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Boolean (BL) systems and coupled ordinary differential equations (ODEs) are
popular models for studying biological networks. BL systems can be set up
without detailed reaction mechanisms and rate constants and provide qualitatively
useful information, but they cannot capture the continuous dynamics of biological
systems. On the other hand, ODEs are able to capture the continuous dynamic
features of biological networks and provide more information on how the activities
of components depend on other components and parameter values. However,
a useful coupled ODE model requires details about interactions and parameter
values. The introduction of the relationships between the two types of models will
enable us to leverage their advantages and better understand the target network
systems. In this paper, we investigate the relations between the conditions of
the existence of limit cycles in ODE networks and their homologous discrete
systems. We prove that for a single feedback loop, as long as the corresponding
governing functions of the homologous continuous and discrete systems have
the same upper and lower asymptotes, the limit cycle borne via Hopf bifurcation
corresponds to the cycle of the discrete system. However, for some coupled
feedback loops, besides having the same upper and lower asymptotes, parameters
such as the decay rates also play crucial roles.

1. Introduction

Since the end of twentieth century, due to dramatic advances in technology, bio-
logical networks such as gene regulatory networks, protein interaction networks,
biochemical reaction networks and neuronal networks have attracted attention from
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many different research fields. Mathematical models have shown to be indispensable
tools for investigating mechanisms behind biological phenomena. Network systems
are often represented by directed graphs, wherein components are represented by
nodes and interactions by arrows. Among various modeling frameworks, coupled
differential equations (ODEs) and Boolean (BL) networks are popular for modeling
regulatory networks.

An n-node BL network is a discrete dynamical system with the form

xi.t C 1/D fi.x1.t/;x2.t/; : : : ;xn.t//; (1.1)

where xi is the state variable of the i -th node and fi is a BL function with the value
being either 0 or 1. Since the seminal work of Kauffman [1969], BL networks have
been widely used to model biological regulatory networks [Campbell et al. 2011;
Thakar et al. 2012; Li et al. 2006; Saez-Rodriguez et al. 2007; Sánchez and Thieffry
2001; Albert and Othmer 2003; Espinosa-Soto et al. 2004; Albert and Wang 2009;
Abou-Jaoudé et al. 2009; Glass and Kauffman 1973]. They can be set up in situations
where the detailed kinetic characterization of interaction is not available and provide
valuable insights [Saadatpour et al. 2013; Glass and Kauffman 1973; Snoussi 1989;
Thomas and D’Ari 1990; Edwards and Glass 2000; Edwards et al. 2001; Veliz-Cuba
et al. 2014]. However, BL systems cannot faithfully represent the dynamics of
biological networks that evolve continuously in time [Tyson and Novák 2010].

An n-node ODE network has the form

Pxi D Fi.x1;x2 : : : ;xn/; i D 1; 2; : : : ; n;

where xi is the state variable of the i-th node and Fi describes how xi depends
on other variables. Many researchers have used the ODE framework to study
biological network systems [Tyson et al. 2001; 2003; Mogilner et al. 2006; Aldridge
et al. 2006; Turner et al. 2010]. Compared with BL models, ODE systems are able
to capture the continuous dynamic feature of biological networks and provide more
information on how the activities of components depend on other components and
parameter values. However, it requires detailed information on interactions and
parameter values to set up a useful model.

Often, main dynamical features can be captured by both ODE and BL mod-
els [Davidich and Bornholdt 2008; Wittmann et al. 2009; Veliz-Cuba et al. 2014;
Abou-Jaoudé et al. 2009; Ouattara et al. 2010]. Given a network, the two different
types of models are subject to the same set of constraints resulting from the network
structure. This leads to the expectation that their dynamics are closely related as
shown in many instances [Abou-Jaoudé et al. 2009; Ouattara et al. 2010; Glass
and Kauffman 1973; Veliz-Cuba et al. 2012; 2014; Wittmann et al. 2009; Mendoza
and Xenarios 2006; Snoussi 1989]. It was proved under certain conditions that if a
continuous network model is monotonic, has distinct upper and lower asymptotes
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and has appropriate parameter values corresponding to its discrete homologue, then
they may have the same set of stable steady-states, or at least a stable steady-state
in the BL network implies a stable steady-state in the homologous continuous one
[Glass and Kauffman 1973; Veliz-Cuba et al. 2012; Wittmann et al. 2009; Mendoza
and Xenarios 2006; Snoussi 1989]. Glass and Kauffman [1973] also showed that
when each node received only one input from other nodes, then a stable limit cycle
gives a stable cycle in the BL system. However, the relations between the cycles of
ODEs and BL models are still not clear.

