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A matrix completion problem asks whether a partial matrix composed of speci-
fied and unspecified entries can be completed to satisfy a given property. This
work focuses on determining which patterns of specified and unspecified entries
correspond to partial matrices that can be completed to solve three different
matrix equations. We approach this problem with two techniques: converting
the matrix equations into linear equations and examining bases for the solution
spaces of the matrix equations. We determine whether a particular pattern can
be written as a linear combination of the basis elements. This work classifies
patterns as admissible or inadmissible based on the ability of their corresponding
partial matrices to be completed to satisfy the matrix equation. Our results present
a partial or complete characterization of the admissibility of patterns for three
homogeneous linear matrix equations.

1. Introduction

A matrix completion problem asks whether a partial matrix, one with some entries
given and others freely chosen, can be completed to satisfy a desired property. In
this work, we classify patterns for entries in a partial matrix so that the partial
matrix can almost always be completed to satisfy certain linear matrix equations.
We establish limits on the number of specified entries in patterns and on the locations
of specified and unspecified entries.

Examples of matrix completion problems include determining completions for
M-matrices and inverse M-matrices where the desired property is that a nonnegative
partial matrix pattern of any order has an inverse M-matrix [Johnson and Smith
1996], where M-matrices are Z -matrices such that each eigenvalue of the matrix
has positive real parts. A Z -matrix is one whose off-diagonal entries are less than
or equal to zero. The inverse M-matrix completion problem can also be evaluated
using a graph theoretic approach [Hogben 1998; 2000]. Other classical matrix
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completion problems involve completing partial Hermitian matrices and positive
definite matrices to determine which partial positive definite matrices have a positive
definite completion [Grone et al. 1984], while others look at completing TP or TN
matrices with the goal of preserving low-rank [Johnson and Wei 2013]. A TP, or
totally positive, matrix is a square matrix such that the determinant of each square
submatrix (including minors) is positive. Equivalently, each of the eigenvalues of
such a matrix is nonnegative. TN matrices are totally nonnegative matrices.

Another matrix completion problem is the titled completion problem, which
asks if, given a conventional partial matrix, there exist values for the unspecified
entries resulting in a conventional matrix that is either doubly nonnegative (DN) or
completely positive (CP) [Drew et al. 2000]. Additionally, for partial matrices that
are symmetric and have specified entries along the diagonal, it is known there is a P-
matrix completion if and only if every given principal submatrix has a positive deter-
minant [Johnson and Kroschel 1996]. Any 4×4 pattern also has a P-completion if it
contains eight or fewer off-diagonal positions [DeAlba and Hogben 2000]. A graph
theoretic approach can also be used to evaluate the P-completion problem [Hogben
2001]. There are also results for matrix completions involving the Euclidean distance.
For example, for every partial distance matrix in Rk such that the graph of specified
entries is chordal, there exists a completion to a distance matrix in Rk [Bakonyi and
Johnson 1995]. These classic matrix completion problems determine the condition
under which a partial matrix can be completed, so that the resulting matrix has a cer-
tain property. Only one matrix is involved in these problems, the partial matrix itself.

In this work, we determine if a partial matrix can be completed to satisfy certain
matrix equations. In this case the admissibility of a pattern is relative to other
matrices in the matrix equation. We focus on determining which patterns of specified
and unspecified entries for partial matrices can almost always be completed to satisfy
the following matrix equations: the skew-symmetric equation AX − AT X = 0, the
commutativity equation AX − X A = 0, and the skew-Lyapunov equation AX −
X AT

= 0. It is not possible to, in general, solve these matrix completion problems
for all matrices A. So, we look to solve the completion for almost all matrices A.
That is, we assume A has a certain property that almost all matrices satisfy, and we
show that any partial matrix can be completed for almost all of these “generic” A.
In this work, we assume either A has distinct eigenvalues or is nonderogatory.

We use two approaches to classify patterns. The column space approach converts
the matrix equations to linear equations and uses linearly independent columns
to determine unspecified entry locations. The nullspace approach uses a basis of
the solution space of a homogeneous matrix equation to determine specified entry
locations. We classify patterns as admissible or inadmissible based on the ability
or inability of corresponding partial matrices to be completed to satisfy the matrix
equation for a “generic” matrix A.
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We discuss the important ideas and definitions relevant to completions of matrix
equations in Section 2. Sections 3 and 4 explain the two principle methods used
for classifying partial matrix patterns: the column space and nullspace approaches.
We apply the column space and nullspace approaches to the skew-symmetric,
commutativity, and skew-Lyapunov equations in Section 5 to classify patterns for
these equations.

2. Preliminaries

In this section, we define a partial matrix pattern, a partial matrix, a partial matrix
completion, and the admissibility or inadmissibility of matrix patterns. We include
relevant definitions and theorems from linear algebra, including the Kronecker
product and the vec function.

Definition 2.1. An n× n partial matrix pattern

α = {(it , jt) | 1≤ it , jt ≤ n, t = 1, . . . , n}

is a set of specified entry locations in an n×n matrix. For a partial matrix pattern α,
the n× n rectangular array X = [xi j ] is an α-partial matrix if the only specified
entries correspond to the locations in α.

A pattern describes locations in a matrix as specified or unspecified. A pattern
becomes a partial matrix when the specified entry locations have values assigned.

Definition 2.2. A completion of an α-partial matrix X = [xi j ] is a matrix X̂ =
[x̂i j ] ∈ Mn(R) in which x̂i j = xi j whenever (i, j) ∈ α.

