the one depicted in Figure 12. If the G5n+2 is
dominated by m dominators then we have dominated G5n+7 by adding a total of
2n+ 4 dominators, thereby dominating G5n+7 with m+ 4+ 2n dominators. �

Theorem 23. The following inequalities hold for n ≥ 0:

(1) γte(G5+6n)≤
1
2(3n2

+ 11n+ 10).

(2) γte(G7+6n)≤
1
2(3n2

+ 13n+ 14).

(3) γte(G9+6n)≤
1
2(3n2

+ 15n+ 18).

(4) γte(G2+5n)≤ (n+ 1)(n+ 2).

Proof. We will prove inequalities (1) and (4). The proofs for inequalities (2) and
(3) are similar to the proof of inequality (1). The dominated G7 and G9 used to
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prove inequalities (2) and (3) can be found in Figure 7; we use the second G7 and
second G9 that appear because they are the only ones that satisfy the hypotheses of
Lemma 21.

From Figure 9 we see that G5 can be dominated by five dominators in a way that
satisfies the hypotheses of Lemma 21. This implies that γte(G5)≤ 5, so we see that
inequality (1) is satisfied for the case where n= 0. Suppose that inequality (1) holds
for all n up to some m; also suppose that G5+6m can be dominated in agreement
with the hypotheses of Lemma 21 by a number of dominators less than or equal
to the bound provided by inequality (1). Then γte(G5+6m) = γte(G2(3m+2)+1) ≤
1
2(3m2

+11m+10), and by Lemma 21 we see that G5+6(m+1) can be dominated by

1
2(3m2

+ 11m+ 10)+ (3m+ 2)+ 5= 1
2(3m2

+ 17m+ 24)

=
1
2

(
3(m+ 1)2+ 11(m+ 1)+ 10

)
dominators. Thus

γte(G5+6(m+1))≤
1
2

(
3(m+ 1)2+ 11(m+ 1)+ 10

)
,

which proves inequality (1).
From Figure 10 we see that G2 can be dominated in a way that satisfies the

hypotheses of Lemma 22. This implies that γte(G2)≤2, so we see that inequality (4)
holds in the case where n=0. For some m>0 suppose that G2+5m can be dominated
in agreement with the hypotheses of Lemma 22 by a number of dominators less than
or equal to the bound provided by inequality (4). Then γte(G2+5m)≤m2

+ 3m+ 2,
and by Lemma 22, G7+5m can be dominated by

(m2
+ 3m+ 2)+ 4+ 2m = m2

+ 5m+ 6= (m+ 1)2+ 3(m+ 1)+ 2

dominators. Thus

γte(G7+5m)= γte(G2+5(m+1))≤ (m+ 1)2+ 3(m+ 1)+ 2,

which proves inequality (4). �

Corollary 24. The following inequalities hold for n as specified:

(1) γte(Gn)≤
1
24(n

2
+ 12n+ 35), where n is odd and n ≥ 5.

(2) γte(Gn)≤
1
25(n

2
+ 11n+ 24), where n mod 5= 2.

6. Conclusion

In this paper we have proven the values of γe(Gn) for n ≤ 7 and γte(Gn) for
n ≤ 5. We also provided bounds on γe(Gn) for n ≤ 15 and γte(Gn) for n ≤ 9. We
made use of the regular structure of triangular matchstick arrangement graphs to
establish bounds on γe(Gn) and γte(Gn) for arbitrary n. The constructive methods
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we used produced inequalities that are significantly tighter than those found in
[Dankelmann et al. 2009]. These techniques are particularly promising since the
family of triangular grid graphs is just one family of graphs where Gn+1 can be
constructed from Gn by adding edges and vertices in a regularly defined manner.
Similar methods could be used with recursively constructible families of graphs
(studied in [Noy and Ribó 2004]) and regular n-gon grid graphs, such as square
grid graphs, as in [Gonçalves et al. 2011].
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