To address this issue, we study the relations between the conditions needed to
have a cycle in BL networks and those in their homologous ODE networks. Instead
of depending on specific reaction mechanisms and rate constants, the ODE systems
we consider here are rather qualitative. In this way, we can focus on the differences
of the dynamics due to the contrast between discreteness and continuity. More
specifically, the ODE network systems we are interested in are in the form

Pxi D 
i

�
1

1C e��i .aiC
P

j vij xj /
�xi

�
; (1.2)

where i 2 f1; : : : ; ng, 
i , �i and ai are constants, as well as vij D ˛ij � ˇij

(˛ij � 0; ˇij � 0). Here ˛ij is the activating coupling from node j to node i , and
ˇij is the inhibitory coupling from node j to node i . If the coupling from node j
to node i is positive then vij D ˛ij and if the coupling is negative, then vij D�ˇij .
Throughout this paper, we assume that there is no self-regulation, i.e., we assume
that viiD0. This type of ODE system was first used by Reinitz et al. [1991] to model
gene regulatory networks and then employed by Tyson et al. [2010] to study func-
tional motifs in biochemical reaction networks. So we assume that using the ODE
systems in (1.2) to represent biological networks are acceptable. We analytically
compare the conditions for supporting a stable limit cycle and find that for a single
feedback loop, as long as the corresponding governing functions of the homologous
continuous and discrete systems have the same upper and lower asymptotes, a branch
of limit cycle borne via Hopf bifurcation corresponds to the cycle of its discrete
homologue. However, for coupled feedback loops, besides having the same upper
and lower asymptotes, parameters such as the decay rates also play a crucial role.

This paper is constructed as follows. In Section 2, we express the Jacobian
matrix as the function of equilibrium, which will facilitate the computation in the
later sections. In Section 3, we prove that a negative feedback loop with more
than 2 nodes can have stable oscillations borne from Hopf bifurcation. We show in
Section 4 that a negative feedback loop of a BL network supports a cycle if and
only if each node that has an inhibitor has a background activation (i.e., high basal
production rate). Comparing the results from Sections 3 and 4, we conclude that
with the same upper and lower asymptotes, a cycle in a BL feedback loop gives a
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stable limit cycle in the homologous continuous system. In Section 5, we show that
the conditions of Hopf bifurcation occurring in an ODE network, which consists of
coupled positive and negative feedback loops, include a restriction on the relations
between the decay rates which cannot be implied from the BL network.

2. Preliminary: Jacobian matrix at equilibrium

In this section, we give a form of the Jacobian matrix at equilibrium, which will be
needed for the computation in the following sections.

Lemma 2.1. Let X0 D .x1;x2; : : : ;xn/ (where n � 2) be an equilibrium to the
system (1.2). Then the Jacobian matrix at the equilibrium is0BBB@

�
1 f12 � � � f1;n�1 f1n

f21 �
2 � � � f2;n�2 f2n
:::

:::
: : :

:::
:::

fn1 fn2 � � � fn;n�1 �
n

1CCCA ;
where

fij D 
ixi.1�xi/�ivij :

Proof. Denote the right-hand side of (1.2) by fi . Then

dfi

dxi
D�
i ;

and when j ¤ i ,

dfi

dxj
.X0/D 
i

1

.1C e��i .aiC
P

j vij xj //2
e��i .aiC

P
j vij xj /�ivij

D 
ix
2
i

1�xi

xi
�ivij D 
ixi.1�xi/�ivij ;

where the second equality is due to the fact that at the equilibrium,

1

1C e��i .aiC
P

j vij xj /
D xi :

Hence the Jacobian matrix at the equilibrium X0 is0BBB@
�
1 f12 � � � f1;n�1 f1n

f21 �
2 � � � f2;n�2 f2n
:::

:::
: : :

:::
:::

fn1 fn2 � � � fn;n�1 �
n

1CCCA ;
where

fij D 
ixi.1�xi/�ivij : �
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Figure 1. A feedback loop with n nodes.