Throughout this paper, X will represent a partial matrix, and X̂ will represent
a completion of X . For example, consider a 3 × 3 pattern α = {(1, 1), (1, 3),
(2, 2), (3, 2), (3, 3)}. The following are the pattern α, an α-partial matrix X , and a
completion X̂ :

α =

# � #
� # �
� # #

 , X =

 1 x12 4
x21 5 x23

x31 9 11

 , X̂ =

 1 15 4
13 5 19
2 9 11

 .
Definition 2.3. An n × n partial matrix pattern α is admissible for the matrix
equation

A1 X B1+ A2 X B2+ · · ·+ Ak X Bk = C

if for all α-partial matrices X there exists a completion X̂ such that

A1X̂ B1+ A2X̂ B2+ · · ·+ AkX̂ Bk = C,

where A1, A2, . . . , Ak, B1, B2, . . . , Bk,C ∈ Mn(R).
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Because the admissibility of a pattern, in this work, depends on the fully specified
matrices in the matrix equation, the problem of classifying admissible patterns
becomes unwieldy without some restrictions on these matrices. In this paper, we
restrict our attention to two large categories of matrices: nonderogatory matrices
and matrices with distinct eigenvalues. These restrictions are necessary in order to
calculate the maximum number of specified entry locations for the matrix equations
we examine. Both nonderogatory and distinct eigenvalues are “generic” matrix
properties in the sense that almost all matrices satisfy these properties.

There may be some versions of matrix equations for which a given partial matrix
may not be completed to satisfy the particular instance of the matrix equation. For
example with the 2×2 pattern α = {(1, 2), (2, 2)}, not all α-partial matrices can be
completed to commute with a diagonal matrix with distinct eigenvalues. However,
the only matrices A for which not all of these α-partial matrices can be completed
to commute with A are those matrices A with a 0 in the (1, 2) position. The set
of such matrices is a set of measure zero. So we say that α is admissible for the
commutativity equation in general, which is to say that α is admissible for the matrix
equation AX − X A = 0 for almost all “generic” A, which we show in Section 5.

In Sections 3 and 4, we construct conditions for the admissibility of patterns given
matrices A1, A2, . . . , Ak, B1, B2, . . . , Bk,C . For the matrix equations in Section 5,
there is only one matrix A that is fully specified, so admissibility of a pattern for
the general form of a matrix equation means any partial matrix can be completed
for almost all “generic” A. Admissibility depends on the matrix equation as well; a
pattern may be admissible for AX−AT X = 0 but not admissible for AX−X AT

= 0.
The matrix equation for which a pattern is admissible or inadmissible should be
clear from context.

Definition 2.4. An admissible pattern α is maximally admissible if and only if
|β| ≤ |α| for every admissible pattern β.

In Section 4 we show the dimension of the solution space of the matrix equations
gives the size of the maximally admissible patterns

Definition 2.5. The Kronecker product of A = [ai j ] ∈ Mm,n(R) and B = [bi j ] ∈

Mp,q(R) is denoted by A⊗ B and is defined to be the block matrix

A⊗ B ≡

a11 B · · · a1n B
...

. . .
...

am1 B · · · amn B

 ∈ Mmp,nq(R).

Definition 2.6. Given A = [ai j ] ∈ Mm,n(R), the function vec : Mm,n(R)→ Rmn is
defined as

vec(A)= [a11 · · · am1 a12 · · · am2 · · · a1n · · · amn]
T .
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The following theorem describes how to use the vec function and Kronecker
product to transform linear matrix equations into linear equations.

Theorem 2.7 [Neudecker 1969]. If A, B, I ∈Mn(R), where I is the identity matrix,
then

vec(AB)= (I ⊗ A) vec(B)= (BT
⊗ I ) vec(A).

The following notation describes the submatrices corresponding to certain rows
or columns.

Definition 2.8. If A ∈ Mm,n(R) and ε ⊆ {1, . . . ,m}, then A[ε] is defined as the
submatrix of A lying in the rows ε. The notation A[s] may also be used to indicate
the s-th row in A.

Definition 2.9. If A ∈ Mm,n(R) and ε ⊆ {1, . . . , n}, then A(ε) is defined as the
submatrix of A lying in the columns ε. The notation A(s) may also be used to
indicate the s-th column in A.

For example, let A ∈ M3(R) and let ε = {1, 3}. If we have

A =

35 24 19
39 76 14
12 7 20

 , then A[ε] =
[

35 24 19
12 7 20

]
and A(ε)=

35 19
39 14
12 20

 .
3. The column space approach

The vec function is a vector space isomorphism which is used to convert linear
matrix equations into linear equations. In this section, we show that unspecified
entry locations in maximally admissible patterns correspond to full rank submatrices
of a certain matrix.

Let A1, . . . , Ak, B1, . . . , Bk,C be n× n real matrices. Applying Theorem 2.7
to the matrix equation A1 X B1+ · · ·+ Ak X Bk = C yields the linear equation

(BT
1 ⊗ A1+ · · ·+ BT

k ⊗ Ak) vec(X)= vec(C).

The solution space of A1 X B1+ A2 X B2+ · · · + Ak X Bk = 0 is isomorphic to the
nullspace of B1

T
⊗ A1+ B2

T
⊗ A2+· · ·+ Bk

T
⊗ Ak . Throughout this section, we

denote this n2
× n2 matrix BT

1 ⊗ A1+ · · ·+ BT
k ⊗ Ak as K .

Lemma 3.1. Let A1, . . . , Ak , B1, . . . , Bk,C ∈ Mn(R) and α be an n × n partial
matrix pattern. There exists a completion X̂ of the α-partial matrix X satisfying
A1X̂ B1+ · · ·+ AkX̂ Bk = C if and only if

vec(C)−
∑
(i, j)∈α

xi j K (i + ( j − 1)n) ∈ span{K (i + ( j − 1)n) | (i, j) /∈ α}.
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Proof. The matrix equation A1X B1+· · ·+AkX Bk =C is equivalent to the equation
(BT

1 ⊗A1+· · ·+BT
k ⊗Ak) vec(X )= vec(C) where X has specified and unspecified

entries. As above, let K = BT
1 ⊗ A1+· · ·+ BT

k ⊗ Ak . Separating the specified and
unspecified entries of X we rewrite this equation as∑

(i, j) 6∈α

xi j K (i + ( j − 1)n)+
∑
(i, j)∈α

xi j K (i + ( j − 1)n)= vec(C),

where xi j are the entries in the partial matrix X . In the first sum, the entries are
unspecified while in the second sum, the entries xi j are specified. Moving the
specified entries to the right-hand side yields the linear equation∑

(i, j)/∈α

xi j K (i + ( j − 1)n)= vec(C)−
∑
(i, j)∈α

xi j K (i + ( j − 1)n).