3. Dynamics of negative feedback loop with ODE equations

In this section, we focus on the dynamics of feedback loops with n nodes, where
the arrows can be either inhibiting or activating. If there are an odd number of
inhibitory arrows, then the network is a negative feedback loop; otherwise, it is a
positive feedback loop.

The equations associated to the loop in Figure 1 are8̂̂<̂
:̂
Px1 D 
1

�
1

1C e��1.a1Cv1;nxn/
�x1

�
;

Pxi D 
i

�
1

1C e��i .aiCvi;i�1xi�1/
�xi

�
;

(3.3)

where i 2 f2; : : : ; ng and vi;j D ˛ij �ˇij (˛ij > 0; ˇij > 0).
Next we show a result that has been proved in a couple of papers including [Leite

and Wang 2010]. Since it is a simple proof, we reproduce it for our system as follows.

Lemma 3.1. Suppose the network associated to system (3.3) is a negative feedback
loop. Then the system has a unique equilibrium.

Proof. An equilibrium X0 D .x1;x2; : : : ;xn/ of system (3.3) satisfies8̂̂<̂
:̂

1

1C e��1.a1Cv1;nxn/
D x1;

1

1C e��i .aiCvi;i�1xi�1/
D xi ;

(3.4)

where i 2 f2; : : : ; ng.
Let

hi.x/D
1

1C e��i .aiCvi;i�1x/

for i 2 f1; : : : ; ng. Then hi are obviously strictly monotonic functions.
Since the coordinates of the equilibrium satisfy (3.4), we have

x1 D h1.xn/D h1 ı hn.xn�1/ � � �

D h1 ı hn ı hn�1.xn�2/ � � �D h1 ı hn ı hn�1 ı � � � ı h2.x1/: (3.5)
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Note that the composition of two monotonic functions is monotonic. Since it
is a negative feedback loop, h1 ı hn ı hn�1 ı � � � ı h2 is a strictly monotonically
decreasing. Hence there is at most one solution to (3.5).

Now consider the existence of the equilibrium. Note that 0 � x1 � 1. When
x1 D 0, we know h1 ı hn ı hn�1 ı � � � ı h2.x1/ > 0 since hi.x/ > 0 for any value
of x. That is,

h1 ı hn ı hn�1 ı � � � ı h2.0/ > 0:

On the other hand, hi.x/ < 1 for any value of x. It follows that

h1 ı hn ı hn�1 ı � � � ı h2.1/ < 1:

Now if we let
p.x/D h1 ı hn ı hn�1 ı � � � ı h2.x/�x;

then p.0/ > 0 and p.1/ < 0. By the intermediate value theorem, there is a value
of x, say x�, such that p.x�/D 0. That is, there exists a x� such that

h1 ı hn ı hn�1 ı � � � ı h2.x
�/D x�:

So we prove the existence. Therefore, there is a unique equilibrium for any negative
feedback loop whose equations have the form of (3.3). �
Theorem 3.2. Let X0 D .x1;x2; : : : ;xn/ be an equilibrium of an n-node negative
feedback loop with associated equations in the form of (3.3). Suppose 
i D 
 > 0.
Then:

(1) The eigenvalues of the Jacobian matrix at the equilibrium are

�k D�
 C

ˇ̌̌̌ nY
iD1


xi.1�xi/�ivi;i�1

ˇ̌̌̌1=n

ei.�=nC2k�=n/; (3.6)

where k D 0; 1; : : : ; n� 1.

(2) When nD 2, the unique equilibrium is always stable.

(3) When n� 3 and ai D�
1
2
vi;i�1, a branch of periodic solutions can bifurcate

from equilibrium with xi D 0:5 by varying one of the parameters �i and fixing
remaining other parameter values.