This is solvable if and only if the vector on the right-hand side lies in span{K (i +
( j − 1)n | (i, j) /∈ α}. �

This lemma tells us precisely when a partial matrix can be completed to satisfy
a linear matrix equation and describes the linear system that must be solvable in
order to complete a partial matrix. If C is the zero matrix, then the condition for
the existence of a completion simplifies to∑

(i, j)∈α

xi j K (i + ( j − 1)n) ∈ span{K (i + ( j − 1)n) | (i, j) /∈ α},

which can be answered by determining which sets of columns of K have rank equal
to the rank of K . With some abuse of notation, let K (α) denote the submatrix of
columns of K corresponding to specified entries and K (ᾱ) denote the submatrix of
columns of K corresponding to unspecified entries.

Theorem 3.2. Let A1, . . . , Ak, B1, . . . , Bk,C ∈ Mn(R), α be an n × n partial
matrix pattern, and K = BT

1 ⊗ A1+· · ·+ BT
k ⊗ Ak . Then, the following statements

are equivalent:

(1) For a given α-partial matrix X and any C ∈ Mn(R) such that vec(C) ∈
span{K (1), . . . , K (n2)}, there exists a completion X̂ of X such that A1X̂ B1+

· · ·+ AkX̂ Bk = C.

(2) rank(K )= rank(K (ᾱ)).

Proof. Assuming (1), by Lemma 3.1 vec(C)−
∑

(i, j)∈α xi j K (i + ( j − 1)n) is in
the span of {K (i + ( j − 1)n) | (i, j) /∈ α} for all vec(C) in the span of the columns
of K . Since it is possible to choose C so that it is any vector in the column space
of K , it follows that the column space of K is contained in the column space of
K (ᾱ), and rank(K )= rank(K (ᾱ)), proving the second statement.
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Assuming (2), for any vec(C) in the column space of K (ᾱ) and any α-partial
matrix X , the column space K (ᾱ) is the column space of K , since K (ᾱ) is contained
in the column space of K and both matrices have the same rank. In particular, the
column space of K (α) is contained in the column space of K (ᾱ). Then for any
vec(C) in the column space of K , vec(C) lies in the column space of K (ᾱ), and
by Lemma 3.1 there exists a completion X̂ of the α-partial matrix X such that
A1X̂ B1+ · · ·+ AkX̂ Bk = C , establishing the first statement. �

In this paper, the specific matrix equations of interest are homogeneous. The
following corollary gives the condition that we use to classify patterns for this
column space approach: the rank of the columns of K corresponding to unspecified
entries must equal the rank of K . That is, the sets of columns of K with full rank
correspond to unspecified entry locations in admissible patterns.

Corollary 3.3. Let A1, . . . , Ak, B1, . . . , Bk ∈Mn(R), α be an n×n matrix pattern,
and K = BT

1 ⊗ A1+ · · ·+ BT
k ⊗ Ak . Then, the following statements are equivalent:

(1) The matrix pattern α is admissible for the matrix equation A1 X B1 + · · · +

Ak X Bk = 0.

(2) rank(K )= rank(K (ᾱ)).

Proof. This follows from the definition of admissibility, Theorem 3.2, and the fact
that 0 is in the span of the columns of K . �

Corollary 3.3 gives the size of a maximally admissible pattern, namely n2
−

rank(K ).

Corollary 3.4. Let A1, . . . , Ak , B1, . . . , Bk ∈ Mn(R) and K = BT
1 ⊗ A1 + · · · +

BT
k ⊗ Ak . If α is an admissible n× n partial matrix pattern for the matrix equation

A1 X B1+ · · ·+ Ak X Bk = 0,

|α| ≤ n2
− rank(K ).

Proof. If |α| > n2
− rank(K ), then the number of columns corresponding to

unspecified entries is strictly less than the rank(K ) and condition (2) of Corollary 3.3
can never be satisfied. �

Given a linear matrix equation, the patterns α that are admissible are exactly the
patterns that set unspecified entries against a set of columns of K whose span is
equal to the span of all the columns of K . With the column space approach we
think of the specified entries of X as removing certain columns from K . We then
look at the submatrix formed by the remaining columns of K and determine its rank.
An α-partial pattern is admissible if the rank of the columns of K corresponding to
unspecified entries is equal to the rank of K .
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The following lemmas establish two basic properties of matrix patterns: subpat-
terns of admissible patterns are admissible and patterns that contain inadmissible
patterns are inadmissible.

Lemma 3.5. Let α and β be partial matrix patterns such that α is admissible for
the matrix equation A1 X B1+ · · ·+ Ak X Bk = 0, where A1, . . . , Ak, B1, . . . , Bk ∈

Mn(R), and let K = BT
1 ⊗ A1+ · · ·+ BT

k ⊗ Ak . If β ⊆ α, then β is admissible for
the matrix equation A1 X B1+ · · ·+ Ak X Bk = 0.

Proof. By Corollary 3.3, α is admissible if and only if rank(K (ᾱ)) = rank(K ).
Since β ⊆ α, rank(K (ᾱ))≤ rank(K (β)). This forces rank(K (β))= rank(K ), and
β is admissible for the matrix equation A1 X B1+ · · ·+ Ak X Bk = 0. �

Lemma 3.6. Let α and β be partial matrix patterns such that α is inadmissible for
the matrix equation A1 X B1+ · · ·+ Ak X Bk = 0, where A1, . . . , Ak, B1, . . . , Bk ∈

Mn(R), and let K = BT
1 ⊗ A1+· · ·+BT

k ⊗ Ak . If α⊆β, then β is also inadmissible
for the matrix equation A1 X B1+ · · ·+ Ak X Bk = 0.

Proof. By Corollary 3.3, α is admissible if and only if rank(K (ᾱ))= rank(K ). Since
α is inadmissible, rank(K (ᾱ))< rank(K ). Since α⊆β, rank(K (β))≤ rank(K (ᾱ)).
This forces rank(K (β)) < rank(K ), and β is also inadmissible for the matrix
equation A1 X B1+ · · ·+ Ak X Bk = 0. �

4. The nullspace approach

In this section we develop a second criterion for admissible patterns for the ho-
mogeneous matrix equation A1 X B1 + · · · + Ak X Bk = 0. We show that if the
specified entry locations of a pattern correspond to full rank submatrices of a matrix
constructed from a basis of the solution space of the homogeneous matrix equation,
the pattern is admissible. We also construct a basis for the solution space of two
special cases of this matrix equation

Nullspace criterion. Given a partial matrix, we need to determine if the specified
entries of the partial matrix can be written as a linear combination of basis elements
for the solution space of A1 X B1 + · · · + Ak X Bk = 0. Let {V1, V2, . . . , Vn} be a
basis for the solution space, then {vec(V1), vec(V2), . . . , vec(Vn)} is a basis for the
nullspace of BT

1 ⊗ A1+· · ·+BT
k ⊗ Ak . Throughout this paper we denote this matrix

[vec(V1) vec(V2) · · · vec(Vn)] as N .
The partial matrix has a completion if there exist scalars c1, . . . , cn such that the

specified entries of X satisfy

X = c1V1+ c2V2+ · · ·+ cnVn.

Applying the vec function to this equation yields

vec(X )= [vec(V1) vec(V2) · · · vec(Vn)]c= N c,
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where c = [c1 c2 · · · cn]
T . Only the rows in vec(X ) which are specified are of

interest because the unspecified entries can be freely chosen. Let ε= {i+ ( j−1)n |
(i, j) ∈ α}, the set of integer values corresponding to the rows of vec(X ) which
contain specified entries. Solving the equation

vec(X )[ε] =
[
vec(V1)[ε] vec(V2)[ε] · · · vec(Vn)[ε]

]
= N [ε]c

is equivalent to determining if the specified entries of X can be written as a linear
combination of basis elements to the solution space of our linear equation.

The following theorem describes the nullspace condition for admissibility: the
submatrix of rows of N corresponding to specified entries must have rank at least
equal to the number of specified entries in X

Theorem 4.1. Let α be an n×n partial matrix pattern and {V1, V2, . . . , V`} be a ba-
sis for the solution space of the matrix equation A1 X B1+· · ·+Ak X Bk = 0. The ma-
trix pattern α is admissible for this matrix equation if and only if rank(N [ε])≥ |α|,
where ε = {i + ( j − 1)n | (i, j) ∈ α} and

N [ε] =
[
vec(V1)[ε] vec(V2)[ε] · · · vec(V`)[ε]

]
.

Proof. The matrix completion problem is equivalent to determining if there exists a
solution to the linear equation vec(X)[ε] = N [ε]c. N [ε] is an n× |α| matrix, so
this equation is solvable for all vec(X)[ε] if and only if rank(N [ε]) ≥ |α|. If so,
there exists a completion X̂ for any X satisfying A1X̂ B1+ · · ·+ AkX̂ Bk = 0.

If rank(N [ε]) < |α|, then vec(X)[ε] = N [ε]c has a solution if vec(X)[ε] lies
in the span of the columns of N [ε]. Since rank(N [ε]) < |α| and vec(X)[ε] is an
|α|-dimensional vector, there exists an α-partial matrix X such that vec(X)[ε] does
not lie in the span of the columns of N [ε]. Hence for this α-partial matrix X there
does not exist a completion of A1 X B1+ · · ·+ Ak X Bk = 0. Since this α does not
have a completion for all α-partial matrices, α is inadmissible. �

For maximal patterns, the condition for admissibility is that the number of
specified entries in X must equal the rank of N [ε].

Corollary 4.2. Let α be an n × n partial matrix pattern for the matrix equation
A1 X B1 + · · · + Ak X Bk = 0 and let {V1, V2, . . . , V`} be a basis for the solution
space of the given matrix equation. An admissible pattern α is maximal if and only
if |α| = `.

Proof. First assume that the admissible pattern is maximally admissible to show
that the number of specified entries equals the dimension of the solution space. For
the pattern to be admissible, the rank of N [ε] must be greater than |α|, but also
must not exceed the number of columns in N [ε]. Then, the greatest possible value
for the rank of N [ε] is `, namely the dimension of the solution space.
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We next assume that the number of specified entries equals the dimension of
the solution space to show that the admissible pattern is maximal. Then, since the
dimension of the solution space is `, |α| = `. Since N [ε] has ` columns and by
Theorem 4.1, |α| ≤ rank(N [ε]) ≤ `, the rank of N [ε] must equal `. Therefore, α
is maximally admissible because the dimension of α is as large as possible while
maintaining admissibility. �

Construction of bases for the nullspace. We construct a basis for the solution
space of the matrix equation AX + X B = 0 using eigenvectors of the matrices A
and B. This basis is used to classify patterns for the commutativity equation
AX − X A = 0 and the skew-Lyapunov equation AX − X AT

= 0 in Section 5.

Theorem 4.3 [Horn and Johnson 1991]. Let A ∈ Mn(R) and B ∈ Mm(R) be given.
If λ is an eigenvalue of A and x ∈Cn is a corresponding eigenvector of A, and if µ
is an eigenvalue of B and y∈Cm is a corresponding eigenvector of B, then λ+µ is
an eigenvalue of (Im⊗A)+(B⊗In), and y⊗x∈Cnm is a corresponding eigenvector.
Every eigenvalue of (Im ⊗ A)+ (B ⊗ In) arises as such a sum of eigenvalues of
A and B, and Im ⊗ A commutes with B⊗ In . If the set of eigenvalues of A equals
{λ1, λ2, . . . , λn} and the set of eigenvalues of B equals {µ1, µ2, . . . , µn}, then the
set of eigenvalues of (Im⊗A)+(B⊗In) equals {λi+µj | i=1, . . . , n, j=1, . . . ,m}
(including algebraic multiplicities in all three cases).