Proof. Without loss of generality, we assume 
 D 1 (otherwise, we can always
rescale the time so that 
 D 1). By Lemma 2.1, the Jacobian matrix of the sys-
tem (3.3) has the form 0BBB@

�1 0 � � � 0 f1n

f21 �1 � � � 0 0
:::

:::
: : :

:::
:::

0 0 � � � fn;n�1 �1

1CCCA :
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So the characteristic equation of the Jacobian matrix at the equilibrium is

0D .�C 1/n�f1nf21 : : : fn;n�1 D .�C 1/n�

nY
iD1

xi.1�xi/�ivi;i�1:

Hence,

.�C 1/n D

nY
iD1

xi.1�xi/�ivi;i�1: (3.7)

Note that when the feedback loop is negative,
Qn

iD1 vi;i�1 is negative. So is the
right-hand side of (3.7). Let � D

Qn
iD1 xi.1� xi/�ivi;i�1, then � D j�jei�. It

follows that
�D�1Cj�j1=nei.�=nC2k�=n/

for 0� k � n� 1.
Note that when nD 2,

�1 D�1Cj�j1=2ei.�=2/
D�1C ij�j1=2

and
�2 D�1Cj�j1=2ei.�=2C�/

D�1� ij�j1=2:

It follows that Re.�k/D�1 for k 2 f1; 2g. Hence, a negative feedback loop with
only two nodes must only have a stable equilibrium.

When n � 3, the pair of conjugate roots �1C j�j.cos�=n˙ i sin�=n/ have
the largest real part: �1Cj�j cos�=nD�1C

ˇ̌Qn
iD1 xi.1�xi/�ivi;i�1

ˇ̌
cos�=n.

Note that when ai D �
1
2
vi;i�1, it is straightforward to show that

˚
xi D

1
2

	
is an

equilibrium. Since the expression of eigenvalues is independent of ai , we can
vary �i so that the real part changes from negative to positive and leaves the other
eigenvalues with negative real parts. Therefore, a branch of limit cycles can be
borne through Hopf bifurcation. �
Remark 3.3. The theorem states that when aiD�

1
2
vi;i�1, by varying the parameter

of steepness �i a limit cycle can be obtained via Hopf bifurcation. Note that vi;i�1

is either equal to the activating coupling parameter ˛i;i�1 or equal to the inhibitory
coupling parameter �ˇi;i�1 in the feedback loop. Note that 1=.1C e��i ai / is the
basal production rate. That is, when node i has inhibitory input, its basal production
rate has to be relatively high since ai > 0.

Also with the parameter setting ai D�
1
2
vi;i�1, we have

1

1C e��i .aiCvi;i�1xi�1/

ˇ̌̌̌
xi�1D1

D
1

1C e�1=2�ivi;i�1

and
1

1C e��i .aiCvi;i�1xi�1/

ˇ̌̌̌
xi�1D0

D
1

1C e1=2�ivi;i�1
:
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1 2S 1

2

3S 1

2

3S

Figure 2. Two- and three-node negative feedback loops with a con-
stant signal to node 1, as in [Tyson and Novák 2010]. The dynamics
of the corresponding ODEs are equivalent to those without the signal.

We consider the values of xi 2 Œ0; 1�. So if vi;i�1 D ˛i;i�1 > 0 (i.e., node i has
an activating input from node i � 1), the sigmoidal has maximum value .1 C
e�1=2�i ai;i�1/�1 at xi;i�1 D 1 that goes towards 1 as �i !1 and has minimum
value .1C e1=2�i ai;i�1/�1 at xi;i D 0 that goes towards 0 as �i!1. On the other
hand, if vi;i�1 D�ˇi;i�1 < 0 (i.e., node i has an inhibitory input from node i � 1),
the sigmoidal has maximum value .1C e1=2�iˇi;i�1/�1 at xi;i�1 D 0 that goes
towards 1 as �i !1 and has minimum value .1C e�1=2�iˇi;i�1/�1 at xi;i�1 D 1

that goes towards 0 as �i!1.

Remark 3.4. We recall dynamics of some networks studied by Tyson et al. [2010]
(reproduced in Figure 2). It was assumed that node 1 has a constant basal production
that is indicated by S . The equations to the network in Figure 2 are in the form8̂̂<̂

:̂
Px1 D 
1

�
1

1C e��1.SCa1Cv1;nxn/
�x1

�
;

Pxi D 
i

�
1

1C e��i .aiCvi;i�1xi�1/
�xi

�
;

(3.8)

where i D 2 or i 2 f2; 3g and vi;j D ˛i;j �ˇi;j .
Note that both S and a1 are constants. We can relabel S Ca1 by a�

1
. Then (3.8)

is again in the form of the feedback loop without signal as (3.3). So the dynamics
are the same as we discussed in Section 3.