We use the lemma below to construct bases for I⊗A−AT
⊗ I and I⊗A−A⊗ I .

Lemma 4.4. If {x1, x2, . . . , xn
} and { y1, y2, . . . , yn

} are each linearly indepen-
dent sets of nonzero vectors, then { y1

⊗ x1, y2
⊗ x2, . . . , yn

⊗ xn
} is linearly

independent.

Proof. Let
xi
= [x i

1 x i
2 · · · x i

n]
T and yi

= [yi
1 yi

2 · · · yi
n]

T .

By the definition of the Kronecker product,

yi
⊗ xi
= [yi

1xi yi
2xi
· · · yi

n xi
]
T .

We want to show that

a1( y1
⊗x1)+a2( y2

⊗x2)+· · ·+an( yn
⊗xn)=0 only when a1=a2=· · ·=an=0.

Using the Kronecker product definition, this can be rewritten as

(a1 y1
1)x

1
+ (a2 y2

1)x
2
+ · · ·+ (an yn

1 )x
n
= 0,

(a1 y1
2)x

1
+ (a2 y2

2)x
2
+ · · ·+ (an yn

2 )x
n
= 0,

...

(a1 y1
n)x

1
+ (a2 y2

n)x
2
+ · · ·+ (an yn

n )x
n
= 0.
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Since x1, x2, . . . , xn are linearly independent,

a1 y1
= 0, a2 y2

= 0, . . . , an yn
= 0.

Since y1, y2, . . . , yn are nonzero vectors, there exists at least one nonzero entry
in each vector. This implies that a1 = a2 = · · · = an = 0. Therefore { y1

⊗ x1,

y2
⊗ x2, . . . , yn

⊗ xn
} is linearly independent. �

Remark 4.5. If we further assume that A has distinct eigenvalues, then the nullities
of (I ⊗ A)− (AT

⊗ I ) and (I ⊗ A)− (A⊗ I ) are both n (see Section 5). This and
Lemma 4.4 imply that { y1

⊗x1, y2
⊗x2, . . . , yn

⊗xn
} is a basis for the nullspace of

(I⊗A)−(AT
⊗ I ), where {x1, . . . xn} is a basis of eigenvectors for A corresponding

to eigenvalues λ1, . . . , λn and { y1, . . . yn} is a basis of eigenvectors for −AT corre-
sponding to eigenvalues −λ1, . . . ,−λn . Similarly {x1

⊗ x1, x2
⊗ x2, . . . , xn

⊗ xn
}

is a basis for the nullspace of (I ⊗ A)− (A⊗ I ).

5. Admissible patterns for certain matrix equations

In this section, we apply the column space and nullspace approaches to three matrix
equations: the skew-symmetric equation, the commutativity equation, and the skew-
Lyapunov equation. For the skew-symmetric equation, we completely characterize
admissible patterns. For the other two matrix equations we classify certain patterns
as admissible or inadmissible.

For the skew-symmetric equation, AX − AT X = 0, Theorem 5.2 states that
a maximal pattern is admissible if and only if it contains one specified entry in
each column of an α-partial matrix X . We also show all admissible patterns are
subpatterns of maximal patterns.

For the commutativity equation, AX−X A= 0, Theorem 5.8 states that maximal
patterns with no diagonal entries specified are inadmissible. Theorem 5.9 states
that patterns in which all of the specified entries are in the same row or in the same
column are admissible.

For the skew-Lyapunov equation, AX − X AT
= 0, Theorem 5.12 states that a

pattern is admissible if all of the specified entries reside in the i-th row or column
without (i, j) and ( j, i) both being in the pattern for any j . Corollary 5.15 states
that if any pattern contains two specified entries which are located across the main
diagonal from each other, then the pattern is inadmissible.

Patterns for the skew-symmetric equation. Applying the vec function to AX −
AT X = 0 yields the linear equation

(I ⊗ (A− AT )) vec(X)= 0.

The matrix A − AT is skew-symmetric, so (I ⊗ (A − AT )) is a block diagonal
matrix and is skew-symmetric. We denote I ⊗ (A− AT ) as SA.
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Since A− AT is skew-symmetric, it is also diagonalizable and its eigenvalues
are purely imaginary or zero [Rukmangadachari 2010]. The rank of A− AT is
dependent upon whether n is odd or even.

In this section, we assume that A−AT has maximum rank. So rank(A−AT )= n
if n is even, and rank(A− AT ) = n − 1 if n is odd. The set of matrices A with
which rank(A − AT ) is strictly less that the maximum possible rank is a set of
measure zero. So in this section our “generic” property of A is that rank(A− AT )

is maximal.
Since SA is a block-diagonal matrix consisting of the matrix A − AT down

the main diagonal, rank(SA) = n · rank(A − AT ). By Corollary 4.2 maximally
admissible patterns for SA contain n specified entries for n odd. Since the nullity
of SA is zero when n is even, only the empty pattern, the pattern with no specified
entries is admissible.

From this point forward, we only consider the case when n is odd. We first
construct a basis for the nullspace of SA in order to apply the nullspace approach.

Lemma 5.1. Let A ∈ Mn(R) with n odd and rank(A− AT )= n− 1, and let {v} be
a basis for the nullspace of A− AT . If n is odd, then

B =
{
[v 0 · · · 0], [0 v 0 · · · 0], . . . , [0 · · · 0 v]

}
is a basis for the solution space of AX − AT X = 0.

Proof. Each element of B is a solution to AX − AT X = 0. The matrices in B
are clearly linearly independent. The dimension of the solution space of AX −
AT X = 0 is n, and B contains n elements. So B is a basis for the solution space of
AX − AT X = 0. �

We now consider maximally admissible patterns for the skew-symmetric equation,
and determine whether they are admissible or inadmissible.