4. Dynamics of negative feedback loop with Boolean functions

With a given interaction network, there are many ways to choose BL functions for
the nodes. Here we adopt the well-cited assumptions for the associated BL functions
proposed by Albert and Othmer [2003]. We make the following assumptions, which
we will refer to as axioms:

(1) The effects of activators and inhibitors are never additive, but rather, inhibitors
are dominant.

(2) The activity of a node will be “on” in the next time step if at least one of its
activators is “on” and all inhibitors are “off”.
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1 2S

.x1;x2/ F.x1;x2/

.0; 0/ .1; 0/

.1; 0/ .1; 1/

.1; 1/ .0; 1/

.0; 1/ .0; 0/

(0,0) (1,0)

(1,1)(0,1)

Figure 3. Left: two-node negative feedback loop that admits a
cycle; middle: BL map; right: transition graph.

(3) The activity of a node will be “off” in the next time step if none of its activators
are “on”.

(4) If a node has a background activation, then we assume that the node has an
activator that is permanently “on”.

Let I.i/ be the set of inhibitors and A.i/ be the set of activators of the i-th node.
Then we can express the axioms by the following logic function:

xi.tC1/

D

8̂̂̂̂
<̂
ˆ̂̂:

�
:

W
j2I.i/

xj .t/
�
^

W
k2A.i/

xk.t/ when node i has no background activation,

:
W

j2I.i/

xj .t/ when node i has a background activation.

For example, for the network in Figure 3, node 1 receives two inputs: one inhibitor
and another one is a background activator, and node 2 receives one activator from
node 1. So if x1 D 0 and x2 D 1, then in the next time step, x1 remains 0 since its
inhibitor node 2 is on and x2D 0 since its only activator is off. It is straightforward
to check that the BL function associated to the network must be the one listed in
the table in Figure 3. The dynamics of the two-node network in Figure 2 can be
described by the transition graph in Figure 3. Note that this network admits a cycle.

Three-node negative feedback loop. Next we consider a network of three-node
negative feedback loops. We assume one of the nodes has a background activation.
Then there are three cases as shown in Figure 4.

Case I. Assume node 1 has the background activator shown in Figure 5, left. Then
following the axioms, the BL functions associated to the network is the one in
Figure 5, middle, and the transition diagram is as in Figure 5, right. We can see
that .1; 1; 0/ is a fixed point and all other points will converge to the fixed point
over the time. As a result, no cycle exists.
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1

2

3S 1

2

3

S

1

2

3 S

Figure 4. Three different background activation locations.

1

2

3S

.x1;x2;x3/ f .x1;x2;x3/

.0; 0; 0/ .1; 0; 0/

.1; 0; 0/ .1; 1; 0/

.1; 1; 0/ .1; 1; 0/

.1; 0; 1/ .1; 1; 0/

.0; 1; 1/ .1; 0; 0/

.0; 1; 0/ .1; 0; 0/

.0; 0; 1/ .1; 0; 0/

.1; 1; 1/ .1; 1; 0/

(0,0,0)(010) (0,1,1)

(1,0,0)

(1,1,0) (1,1,1)

(1,0,1)(0,0,1)

Figure 5. Case I, left: background signal is on node 1; middle:
BL map; right: transition graph.

1

2

3

S

.x1;x2;x3/ f .x1;x2;x3/

.0; 0; 0/ .0; 1; 0/

.1; 0; 0/ .0; 1; 0/

.1; 1; 0/ .0; 1; 0/

.1; 0; 1/ .1; 1; 0/

.0; 1; 1/ .1; 1; 0/

.0; 1; 0/ .0; 1; 0/

.0; 0; 1/ .0; 1; 0/

.1; 1; 1/ .0; 1; 0/

(1,1,0)(0,0,1) (0,0,0)

(0,1,1) (1,0,1)(1,1,1)

(0,1,0) (1,0,0)

Figure 6. Case II, left: background signal is on node 2; middle:
BL map; right: transition graph.

Case II. Assume node 2 has the background activation as Figure 6, left. Then
the corresponding BL function and transition graph are Figure 6, middle, and
Figure 6, right, respectively. Again, we can see that the system has only a stable
fixed point .1; 1; 0/. As a result, no cycle exists.

Case III. Assume node 3 has the background activation. Similarly, we can deter-
mine its associated BL function and transition graph as in Figure 7. Different from
the other two cases, there exists a cycle with length 6.
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1

2

3 S

.x1;x2;x3/ f .x1;x2;x3/

.0; 0; 0/ .0; 0; 1/

.0; 0; 1/ .1; 0; 1/

.1; 0; 1/ .1; 1; 1/

.1; 1; 1/ .1; 1; 0/

.1; 1; 0/ .0; 1; 0/

.0; 1; 0/ .0; 0; 0/

.1; 0; 0/ .0; 1; 1/

.0; 1; 1/ .1; 0; 0/

(0,0,0) (001)

(1,0,1)

(1,1,1)(1,1,0)

(0,1,0) (1,0,0)

(0,1,1)

Figure 7. Case III, left: background signal is on node 3; middle:
BL map; right: transition graph.

1

2

3 S

S

S

(0,0,0) (111)

(0,1,0) (1,1,0) (1,0,0)

(1,0,1)(0,0,1)(0,1,1)

Figure 8. BL network that admits cycles.

Similarly, we can show for the three-node network in Figure 8, the network
admits cycle only if each node receives a background activation.

Dynamics of n-node negative feedback loop in Figure 2, right. The analysis of
BL three-node negative feedback networks discussed in the previous section shows
that a network admits cycles only if each node that receives inhibitory input has
background activation. This observation can be generalized to any n-node negative
feedback loop.

Let xm
i be the value of the state variable of node i at the m-th time step. Then

the BL system of the feedback loop in Figure 1 has the form(
xmC1

1
D f1.x

m
n /;

xmC1
i D fi.x

m
i�1
/:

(4.9)

Lemma 4.1. Let G be an n-node feedback loop with associated BL system having
the form of (4.9). Then for any m> n,

xmC1
1
D f1 ıfn ıfn�1 ı � � � ıf2.x

mC1�n
1

/:

Proof. It follows straightforwardly from (4.9). �
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Lemma 4.2. Let G be a feedback loop with the associated BL system satisfying the
axioms. Suppose each node with an inhibitory input from some other node has a
background activation. Then

(1) if node i receives a negative input, then the associated BL function is fi.0/D 1

and fi.1/D 0;

(2) if node i receives a positive input, then the associated BL function is fi.0/D 0

and fi.1/D 1;

and the compositions of fi are bijections.

Proof. Items (1) and (2) follow straightforwardly from the axioms. So all fi are
bijections. It then follows that the compositions of fi are bijections. �

Lemma 4.3. Let C be a node of an n-node feedback loop G. Suppose the value of
the state variable of C stays constant after a finite number of time steps. Then the
associated BL system does not have nontrivial cycles.

Proof. Without loss of generality, we relabel the nodes of G so that C is node 1 and
the rest of the nodes are relabeled as in Figure 1. Let xm

i be the value of the state
variable of node i at the m-th time step. Then the BL system has the form of (4.9).

Since this is a deterministic system, when the value x1 is fixed after a finite
series of steps, say M, then by Lemma 4.1, the values of all other xi will be fixed
after M C n time steps. So the system only has fixed points and does not admit
nontrivial cycles. �

Theorem 4.4. Let G be a negative feedback loop with the associated BL system
satisfying the axioms. Then G admits cycles if and only if each node with a negative
input from some other node has a background activation.

Proof. We first prove by contradiction that if one of the nodes with negative inputs
from other nodes has no background activation, then the system does not admit
cycle. Suppose node C of the negative feedback loop G has a negative input from
the other node and has no background excitation. Note that if the initial state value
of C is zero, then the value of C stays zero forever; if the initial state value of C
is 1, then because C has no excitation input, the value of C becomes zero in the next
time step and remains zero forever. By Lemma 4.3, the negative feedback does not
have a cycle.

Next we prove that if all suppressed nodes have background activation, then a
cycle exists. It is sufficient to show that the value of each state variable changes
over time. By Lemma 4.1, for any m> n,

xmC1
1
D f1 ıfn ıfn�1 ı � � � ıf2.x

mC1�n
1

/:
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Since G is a negative feedback loop,

f1 ıfn ıfn�1 ı � � � ıf2.0/D 1 and f1 ıfn ıfn�1 ı � � � ıf2.1/D 0:

So the value of the state variable of node 1 changes every n steps. Because fi are
bijections, the values of other node states also change over time. �
Comparison. Theorem 4.4 states that a BL feedback loop admits a cycle only if
every node with an inhibitory input has a background activation. In the other words,
the governing BL function of a node i with an inhibitory (negative) input must be
fi.x/D 1�x.