Theorem 5.2. Let α be an n × n partial matrix pattern with |α| = n, and let n
be odd. The matrix pattern α is maximally admissible for the matrix equation
AX − AT X = 0 for almost all A with rank(A− AT ) = n − 1 if and only if α =
{(i1, 1), (i2, 2), . . . , (in, n)}, where 1≤ ik ≤ n.

Proof. We first show that if α is admissible, then α = {(i1, 1), (i2, 2), . . . , (in, n)},
where 1≤ ik ≤ n. We proceed by contraposition, assuming that

α 6= {(i1, 1), (i2, 2), . . . , (in, n)}

to show that α is inadmissible. By Lemma 5.1, a basis for the solution space of
(A−AT )X=0 is {V1, . . . , Vn}where the i-th column of Vi is v and all other columns
only contain zeros. Following the nullspace approach, the matrix completion
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problem is equivalent to solving

vec(X )[ε] =
[
vec(V1)[ε] vec(V2)[ε] · · · vec(Vn)[ε]

]
c,

where c= [c1 c2 · · · cn]
T and ε = {i + ( j − 1)n | (i, j) ∈ α}. Let N be the matrix

containing the column vectors of the basis elements, so

N [ε] =
[
vec(V1)[ε] vec(V2)[ε] · · · vec(Vn)[ε]

]
.

From our assumption, there exists at least one column in X that does not have
a specified entry. Without loss of generality, assume that the k-th column in X
does not have a specified entry. Any row in vec(Vk) that contains an element of
v will be excluded when vec(Vk) is restricted to vec(Vi )[ε]. We have, then, that
vec(Vk)[ε] = 0. The rank of N [ε] is therefore strictly less than |α|, and therefore α
is inadmissible.

We next show that if α = {(i1, 1), (i2, 2), . . . , (in, n)}, where 1≤ ik ≤ n, then α
is admissible. Following the nullspace approach as above, this completion problem
is equivalent to

vec(X)[ε] =
[
vec(V1)[ε] vec(V2)[ε] · · · vec(Vn)[ε]

]
c

=


vi1 0 . . . 0

0 vi2

. . .
...

...
. . .

. . . 0
0 . . . 0 vin




c1

c2
...

cn

 ,
where vi` are entries in v. For almost all A, vi` 6= 0 for all 1≤ `≤ n, and the rank
of N [ε] is n. This means that the columns of N [ε] spans Rn , and therefore any
values that can be specified for X are in the span of the columns of N [ε]. So any
α-partial matrix for the α pattern can be completed to satisfy the skew-symmetric
equation, and α = {(i1, 1), (i2, 2), . . . , (in, n)} is admissible. �

This tells us that α is maximally admissible if and only if α contains exactly
one specified entry in each column. Again “almost all” is used to say that these
patterns are admissible for the given matrix equation, with A satisfying the given
conditions, except for a set of matrices A of measure zero. In this case, we can
be more specific. The set of matrices that these patterns are not admissible for are
those matrices A for which the vector v has zero entries, where v is the basis for
the nullspace of A− AT. The following theorem shows that admissible patterns
appear as subpatterns of maximal patterns.

Theorem 5.3. Let A ∈Mn(R) be nonderogatory with n odd. A pattern β is admissi-
ble for the matrix equation AX−AT X=0 for almost all A with rank(A−AT )=n−1
if and only if β ⊆ {(i1, 1), (i2, 2), . . . , (in, n)} with 1≤ ik ≤ n.
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Proof. By Theorem 5.2, α = {(i1, 1), (i2, 2), . . . , (in, n)} is admissible. If β ⊆ α
then by Lemma 3.5 β is also admissible.

If β * {(i1, 1), (i2, 2), . . . , (in, n)} then {(i, k), ( j, k)} ⊆ β for some i 6= j . Then
ε = {i + (k− 1)n, j + (k− 1)n} and[

vec(V1)[ε] vec(V2)[ε] · · · vec(Vn)[ε]
]
=

[
0 · · · 0 vi 0 · · · 0
0 · · · 0 vj 0 · · · 0

]
.

This matrix does not have full rank, so the pattern {(i, k), ( j, k)} is inadmissible by
the nullspace criterion. Since {(i, k), ( j, k)} ⊆ β, β is inadmissible by Lemma 3.6.

�

Finally we give formulas for the number of maximally admissible and admissible
patterns.

Corollary 5.4. For A ∈ Mn(R) where n is odd and rank(A − AT ) = n − 1, the
number of maximally admissible patterns for the skew-symmetric equation is nn.

Proof. From Theorem 5.2, if α is admissible for the skew-symmetric equation, each
column in X has one specified entry. Each of the n columns has n possible locations
where an entry can be specified, so the total number of admissible patterns is nn. �

Corollary 5.5. For A ∈ Mn(R) where n is odd and rank(A − AT ) = n − 1, the
number of admissible patterns for the skew-symmetric equation is (1+ n)n .

Proof. We have by Theorem 5.3 that if β⊆α, where α={(i1, 1), (i2, 2), . . . , (in, n)}
and 1≤ ik ≤ n, then β is admissible for the skew-symmetric equation.

Suppose β has i specified entries, there are
( n

i

)
choices for columns and n choices

within each column. Summing over i and using the binomial theorem, the total
number of admissible patterns is

n∑
i=0

(n
i

)
ni
= (1+ n)n. �

Patterns for the commutativity equation. We next classify patterns for the com-
mutativity equation, AX − X A = 0. The conditions under which two matrices
commute are well known, but there still are interesting questions that can be asked
about matrix commutativity with regard to partial matrix completions [Horn and
Johnson 1991]. We are interested in finding answers to the following: if given a
partial matrix pattern α and a matrix A, what are the conditions on the specific
entries in an α-partial matrix X so that X has a completion that commutes with A?
Which patterns α allow any α-partial matrix X to be completed to commute with
almost all A ∈ Mn(R)?