Compared with the results for the discrete homologue, the conditions for the
continuous system are essentially the same. As discussed in Remark 3.3, each node
with an inhibitory input must have a relatively high basal production rate, and as
the steepness parameter �i goes to1, the governing function is the same as the
BL system.

5. Networks with two or more feedback loops

Dynamics of the network in Figure 9. The first network we examine is the one
in Figure 9, which was studied by Tyson et al. [2010]. The authors showed that
without the positive input from node 3 to node 2 (i.e., ˛23 D 0), the network of
ODEs demonstrates oscillations in a certain range of the parameter value S (with
other parameter values fixed). The oscillating range of S shrinks as the coupling
parameter ˛23 increases and it disappears when ˛23 increases to a certain value. We
show next that the effect of the parameter ˛23 can be captured by two BL systems:

(1) Besides functions based on the axioms, the governing function of node 2 which
has two inputs, f2.x1;x3/, satisfies

f2.1;�/D 1 and f2.0;�/D 0;

i.e., the activity of node 2 is dominated by the activity of node 1 and the effect
of node 3 is negligible. For this setting, the dynamics of the network is the
same as the three-node network feedback loop in Figure 7 and it has a stable
cycle. This BL system can capture the dynamics of the corresponding ODE
system with ˛23 D 0 or relatively small.

2

3

1 S

Figure 9. A network consists of two feedback loops.
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(000)

(001)

(100) (110) (111)

(010)(101)

(011)

Figure 10. Transitions of the network in Figure 9 with the governing
function for node 2 is node 2 is on if either node 1 or node 2 is on.

(2) Besides functions based on axioms, the governing function of node 2,f2.x1;x3/,
satisfies

f2.1;�/D 1; f2.�; 1/D 1; and f2.0; 0/D 0;

i.e., node 2 is on if either node 1 or node 3 is on.

This transition diagram of the system is shown in Figure 10. It is clear that the
system only has a fixed point which captures the case when ˛23 is sufficiently large.

Remark 5.1. From this example, we can observe that ODE systems can be viewed
as “organizing centers” of BL systems.

Boolean system of the network in Figure 11. Suppose the network in Figure 11
receives a signal through one of the nodes. The possible networks are as in Figure 12.

It is rather straightforward to check that when the signal goes to node 1 or 2,
the corresponding BL network can only have a stable steady-state, and when the
signal goes through node 3, then it has a stable cycle: .000/! .001/! .111/!

.110/! .000/.

2 13

Figure 11. Another network consisting of two feedback loops.

2 13

S

2 13 S

2 13S

Figure 12. Three possible signal input places.
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Dynamics of the ODE systems of the network in Figure 11. By Lemma 2.1, the
Jacobian matrix of an ODE system associated to the network in Figure 11 at an
equilibrium has the form 0@ �
1 0 f13

0 �
2 f23

f31 f32 �
3

1A ;
where fij D 
ixi.1�xi/�ivij .

Therefore, the characteristic polynomial equation of the matrix is

j�I�J jD .�C
1/.�C
2/.�C
3/�.�C
2/f31f13�.�C
1/f32f23

D�3
C.
1C
2C
3/�

2
C.
1
2C
2
3C
1
3�f13f31�f23f32/�

C
1
2
3�
2f13f31�
1f23f32:

(5.10)

Theorem 5.2. The condition 
2 > 
1 is necessary for Hopf bifurcation to occur.