We use the column space approach to convert the matrix equation into a linear
equation. The vec function applied to the commutativity equation yields [(I ⊗ A)−
(AT
⊗ I )] vec(X)= 0. We denote (I ⊗ A)− (AT

⊗ I ) as �A.
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Lemma 5.6 [Horn and Johnson 1991]. If A ∈ Mn(R) has k eigenvalues {λ1, λ2,

. . . , λk}, then the dimension of the nullspace of �A is
k∑

i=1

ma(λi )mg(λi ),

where ma(λ), mg(λ) are the algebraic and geometric multiplicities of λ respectively.

Lemma 5.7 [Horn and Johnson 1991]. For A ∈ Mn(R), the dimension of the
commutant of A is at least n, and the dimension of the commutant is equal to n if
and only if A is nonderogatory.

Because the solutions to the commutativity equation are exactly the elements of
the commutant, the rank of �A is n2

−n if and only if A is nonderogatory. Maximal
patterns for the commutativity equation contain at most n specified entries for A
nonderogatory.

We use two different bases for the nullspace of �A to classify admissible and
inadmissible patterns. If A is nonderogatory, then only polynomials in A commute
with A [Horn and Johnson 1985]. So one basis for the null space of �A is

{vec(I ), vec(A), vec(A2), . . . , vec(An−1)}.

By Remark 4.5 if A has distinct eigenvalues then { y1
⊗x1, y2

⊗x2, . . . , yn
⊗xn
} is

also a second basis for the nullspace where {x1, x2, . . . , xn
} is a set of eigenvectors

for A and { y1, y2, . . . , yn
} is a set of eigenvectors for −AT corresponding to

eigenvalues {λ1, λ2, . . . , λn} and {−λ1,−λ2, . . . ,−λn} respectively.
We first show maximally admissible patterns must have a diagonal entry specified.

Theorem 5.8. Let α be an n×n partial matrix pattern with |α| = n and A ∈Mn(R)

be nonderogatory. If (i, i) /∈ α for all 1 ≤ i ≤ n, then any α-partial matrix X is
inadmissible for the matrix equation AX − X A = 0.

Proof. Using the nullspace approach and the basis {vec(I ), vec(A), . . . , vec(An−1)},
the partial matrix completion problem for the commutativity equation is equivalent
to solving

vec(X )[ε] = [vec(I )[ε] vec(A)[ε] vec(A2)[ε] . . . vec(An−1)[ε]]c,

where ε = {i + ( j − 1)n | (i, j) ∈ α}.
From our assumption, we have that (i, i) /∈ α for all 1≤ i ≤ n. That is, no entries

along the main diagonal are specified. Then, any row in vec(I ) that contains a 1
will be excluded in vec(I )[ε], so vec(I )[ε] = 0.

This means that rank(N [ε]) < n = |α|. By Theorem 4.1, α is inadmissible. �

We now partially classify maximally admissible patterns for the commutativity
equation.
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Theorem 5.9. Let α be an n × n partial matrix pattern with |α| = n. If α =
{(i, 1), (i, 2), . . . , (i, n)} or α= {(1, j), (2, j), . . . , (n, j)} where 1≤ i, j ≤ n, then
α is maximally admissible for the commutativity equation AX − X A= 0 for almost
all A, where all A have distinct eigenvalues.

Proof. By Remark 4.5, { y1
⊗ x1, y2

⊗ x2, . . . , yn
⊗ xn
} is a basis for the nullspace

of �A where {x1, x2, . . . , xn
} is a set of eigenvectors for A and { y1, y2, . . . , yn

}

is a set of eigenvectors for −AT.
Following the nullspace approach, the commutativity matrix completion problem

is equivalent to solving

vec(X )[ε] = [vec( y1
⊗ x1)[ε] vec( y2

⊗ x2)[ε] . . . vec( yn
⊗ xn)[ε]]c

= [x1
i y1 x2

i y2 . . . xn
i yn
]c,

where c= [c1 c2 . . . cn]
T and ε = {i + ( j − 1)n | (i, j) ∈ α}.

Since { y1, y2, . . . , yn
} is linearly independent, {x1

i y1, x2
i y2, . . . , xn

i yn
} is lin-

early independent because its elements are scalar multiples of the elements in the
linearly independent set { y1, y2, . . . , yn

} and for almost all A, we have x i
j 6= 0,

because for almost all A, it follows that x i
j 6= 0. As a result, the columns of N [ε]

span Rn . As such, any vec(X )[ε] lies in the span of the columns of N [ε]. Therefore
α is admissible.

The proof that α = {(1, j), (2, j), . . . , (n, j)}, where 1≤ j ≤ n, is admissible is
similar. �

This shows that patterns including an entire row or entire column of specified
entries is maximally admissible. For specific n, we can show that there exist other
admissible patterns, and we conjecture that a pattern with n specified entries is
admissible if and only if it has at least one diagonal entry specified. The following
corollary describes a subset of admissible patterns.

Corollary 5.10. If

β ⊆ {(i, 1), (i, 2), . . . , (i, n)} or β ⊆ {(1, j), (2, j), . . . , (n, j)},

where 1≤ i, j ≤ n, then β is admissible.

Proof. This follows by Theorem 5.9 and Lemma 3.5. �

Patterns for the skew-Lyapunov equation. Lastly we classify patterns for the skew-
Lyapunov equation, AX − X AT

= 0. Applying the vec function to AX − X AT
= 0

yields the linear equation [(I⊗A)−(A⊗I )] vec(X)=0. We denote (I⊗A)−(A⊗I )
as 9A. The rank of 9A determines the maximum number of specified entries in
an admissible pattern. In this section, we assume A has distinct eigenvalues, and
consider the rank of 9A under this condition. The following result gives us an
upper bound for the nullity of 9A.
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Lemma 5.11 [Morris 2015]. Let A ∈ Mn(R) and B ∈ Mn(R) be similar matrices
with eigenvalues {λ1, λ2, . . . , λk}, then

nullity(In ⊗ A+ (−BT )⊗ In)≤

k∑
i=1

ai
2

and

n2
−

k∑
i=1

ma(λi )
2
≤ rank(In ⊗ A+ (−BT )⊗ In)≤ n2.