Proof. Let us label the coefficient of �2 as c1, the coefficient of � as c2 and the
constant term as c3. Then the conditions for having a pair of pure imaginary
eigenvalues are:

� c1 D 
1C 
2C 
3 > 0: (5.11)

� c2 D 
1
2C 
2
3C 
1
3�f13f31�f23f32 > 0. It follows that


1
2C 
2
3C 
1
3�f13f31 > f23f32: (5.12)

� c3� c1c2 D 0, i.e.,


1
2
3� 
2f13f31� 
1f23f32

� .
1C 
2C 
3/.
1
2C 
2
3C 
1
3�f13f31�f23f32/D 0: (5.13)

It follows that

.
2C 
3/f23f32� 

2
1 .
2C 
3/� 


2
2 .
1C 
3/

� 
 2
3 .
1C 
2/� 2
1
2
3C .
1C 
3/f13f31 D 0: (5.14)

Inequality (5.12) and equation (5.14) imply that

.
2C 
3/.
1
2C 
2
3C 
1
3�f13f31/

> 
 2
1 .
2C 
3/C 


2
2 .
1C 
3/C 


2
3 .
1C 
2/

C 2
1
2
3� .
1C 
3/f13f31: (5.15)

Simplifying (5.15), we have

�.
2� 
1/f13f31 > 

2
1 .
2C 
3/: (5.16)

By the condition of the network, f13f31<0, so inequality (5.16) implies 
2>
1. �
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X
1

�

Figure 13. Bifurcation diagram at the parameter values �1D �3D

�2D � , 
1D 
3D 1 and 
2D 1:5, ˛13D ˇ31D ˛23D ˛32D 1,
a1 D a2 D �0:5 and a3 D 0, and with the rest of the parameters
being zero. Here the gray curve represents a branch of stable limit
cycle, the solid black line represents a branch of stable equilibria
and the black dashed line a branch of unstable equilibria.

How can we choose parameter values so that we will observe sustained os-
cillations that close to the Hopf bifurcation point? Suppose the bifurcation is
supercritical; then near the bifurcation point, c3� c1c2 � 0 while c1 and c2 remain
positive. Now by substituting fij by 
ixi.1�xi/�ivij in inequalities (5.16), (5.12)
and c3� c1c2 � 0, we obtain

.
2� 
1/
1
3x1x3.1�x1/.1�x3/�1�3ˇ31˛13 > 

2
1 .
2C 
3/; (5.17)


1
2C 
2
3C 
1
3C 
1
3x1x3.1�x1/.1�x3/�1�3ˇ31˛13

> 
2
3x2x3.1�x2/.1�x3/�2�3˛32˛23 (5.18)

and


 2
1 .
2C 
3/C 


2
2 .
1C 
3/C 


2
3 .
1C 
2/C 2
1
2
3

C .
1C 
3/
1
3x1x3.1�x1/.1�x3/�1�3ˇ31˛13

� .
2C 
3/
2
3x2x3.1�x2/.1�x3/�2�3˛32˛23: (5.19)

Focusing on the equilibria with xi D 0:5, we can find a range of parameter values
that satisfy conditions (5.16), (5.18) and (5.19). For example, �1 D �3 D �2 D � ,

1 D 
3 D 1 and 
2 D 1:5, ˛13 D ˇ31 D ˛23 D ˛32 D 1, a1 D a2 D �0:5 and
a3 D 0. By setting the rest of the parameters to zero and varying the value � , we
can find a branch of limit cycle occuring through Hopf bifurcation; see Figure 13.

Comparison of discrete and continuous homologues. Now we compare the con-
ditions for the homologous systems of the network in Figure 11. The BL system
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requires that node 3 has a background activation, which is reflected in the choices
of parameter values associated to basal production rates in the ODE system:
a1 D a2 D �0:5 and a3 D 0, where a3 is actually the summation of the two
parameters a3 and signal S with a3 D �0:5 and S D 0:5. In order to realize
oscillations in the continuous system, we need to find suitable values for other
parameters as well. For example, we need to impose a restriction on the relation of
decay rates 
2 >
1 in order to observe stable oscillations. Such requirements in the
parameter values of ODE systems do not have correspondence in the BL systems.

6. Discussion

Glass and Kauffman [1973] showed that a stable limit cycle of a continuous network
gives a cycle in its discrete homologue under the condition that each node has only
one input from other nodes. In this work, we compared the conditions for each
type possessing a stable cycle for the case where each node has one input and also
examined two cases when some nodes have two inputs. Our strategy of focusing on
the type of ODE systems in a rather abstract form enables us to perform analytical
examinations and to possibly extract essential dynamical differences between the
two types of network models. The strategy has the potential to be used for more
extensive study of the relations as to provide more efficient algorithms for converting
between continuous and discrete network systems.
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