For A ∈ Mn(R) with distinct eigenvalues, the maximum nullity of 9A is n, and
we can construct n linearly independent vectors in the nullspace.

Since the nullity of 9A is n, maximally admissible patterns for AX − X AT
= 0

will have n specified entries. We proceed by determining a basis for the solution
space of the skew-Lyapunov equation. This is equivalent to finding a basis for the
nullspace of 9A.

The following theorem partially classifies maximally admissible patterns for
the skew-Lyapunov equation. Maximally admissible patterns contain n specified
entries by Corollary 3.4. We first show that if the same numbered column and row
have a total of n specified entries, then the pattern is admissible.

Theorem 5.12. Let A ∈ Mn(R) with distinct eigenvalues and α be an n× n partial
matrix pattern. Given k ∈ {1, . . . , n}, if exactly one of (k, i) or (i, k) is in α for all
1≤ i ≤ n, then α is maximally admissible for the matrix equation AX − X AT

= 0
for almost all A, where all A have distinct eigenvalues.

Proof. Noting that the rows of N corresponding to the (i, j) and ( j, i) entries are
equal, this theorem is a special case of Theorem 5.9 with {x1

⊗ x1, x2
⊗ x2, . . . ,

xn
⊗ xn
} as a basis for the solution space. �

Corollary 5.13. For A∈Mn(R)with distinct eigenvalues, if β⊆{(1, k), . . . ,(n, k)}
or β⊆{(k, 1), . . . , (k, n)} then β is admissible for the matrix equation AX−X AT

=

0 for almost all A, where all A have distinct eigenvalues.

Proof. This follows by Theorem 5.12 and Lemma 3.5. �

We next classify patterns as inadmissible. If α is admissible, then there are no
pairs of specified entries which reside opposite the main diagonal from each other.
Equivalently, if there exists a pair of specified entries such that they are across the
main diagonal from each other, then the pattern will be inadmissible.

Theorem 5.14. For A ∈ Mn(R), if α = {(i, j), ( j, i)} such that i 6= j and 1 ≤
i, j ≤ n, then α is inadmissible for the skew-Lyapunov equation AX − X AT

= 0.

Proof. By Remark 4.5, {x1
⊗ x1, x2

⊗ x2, . . . , xn
⊗ xn
} is a basis for the nullspace

of 9A where {x1, . . . , xn
} is a basis of eigenvectors for A. Following the nullspace
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approach, we form N [ε] where ε = {i + j (n− 1) | (i, j) ∈ α}. So,

N [ε] =
[

x1 j x1i x2 j x2i . . . xnj xni

x1 j x1i x2 j x2i . . . xnj xni

]
and we have that rank(N [ε])= 1 which is strictly less than the size of this pattern, 2.
So by Theorem 4.1 the pattern (i, j), ( j, i) with i 6= j is inadmissible for the matrix
equation AX − X AT

= 0. �

Corollary 5.15. If α = {(i, j), ( j, i)} ⊆ β where i 6= j then β is inadmissible for
the matrix equation AX − X AT

= 0.

Proof. This follows by Theorem 5.14 and Lemma 3.6. �
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749Domination with decay in triangular matchstick arrangement graphs
JILL COCHRAN, TERRY HENDERSON, AARON OSTRANDER AND RON

TAYLOR

767On the tree cover number of a graph
CHASSIDY BOZEMAN, MINERVA CATRAL, BRENDAN COOK, OSCAR E.
GONZÁLEZ AND CAROLYN REINHART

781Matrix completions for linear matrix equations
GEOFFREY BUHL, ELIJAH CRONK, ROSA MORENO, KIRSTEN MORRIS,
DIANNE PEDROZA AND JACK RYAN

801The Hamiltonian problem and t-path traceable graphs
KASHIF BARI AND MICHAEL E. O’SULLIVAN

813Relations between the conditions of admitting cycles in Boolean and ODE
network systems

YUNJIAO WANG, BAMIDELE OMIDIRAN, FRANKLIN KIGWE AND KIRAN

CHILAKAMARRI

833Weak and strong solutions to the inverse-square brachistochrone problem on
circular and annular domains

CHRISTOPHER GRIMM AND JOHN A. GEMMER

857Numerical existence and stability of steady state solutions to the distributed spruce
budworm model

HALA AL-KHALIL, CATHERINE BRENNAN, ROBERT DECKER, ASLIHAN

DEMIRKAYA AND JAMIE NAGODE

881Integer solutions to x2
+ y2
= z2
− k for a fixed integer value k

WANDA BOYER, GARY MACGILLIVRAY, LAURA MORRISON, C. M.
(KIEKA) MYNHARDT AND SHAHLA NASSERASR

893A solution to a problem of Frechette and Locus
CHENTHURAN ABEYAKARAN

involve
2017

vol.10,
no.5

http://dx.doi.org/10.2140/involve.2017.10.721
http://dx.doi.org/10.2140/involve.2017.10.735
http://dx.doi.org/10.2140/involve.2017.10.749
http://dx.doi.org/10.2140/involve.2017.10.767
http://dx.doi.org/10.2140/involve.2017.10.781
http://dx.doi.org/10.2140/involve.2017.10.801
http://dx.doi.org/10.2140/involve.2017.10.813
http://dx.doi.org/10.2140/involve.2017.10.813
http://dx.doi.org/10.2140/involve.2017.10.833
http://dx.doi.org/10.2140/involve.2017.10.833
http://dx.doi.org/10.2140/involve.2017.10.857
http://dx.doi.org/10.2140/involve.2017.10.857
http://dx.doi.org/10.2140/involve.2017.10.881
http://dx.doi.org/10.2140/involve.2017.10.893

	1. Introduction
	2. Preliminaries
	3. The column space approach
	4. The nullspace approach
	Nullspace criterion
	Construction of bases for the nullspace

	5. Admissible patterns for certain matrix equations
	Patterns for the skew-symmetric equation
	Patterns for the commutativity equation
	Patterns for the skew-Lyapunov equation

	Acknowledgments
	References
	
	

